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Abstract

Floods are among natural disasters which cause the largest damages world-
wide each year, inducing fatalities of human lives, destruction of infrastructure
and economical losses. Consequently, forecasting this type of events through
hydro-meteorological models is still of great importance from a civil protection
point of view since it allows to reduce hydrological risk by means of early
warning systems. Nevertheless, hydrological model initialization in ungauged
basins, where there is lack of direct measurements of meteorological informa-
tion, is a known issue affecting the entire prediction chain. The present study
evaluates the possibility of using forecasts provided by the meteorological
model MOLOCH developed by CNR-ISAC forcing the FEST-WB hydrological
model developed by Politecnico di Milano to perform discharge simulations
assuming that the forecasting errors are negligible when using the first 24 h of
time horizon. The study is carried out in the urban catchments of Milan city,
the Seveso-Olona-Lambro (SOL) river basins, located in northern Italy. The
main hydro-meteorological variables are analysed by comparing the spatialized
and observed meteorological data, provided by an official regional network of
weather stations plus a citizen scientists’ contribution with the meteorological
model forecasts. Moreover, a sensitivity analysis following the well-known
one-factor-at-a-time methodology is accomplished with the aim of defining
which atmospheric forcing, beyond rainfall, mostly affects flowrate forecasts.
Results generally show satisfactory correspondences between forecasts and
observed data for the discharge variable at daily scale, although an underesti-
mation of precipitation, particularly for severe events in summer, is present.
Therefore, using meteorological forecasts to create daily initial conditions for
hydrological model, instead of ground observations, might be a reliable and
valuable approach, even if some considerations should be borne in mind when
coupling the two models.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

© 2023 The Authors. Meteorological Applications published by John Wiley & Sons Ltd on behalf of Royal Meteorological Society.

Meteorol Appl. 2023;30:€2165.
https://doi.org/10.1002/met.2165

wileyonlinelibrary.com/journal/met 1 of 16


https://orcid.org/0000-0002-2594-5655
mailto:alessandro.ceppi@polimi.it
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/met
https://doi.org/10.1002/met.2165
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fmet.2165&domain=pdf&date_stamp=2023-11-28

2 0f 16 openncss ) RMetS

CEPPI ET AL.

KEYWORDS

hydro-meteorological forecasts, initial conditions, MOLOCH model, SOL basins, ungauged

basins

1 | INTRODUCTION

Floods are the most frequent catastrophes among natural
hazards, and one of the most severe hydro-meteorological
events (CRED, 2022): they induce large damages to popu-
lation and infrastructure and generate financial costs. In
2022, it was estimated that 1.81 billion people are
exposed to intense flood risk, leaving one third of them
in poverty conditions (Rentschler et al., 2022). From 1970
to 2012, 79% of the weather, climate and water-related
disasters worldwide were caused by storms and floods,
causing around 1 million deaths and approximately US$
2 trillion of economic losses (WMO, 2014). Forecasting
floods is of great interest in a civil protection framework
since it allows to prevent or mitigate hydrological risk
with non-structured measures as early warning systems
(EWSs). Consequently, hydrological models forced with
meteorological variables have been a tool to properly
monitor discharges in river basins where high risk of
inundations is present (Ceppi et al., 2013; Ranzi
et al., 2009; Ravazzani et al., 2016; Verbunt et al., 2006).

Problems affecting discharge predictions arise from
different sources, for example, lack of observed hydro-
meteorological information, because of poor-quality net-
work of weather and hydrological data stations, or fast
response times due to basin characteristics, especially in
urbanized areas. Therefore, coupling meteorological and
hydrological models or using additional approaches,
besides direct measurements to obtain meteorological
variables, which influence discharge forecasts, are topics
of wide interest. In the last two decades, several studies
have been developed about coupling numerical weather
prediction and hydrological models to perform discharge
forecasts (Bartholmes and Todini, 2005; Gouweleeuw
et al., 2005; He et al., 2009; Lombardi et al., 2018; Ye
et al., 2016). However, hydro-meteorological phenomena,
especially those associated with convective precipitations
are difficult to accurately forecast, thus affecting dis-
charge predictions (Wetterhall et al., 2011). The uncer-
tainty propagation along the forecasting chain
(Silvestro & Rebora, 2014) and the absence of informa-
tion in the studied areas are main challenges for the sci-
entific community aiming at improving the performance
of discharge forecasts.

