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Abstract
In this paper, we propose an adaptive smoothing spline (AdaSS) estimator for the
function-on-function linear regression model where each value of the response, at any
domain point, depends on the full trajectory of the predictor. The AdaSS estimator
is obtained by the optimization of an objective function with two spatially adaptive
penalties, based on initial estimates of the partial derivatives of the regression coef-
ficient function. This allows the proposed estimator to adapt more easily to the true
coefficient function over regions of large curvature and not to be undersmoothed over
the remaining part of the domain. A novel evolutionary algorithm is developed ad hoc
to obtain the optimization tuning parameters. ExtensiveMonte Carlo simulations have
been carried out to compare the AdaSS estimator with competitors that have already
appeared in the literature before. The results show that our proposal mostly outper-
forms the competitor in terms of estimation and prediction accuracy. Lastly, those
advantages are illustrated also in two real-data benchmark examples. The AdaSS esti-
mator is implemented in the R package adass, openly available online on CRAN.

Keywords Functional data analysis · Function-on-function linear regression ·
Adaptive smoothing · Functional regression

JEL Classification C13 · C19

1 Introduction

Complex datasets are increasingly available due to advancements in technology and
computational power and have stimulated significant methodological developments.
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In this regard, functional data analysis (FDA) addresses the issue of dealing with data
that can be modeled as functions defined on a compact domain. FDA is a thriving area
of statistics and, for a comprehensive overview, the reader could refer to Ramsay and
Silverman (2005);Hsing andEubank (2015);Horváth andKokoszka (2012);Kokoszka
and Reimherr (2017); Ferraty and Vieu (2006). In particular, the generalization of
the classical multivariate regression analysis to the case where the predictor and/or
the response have a functional form is referred to as functional regression and is
illustrated e.g., in Morris (2015) and Ramsay and Silverman (2005). Most of the
functional regression methods have been developed for models with scalar response
and functional predictors (scalar-on-function regression) or functional response and
scalar predictors (function-on-scalar regression). Some results may be found in Cardot
et al. (2003); James (2002); Yao and Müller (2010); Müller and Stadtmüller (2005);
Scheipl et al. (2015); Ivanescu et al. (2015); Hullait et al. (2021); Palumbo et al. (2020);
Centofanti et al. (2020); Capezza et al. (2022).Models where both the response and the
predictor are functions, namely function-on-function (FoF) regression, have been far
less studied until now. In this work, we study FoF linear regression models, where the
response variable function, at any domain point, depends linearly on the full trajectory
of the predictor. That is,

Yi (t) =
∫
S
Xi (s) β (s, t) ds + εi (t) t ∈ T , (1)

for i = 1, . . . , n. The pairs (Xi ,Yi ) are independent realizations of the predictor X and
the response Y , which are assumed to be smooth random processes with realizations
in L2(S) and L2(T ), i.e., the Hilbert spaces of square integrable functions defined
on the compact sets S and T , respectively. Without loss of generality, the latter are
also assumed with a functional mean equal to zero. The functions εi are zero-mean
random errors, independent of Xi . The function β is smooth in L2(S × T ), i.e., the
Hilbert space of bivariate square integrable functions defined on the closed intervals
S × T , and is hereinafter referred to as coefficient function. For each t ∈ T , the
contribution of Xi (·) to the conditional value of Yi (t) is generated by β (·, t), which
works as a continuous set of weights of the predictor evaluations. Different methods to
estimate β in (1) have been proposed in the literature. Ramsay and Silverman (2005)
assume the estimator of β to be in a finite dimension tensor space spanned by two basis
sets and where regularization is achieved by either truncation or roughness penalties.
(The latter is the foundation of the method proposed in this article as we will see
below.) Yao et al. (2005b) assume the estimator of β to be in a tensor product space
generated by the eigenfunctions of the covariance functions of the predictor X and
the response Y , estimated by using the principal analysis by conditional expectation
(PACE) method (Yao et al. 2005a). More recently, Luo and Qi (2017) propose an
estimation method of the FoF linear model with multiple functional predictors based
on a finite-dimensional approximation of the mean response obtained by solving a
penalized generalized functional eigenvalue problem. Qi and Luo (2018) generalize
the method in Luo and Qi (2017) to the high dimensional case, where the number of
covariates ismuch larger than the sample size (i.e., p >> n). In order to improvemodel
flexibility and prediction accuracy, Luo andQi (2019) consider a FoF regressionmodel
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with interaction and quadratic effects. A nonlinear FoF additive regression model with
multiple functional predictors is proposed by Qi and Luo (2019).

One of the most used estimation methods is the smoothing spline estimator β̂SS

introduced by Ramsay and Silverman (2005). It is obtained as the solution of the
following optimization problem

β̂SS = argminα∈Sk1,k2,M1,M2

{ n∑
i=1

∫
T

[
Yi (t) −

∫
S
Xi (s) α (s, t) ds

]2
dt

+λs

∫
S

∫
T

(
Lms
s α (s, t)

)2
dsdt + λt

∫
S

∫
T

(
Lmt
t α (s, t)

)2
dsdt

}
, (2)

where Sk1,k2,M1,M2 is the tensor product space generated by the sets of B-splines of
orders k1 and k2 associated with the non-decreasing sequences of M1 + 2 and M2 + 2
knots defined on S and T , respectively. The operators Lms

s andLmt
t , withms ≤ k1 −1

and mt ≤ k2 − 1, are the ms th and mt th order linear differential operators applied
to α with respect to the variables s and t , respectively. The two penalty terms on the
right-hand side of (2) measure the roughness of the function α. The positive constants
λs and λt are generally referred to as roughness parameters and trade off smoothness
and goodness of fit of the estimator. The higher their values, the smoother the estimator
of the coefficient function.

Note that the two penalty terms on the right-side hand of (2) do not depend on s
and t . Therefore, the estimator β̂SS may suffer from over and under smoothing when,
for instance, the true coefficient function β is wiggly or peaked only in some parts of
the domain. To solve this problem, we consider two adaptive roughness parameters
that are allowed to vary on the domain S × T . In this way, more flexible estimators
can be obtained to improve the estimation of the coefficient function.

Methods that use adaptive roughness parameters are very popular and well estab-
lished in the field of nonparametric regression and are referred to as adaptivemethods.
In particular, the smoothing spline