It is well known how the lack of rainfall and dis-
charge information are limiting factors for flood forecast-
ing. Reynolds et al. (2020) evaluated the impact of

rainfall errors, in terms of volume and duration, on the
performance of a calibrated model with limited discharge
data. In addition, the lack of hydro-meteorological infor-
mation affects discharge forecasts as assessed by Seibert
and Beven (2009) in defining the amount of discharge
measurements needed to properly parametrize a model
for providing streamflow. On the other hand, the useful-
ness of other types of precipitation data, such as remote
measurements, were evaluated in Ward et al. (2011) from
a water resources perspective over two complex moun-
tainous catchments. Similar procedures have been fol-
lowed in Chintalapudi et al. (2014) who used different
satellite precipitation products to force a physically based
distributed hydrological model obtaining different perfor-
mances in terms of statistical indexes.

Other types of methodologies, such as regionalization,
are used to perform discharge forecasts, particularly in
ungauged basins. For instance, Yang et al. (2018) tested
different methodologies of regionalization about parame-
ters involved in the hydrological modelling in a catch-
ment situated in Norway. More recent studies
(e.g., Chawla & Mujumdar, 2020) calculated the perfor-
mance of different reanalysis datasets, satellite products
and the Weather Research Forecasting (WRF) model to
represent heavy rainfall over a region in Himalayas,
using rain gauge data as reference dataset. This informa-
tion was used to initialize a hydrological model and to
assess its ability to reproduce floods even in ungauged
area where reanalyses revealed an unsatisfactory perfor-
mance; however, the output obtained from the WRF
model or TMPA (Multisatellite Precipitation Analysis)
datasets could be improved in future to perform flood
forecasting in early detection and warning.

In Ines and Hansen (2006), daily rainfall simulations
from a general circulation model (GCM) have been trans-
formed by applying a bias-correction method which con-
sists of two steps, frequency and intensity correction.

In the present study, problems regarding the lack of
hydro-meteorological information in river basins requir-
ing discharge predictions are tackled. In the framework
of coupling meteorological and hydrological models to
predict flowrates, the following question is addressed: is
it possible to use meteorological forecasts as if they were
observed data to perform flood forecasts when direct
measurements are missing? In this concern, it is assumed
that errors in precipitation forecasts might be negligible
when treating the first 24 h of meteorological forecasts,
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in order to generate flowrate predictions in ungauged
river basins where few (if any at all) ground meteorologi-
cal measurements are available.

To pursue this scope, a verification of the high-
resolution MOLOCH meteorological forecasts, which is
used as driven-input into the FEST-WB hydrological model
instead of observations for discharge forecasting, is firstly
performed, considering an 8-year period between 2013 and
2020. The Seveso-Olona-Lambro (SOL) river basins located
in the Milan urban area in northern Italy have been chosen
as testbed, since a great amount of observed weather data
are available from the official network operated by the
Regional Environmental Protection Agency (ARPA Lom-
bardy) and from the citizen-scientist network managed by
the Meteonetwork (MNW) association; hence, a good and
reliable assessment can be executed.

The present study is structured as follows: the area of
study is described in Section 2 together with the main
characteristics of the SOL river basins. Section 3 deals
with tools and methods concerning the meteorological
and hydrological models and their coupling and with
observed and forecast meteorological variables and their
treatment. Section 4 describes the main results, and the
comparison between observed and forecast hydro-
meteorological variables, as well as the sensitivity analy-
sis are deeply discussed.

2 | AREA OF STUDY

The area of interest includes the hydrological catchments
of the rivers Seveso, Olona and Lambro, located in the
north of Milan city in the Lombardy region of Italy, char-
acterized by a pronounced seasonality in the meteorologi-
cal regime. According to the analysed data from the
ARPA Lombardy and MNW weather stations in
the period 2003-2020 (Chaves Gonzalez, 2021), precipita-
tion shows a bimodal behaviour with two peaks: one
with larger amounts in autumn and the other in spring.
January is the month with the lowest value (57.4 mm),
while November presents the highest (158.8 mm). Maxi-
mum hourly precipitations are attained in summer,
mainly due to convective storms. The yearly mean rain-
fall value aggregated over the SOL catchments is around
1200 mm with an increasing trend of 14.2 mm/year along
the available 18 years. Concerning temperatures, January
is the coldest month with a mean value of 2.9°C, and July
is the warmest one with 24.0°C, while a yearly average
equal to 13.2°C is observed with temperatures spanning
from 12 to 14°C with an increasing trend of 0.08°C/year.
From hydrological point of view, the Olona basin
covers the western part of the studied region with a surface
of 911 km?* most of the basin (99%) is within the Italian

borders with a small portion of watershed located in
Switzerland. Seveso is the central basin with a surface of
277 km?, of which 100 km? belong to urban areas with the
closure section at via Ornato where the river has its maxi-
mum capacity of about 35 m?/s before the subsurface chan-
nel network of Milan commences. The eastern catchment
is the Lambro River basin, characterized by a complex
hydrographic network with 553 km?® of surface; 199 km?
belong to urban areas, while 354 km? to exurban areas
with the closure section at Redefossi deviation confluence
localized to the south of Milan city. These three water
courses, situated to the north of Milan, flow in north-south
direction, and they are interconnected by artificial channel
networks made for irrigation and flood protection pur-
poses. All catchments are regulated by structural measures
along their waterways: the Ponte Gurone dam over the
Olona basin, the north-west spillway channel (which is an
Italian acronym of the Canale Scolmatore Nord-Ovest,
CSNO) over the Seveso basin, which has a discharge capac-
ity of 30 m®/s, and the regulated Pusiano Lake over the
Lambro River basin. Hence, to carry out a reliable analysis
without any hydraulic disturbance, the section of the
Seveso river closed to the municipality of Bovisio-Masciago
(Figure 1) and upstream the CSNO was selected.

3 | TOOLS AND METHODS

In this section, the meteorological and hydrological
models, as well as the available observed and forecast
data and their statistical treatment and processing, are
thoroughly described.

31 | The MOLOCH
meteorological model

In the present study, the high-resolution meteorological
model MOLOCH (Davolio, Henin, et al., 2017; Malguzzi
et al, 2006), widely adopted by several regional
meteorological services and national agencies to perform
real-time forecasting in Italy, was chosen to carry out
hydro-meteorological simulations over the selected SOL
basins, especially to evaluate if the generated forecasts
can replace observed ground measurements, which are
necessary to initialize the FEST-WB hydrological model
in case of data missing or ungauged basins.

The model was developed at the Institute of Atmo-
spheric Sciences and Climate of the National Research
Council of Italy (CNR-ISAC) where it is implemented
over Italy within a daily operational chain (Davolio
et al., 2020), that also comprises the hydrostatic model
BOLAM (Buzzi et al., 2014), whose initial conditions are
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FIGURE 1
section where all the analyses are performed.

provided by the analyses (00 UTC) of the Global Forecast
System (GFS, NOAA/NCEP, USA). MOLOCH is nested
(1-way) into the BOLAM run performed at coarser reso-
lution, and it is initialized with a 3-h BOLAM forecast.
This operational practice allows to initialize the high-
resolution model with physical-consistent dynamical
fields, since it avoids a pure interpolation from the global
model, thus reducing the possible noise in the initial
phase of the simulation and minimizing the spin-up
period. However, for a limited period of few years,
MOLOCH forecasts in the range +4 h to +24 were tested
in place of 0-24 h interval, and no relevant differences
were found in the performance.

Concerning general characteristics of the model and
its operability, MOLOCH integrates non-hydrostatic,
fully compressible equations for the atmosphere with a
grid size of 1.25 km, 60 atmospheric levels. The spatial
resolution of the model has had two main upgrades,
changing from 2.2 to 1.55 km in March 2014, and from
1.55 to 1.25 km in October 2016. Additionally, it operates
as short-range (up to 48 h) weather forecasting model,
providing output fields at hourly frequency.

River basins draining to Milan urban area. The orange area shows the Seveso river basin closed at Bovisio-Masciago gauge

Model prognostic variables, pressure, virtual tempera-
ture, specific humidity, horizontal and vertical compo-
nents of wind velocity, turbulent kinetic energy and five
water species (cloud water, cloud ice, rain, snow, grau-
pel/hail), are spatially represented on a latitude-longitude
rotated Arawaka C-grid. In the vertical, MOLOCH
employs a hybrid terrain-following coordinates, depend-
ing on air density, relaxing smoothly to horizontal sur-
faces at a higher elevation from the ground. Time
integration is done with an implicit Euler-backward
scheme for the vertical propagation of sound waves, and
an explicit time-split scheme for the remaining terms of
the equation of motion. Furthermore, three-dimensional
advection is computed using a second-order Weighted
Average Flux scheme (Hubbard & Nikiforakis, 2003), and
divergence damping is included to prevent energy accu-
mulation on the shorter space scales.

MOLOCH is a convection resolving model. Concern-
ing the model physics, four components are parameter-
ized. The atmospheric radiation is computed with a
combined application of the Ritter and Geleyn (1992) and
the ECMWF (Morcrette et al., 2008) schemes. The sub-
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grid turbulence parametrization uses a scheme based on
an E-1, order 1.5 closure theory, where turbulent kinetic
energy is evaluated (Trini Castelli et al., 2020). The
microphysical scheme was initially based on the parame-
terisation proposed by Drofa and Malguzzi (2004), with
successive upgrades. Finally, the soil model uses seven
layers, whose depth increases moving downward, and
describes orography, geographical distribution of soil
types, soil physical parameters and vegetation coverage,
as well as soil physical processes.

MOLOCH performance has been assessed in the frame-
work of several international research programs (e.g., MAP

routing

A 4

discharge

D-PHASE, Rotach et al, 2009) or applications
(e.g, Davolio et al, 2020; Davolio, Silvestro, &
Gastaldo, 2017), including intercomparisons exercises
(Ferretti et al., 2014; Senatore et al., 2020), as well as in the
operational activities of the regional meteorological centres
and institutions that implement MOLOCH for operational
forecasting purposes (e.g., Mariani et al., 2015).

An exhaustive description of the models can be found
in Davolio et al. (2020) and reference therein, while addi-
tional comments concerning forecast information obtained
with MOLOCH model and the given use in the present
study are done in further sections.
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3.2 | The FEST-WB hydrological model
For rainfall run-off simulation, the FEST-WB model (Flash-
flood Event-based Spatially-distributed rainfall-runoff
Transformation - Water Balance mode) was employed in
the present study. It is a physically based, distributed hydro-
logical model developed in Italy at Politecnico di Milano
(Rabuffetti et al., 2008; Ravazzani, 2013). The simulation
domain is discretized into regular square cells
(200 x 200 m, in this study, a grid-spacing one order of size
finer than that of the MOLOCH soil model) where equa-
tions that describe hydrological processes are solved with
hourly time step. The FEST-WB model is written in Fortran
90 with a modular approach, hence, only the dominant pro-
cesses can be simulated for any specific studies (Figure 2).

For running a simulation, the FEST-WB model
requires meteorological input data. These can be site
measurements acquired by meteorological stations or
multidimensional raster data coming from weather fore-
cast models. Station-site data are interpolated over the
simulation domain using inverse distance weighting.
The snow module gets precipitation data and simulate
snow accumulation, as snow water equivalent, and melt-
ing. Run-off computation is performed in each cell of the
domain using the modified SCS-CN method extended for
continuous simulations:

2
- IEP— I I:) S @
a
with I, =0.2S P is the precipitation [L], R is the run-off
[L], S is the maximum retention capacity [L] and I, is the
initial abstraction.
S, is updated in each cell at the beginning of a precipi-
tation event as

stl—E(Sl—Sg,) (2)
with
S1=S(CNp) (3)
Sg = S(CNUI) (4)
PR 100—CNy
CN1=CNn (20100 — CNy +EXP(2.533 —0.0636(100 — CNH)))
(5)

CNy; = CNy EXP (0.00673 (100 — CNy;)) (6)

(7)

TABLE 1 Number of ARPA Lombardy plus MNW stations per
variable.
Data P T RH SR A%
ARPA 89 76 61 23 48
MNW 142 144 130 130 130
Total 231 220 191 153 178

where @ is the actual water content at time ¢ [L*/L*], 6; is
the saturated water content [L*/L*] and 6, is the residual
water content [L*/L3].

The actual soil moisture is updated by solving the
continuity equation:

0 1

where Z is the soil depth, D is drainage flux and ET is the
evapotranspiration rate.

The effective evapotranspiration is estimated as a
fraction of the potential rate of evapotranspiration, tuned
by a function depending on soil moisture content. This
potential rate is evaluated by means of the Priestley-
Taylor radiation-based equation (Priestley & Taylor,
1972). Surface run-off is routed with the Muskingum-
Cunge method in its non-linear form with the time vari-
able celerity (Ponce & Yevjevich, 1978). Further details
about model calibrations and applications are described
in Ravazzani, Ghilardi, et al. (2014), Ravazzani, Gianoli,
et al. (2014), Boscarello et al. (2014) and Ravazzani
et al. (2016).

3.3 | Observed meteorological data
A climatological database was created for the period
2003-2020 containing information at hourly resolution of
the following meteorological variables: precipitation (P,
mm), 2-m air temperature (T, °C) and relative humidity
(RH, %), incoming short-wave solar radiation (SR, W/m?)
and wind speed (W, m/s). Weather data inside and
nearby the three SOL catchments were collected from
ARPA Lombardy, and, since spring 2013, meteorological
information was also acquired from the MNW associa-
tion, which has an open-source database fed by citizen
scientists. A comprehensive review about this amateur
weather network can be found in Giazzi et al. (2022). In
Table 1, the total number of stations per variable is
shown.

Hence, combining the two datasets, a huge improve-
ment of ground data coverage was obtained in the
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FIGURE 3

investigated area as reported in Figure 3, where a map of
all rain gauges is shown.

Although the acquired data were previously validated
by both ARPA Lombardy and MNW, an additional qual-
ity control procedure was conducted with the scope of
identifying and substituting those values that may have
no physical meaning, leading to better hydrological simu-
lation results. In addition, missing days were carefully
identified from the forecast dataset and removed from
the series to be analysed.

3.4 | Coupling strategy for hydrological
simulations

The applied coupling strategy, here proposed as main
scope of the research, consists in initializing the FEST-
WB hydrological model with forecast variables obtained
from the MOLOCH meteorological model. Solar radia-
tion, temperature, relative humidity and precipitation at
hourly time steps were used, instead of observed ground
measurements, as input to the FEST-WB model in order
to, first, simulate hydrological quantities such as

Map of rain gauges located in the SOL area coming from the ARPA Lombardy (in red) and MNW network (in green).

potential evapotranspiration, soil moisture and discharge,
and, then, to create initial conditions for subsequent fore-
cast run, hence, a comparison with two datasets of initial
conditions, one obtained with MOLOCH forecast and the
other with observed value, was carried out.

To achieve this aim, the following steps were under-
taken: (i) initialization of the FEST-WB hydrological
simulations with observed weather data in the period
2003 to 2020 to produce a climatological dataset;
(ii) benchmark analysis of the MOLOCH forecasts in the
overlapping period between observed and forecast infor-
mation, that is, from January 2013 to December 2020;
(iii) a sensitivity analysis with the one-factor-at-a-time
(OAT) methodology (Borgonovo, 2010; Little, 1970;
Stein & Alpert, 1993) to identify the meteorological forc-
ing (beyond precipitation) that mostly influences the
hydrological simulations; in particular, the FEST-WB
model was forced with three observed input and one
forecast data, taking turns among air temperature, rela-
tive humidity, precipitation and incoming solar radia-
tion; (iv) initialization of the hydrological model with
forecast weather data of the first 24 h by the MOLOCH
model; this allows to perform a comparison in terms of
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variables with
simulations initialized with observed data. Common

hydro-meteorological respect to
skill scores were used to evaluate the hydro-
meteorological performance: Mean Error (ME), Mean
Absolute Error (MAE), Root Mean Square Error (RMSE)
and determination coefficient R* with a simple linear
regression - least square method (Jolliffe &
Stephenson, 2012; Wilks, 2006; WWRP-WGNE Joint
Working Group on Verification Research, 2013, accessed
on 1 July 2023).

4 | RESULTS AND DISCUSSION

A prime comparison of the hydrological simulations
forced with observed and forecast weather data was
performed for the period 2013-2020 in order to, first,
evaluate the performance of the MOLOCH meteorologi-
cal model and, afterwards, to evaluate its potentiality
in providing a reliable dataset to create the initial condi-
tions for the FEST-WB model in place of instrumental
ground data.

4.1 | Evaluation of MOLOCH forecasts

In the following subsection, a comparison of the
MOLOCH meteorological forcing is shown in terms of
the statistical indexes at daily time scale.

Figure 4 depicts four scatter plots comparing daily
observed and forecast data of temperature, solar radiation,
relative humidity and wind. Concerning temperatures
(Figure 4a), it is possible to observe a very close agreement
between both datasets, reflected by means of the determi-
nation coefficient (R®) equal to 0.98. Nevertheless, the sign
of the mean error (ME) equal to —1.3°C, the linear regres-
sion under the diagonal and the larger amount of data
points below 0°C in the bottom left portion of the scatter
plot reveal that the MOLOCH model slightly underesti-
mates temperature values, particularly below the freezing
point. Notwithstanding this, the underestimation is, on
average, equal to 1.4 and 1.71°C for the MAE and RMSE,
respectively, in the analysed period.

Investigating daily solar radiation (Figure 4b), the coef-
ficient of determination is equal to 0.92 between observed
and forecast values, and the statistical indexes show low
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and Taylor (1972) equation which does not consider the

As far as precipitation is concerned, Figure 5 illus-
trates the model performance for the primary driving var-
iable for rainfall-run-off transformation.

Generally, there 1is a reasonable agreement
(R* = 0.70) between MOLOCH forecasts and observed
data; however, a general underestimation is seen by the
trend line, especially for intense precipitation. Addition-
ally, to verify a possible seasonal dependence of the
MOLOCH performance, the same analysis was repeated
for winter months (December-February), spring (March-
May), summer (June-August) and autumn (September—
November) as shown in Figure 6.

Compared with the annual average, the forecast accu-
racy is higher in winter and gets worse in summer, with
intermediate behaviour in spring and autumn. In particu-
lar, the average error and its magnitude are smaller in

CEPPI ET AL.
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FIGURE 5 Scatter plots and statistical indexes between

observed and forecast data by the MOLOCH model for daily
accumulated precipitation.

errors compared with the order of magnitude of the vari-
able; however, a general overestimation for the MOLOCH
model is present; in fact, the ME, MAE and RMSE are
equal to 16.5, 22.5 and 32.8 W/m?, respectively.

For the relative humidity (Figure 4c), a decrease of
the model performance is found; in fact, there is a large
overestimation tendency for low wvalues, while an
underestimation for large RH values is present, leading
the mean error equal to 3%. The agreement between
observed and forecast information is not particularly
high, since the coefficient of determination is 0.77 at
daily scale, and the MAE and RMSE are equal to 7%
and 9%, respectively.

Figure 4d shows the results concerning the wind
speed. At daily time scale, a low correspondence between
data is shown, since the R* coefficient is equal to 0.56; it
is also observed an overestimation tendency especially for
small values, which tends to grow increasing wind speed.
Nevertheless, the ME, MAE and RMSE indexes remain
below the threshold of 1 m/s. However, it must be taken
into account that MOLOCH forecasts are referred at
10 m of elevation above the ground. Therefore, the cur-
rent results may be affected by heterogeneity of measure-
ment instruments’ location since most of them are not
mounted at the same height. A scale factor correction to
the observed dataset could be applied, according to the
wind profile equation, to perform a fairer comparison of
wind speed. However, wind speed values do not influ-
ence the results of hydrological quantities since the
potential evapotranspiration is assessed through Priestley

winter, and have a similar behaviour in the intermediate
seasons, attaining the largest values in summer. More-
over, the underestimation tendency for high values of
precipitation still remains, and it is particularly evident
in summer. These results can be explained taking into
account the different precipitation dynamics along the
year, as described in the climatological characterization
of the region (Section 2). The area of study presents a
bimodal regime of precipitation with rainy (usually strati-
form) periods in spring and autumn when a similar
behaviour is revealed in the scatter plots; on the contrary,
convective precipitations with significant rain intensities
are common in summertime. Since accurate precipitation
forecasting due to convective storms is still challenging,
even for high-resolution meteorological models, espe-
cially at the small scales relevant for hydrological applica-
tions; this justifies the decrease in summer.

In summary, the MOLOCH performance was evalu-
ated for the period 2013-2020 and a close agreement was
found for daily mean temperature and solar radiation.
Vice versa, the model relative humidity is affected by a rel-
evant overestimation tendency for low values, and an
opposite behaviour for high values. In addition, wind
speed shows a marked overestimation for daily mean data,
while for precipitation, a reasonable agreement between
forecast and observed data is attained, despite an overesti-
mation for heavy rainfall, mainly ascribable to intense
summer convection.

4.2 | Sensitivity analysis of
meteorological forecasts

A sensitivity analysis by means of the one-factor-at-a-
time (OAT) methodology was performed in order to
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FIGURE 7 Sensitivity analysis of the mean daily soil moisture on four different meteorological variables forecasts.

identify the most relevant meteorological forcing, beside
precipitation, for the simulation of the hydrological vari-
ables (i.e., soil moisture, potential evapotranspiration and

discharge). In Figures 7-9, four scatter plots are pre-
sented for each hydrological variable at daily scale. Each
represents the simulation results obtained by forcing the
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FIGURE 9 Sensitivity analysis of the daily peak flowrate on four different meteorological variables forecasts.

FEST-WB model using the observed data except for one
variable (highlighted in bold in the title) which is pro-
vided by MOLOCH forecast. It is worth noticing that
wind speed is not here considered, since it is not com-
puted in the estimation of hydrological quantities in the
present study.

Figure 7 shows the influence of different input meteoro-
logical variables on soil moisture simulations and reveals
that, besides rainfall, solar radiation plays a crucial role as
well. This means that an error in its forecast may generally
decrease the accuracy in the soil moisture simulation.
Hence, bearing in mind that the soil moisture is dynamically
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described by the water balance equation in the FEST-WB
model (Equation 8), which depends on precipitation, surface
runoff, drainage fluxes and evapotranspiration, it is clear
why forecasts of solar radiation (and indeed precipitation)
affect the assessment of soil moisture variable. On the other
hand, when forecast temperature and relative humidity are
used as forcing variables, nearly perfect scores are obtained
for soil moisture, demonstrating also a very weak impact of
relative humidity model uncertainties, previously described.

Regarding potential evapotranspiration, results of the
sensitivity analysis (Figure 8) show that solar radiation is
the most relevant factor, and a marked overestimation is
evident, while errors due to other meteorological vari-
ables do not influence its forecast. However, errors in
solar radiation forecasting for evapotranspiration esti-
mates generally have larger impacts on agricultural areas
for water resource management and crop water require-
ments (Cai et al., 2007, 2009; Corbari et al., 2019; Pelosi
et al., 2016) than in urban catchments which are preva-
lently covered by impervious surfaces.

Concerning the flow rate at Bovisio-Masciago closure
section, results are shown in Figure 9. Among the four
considered variables, only the forecast precipitation
affects the daily peak discharge prediction, leading to a
pronounced underestimation.

As done for precipitation, a possible seasonal behav-
iour for the daily peak discharge is analysed (Figure 10).

The scatter plots reveal that the different rainfall fore-
cast accuracy of MOLOCH modulates the behaviour of
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Sensitivity analysis for the daily peak discharge variable influenced by precipitation forecasts at seasonal scale.

the flowrate at seasonal scale. Thus, the predictability
of flowrate is higher in winter (R* = 0.86) than in the
other seasons, followed by spring and autumn with simi-
lar coefficients of determination (0.72 and 0.70, respec-
tively), and finally summer where the agreement is very
low (R? equal to 0.42).

4.3 | Influence of initial conditions on
hydrological simulations

Having verified how far MOLOCH forecasts are reliable
and that the hydrological variables are mostly affected by
solar radiation and precipitation (particularly, in summer-
time), a new approach is here proposed to manage meteo-
rological forecasts. In the common practice, before forcing
any hydrological simulation with observed or forecast data,
hydrological initial conditions (IC) have to be created run-
ning the FEST-WB model with ground measured data of
the previous days (in this study, day-1); hence, once the
initial conditions are obtained at a given current day
(i.e., day + 0), the model is ready to be fed by forecast data.

This analysis is set as it was in an ungauged basin
where few (if any at all) ground measured data are pre-
sent. Therefore, we exploit the first 24 h of weather fore-
casts as they were observations of the previous day. We
try to investigate to what extent MOLOCH forecasts can
be used to set up the ICs of the FEST-WB hydrological
model in such a framework. Hence, we generated two
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FIGURE 11 Scatter plots for daily (a) accumulated evapotranspiration, (b) mean soil moisture and (c) peak flow rate comparing

hydrological forecasts forced with ICs by MOLOCH and with observed data at Bovisio-Masciago closure section.

sets of initial conditions, one obtained with instrumental
data, and the other with MOLOCH forecasts; afterwards,
we run the FEST-WB model to produce the two forecast
scenarios with both datasets of initial conditions.

Figure 11 highlights the main results for three key
components of the hydrological cycle, that is, potential
evapotranspiration, soil moisture and discharge at
Bovisio-Masciago closure section. A reasonable and good
matching between the two sets of forecasts is attained,
with a determination coefficient spanning between 0.75
and 0.88. Using the MOLOCH ICs instead of the
observed ones produces lower forecast values for all
the three hydrological variables.

The same exercise was carried out for the daily maxi-
mum flow rate for an upstream site of the River Seveso at
Cantu closure section (Figure 12), which is 15 km north of
Bovisio-Masciago city. Results show a general worsening of
the skills scores in comparison with those obtained at the
downstream section of Bovisio-Masicago. This indicates a
stronger impact of the initial condition that can be due to
the land cover and land use (LULC) characteristics of the
catchment area closed at Cantu. In fact, this subbasin is
less urbanized (Ceppi et al., 2022), and it presents more
natural and undisturbed features, which generally require
more accurate initial conditions in comparison with urban
areas, the latter being less sensitive to the effect of atmo-
spheric conditions. In fact, the Curve Number (CN) from
the Corine dataset (https://land.copernicus.eu/, accessed
on 1 July 2023) shows a mean value of 77 at Cantu closure
section, while it increases up to 80 moving downstream to
Bovisio-Masciago.

In general, taking the first 24 h of forecasts provided
by MOLOCH to define the initial hydrological condition
leads to a discharge estimation that is sufficiently accu-
rate; however, specifically for heavy rainfall (and subse-
quently run-off) mainly caused by convective
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FIGURE 12  Scatter plot for the daily peak flow rate
comparing hydrological forecasts forced with ICs by MOLOCH and
with observed data at Cantu closure section.

phenomena, the error may become not negligible. In
addition, it is worth noticing that the area of study has a
very small size, lower than 200 km?, and it is thus chal-
lenging to have accurate meteorological forecasts at such
scales.

5 | CONCLUSIONS

Different factors may affect discharge forecasts, such as
the lack of direct meteorological information, low pre-
dictability of some types of weather phenomena, uncer-
tainty propagation through the forecasting chain and
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characteristics of the catchment determining the tempo-
ral scales of floods. Some actions should be carried out in
order to overcome these difficulties, which are particu-
larly relevant in ungauged basins where local and reliable
measurements are hardly available.

In the present study, 8 years of hydrological simula-
tions between 2013 and 2020 are investigated: in detail,
we first compared observed weather data and high-
resolution meteorological forecasts provided by the
MOLOCH model; then, we carried out a sensitivity analy-
sis about simulated hydrological variables obtained by
forcing the hydrological FEST-WB model with measured
and forecast meteorological information. Lastly, we run
the hydrological forecasts using two datasets of initial
conditions, one obtained with common ground instru-
ments and the other using the MOLOCH forecasts as
they were observations.

Concerning the benchmark assessment of meteoro-
logical variables, a good agreement with respect to a lin-
ear regression for temperature and solar radiation was
found, while relative humidity and precipitation have a
lower correspondence, and wind speed presents higher
dispersion at daily scale.

The one-factor-at-a-time (OAT) methodology
allowed to evaluate the performance of the MOLOCH
model, providing its forecast as input into the FEST-WB
model to simulate the discharge. This sensitivity analy-
sis showed that solar radiation (beside precipitation)
mostly affects the hydrological variables; in particular,
a relevant overestimation of potential evapotranspira-
tion and underestimation of soil moisture and, espe-
cially, of discharge are observed. This latter shows a
seasonal behaviour with better values in winter, spring
and autumn, while performances get worse in summer,
which is significantly affected by local thunderstorms
in the study catchments.

Dealing with discharge forecasting in ungauged
basins, the results have shown that it is feasible to ini-
tialize the hydrological model with meteorological
model forecasts. Considering the first 24 h of forecasts
given by MOLOCH, an accurate discharge estimation is
reached, but results may be sensitive to the local land
cover and land use conditions over the basins: for
instance, in urban areas, where soil conditions have less
influence than in permeable territories, better scores
are attained. However, the present study considered
only a small-size catchment along the Seveso River,
which is characterized by the presence of urban zones,
a mountainous part and plain. Further studies in basins
with different size and characteristics, for example,
where snow dynamics play an important role, should
be considered in order to clarify the robustness of the
results here presented.
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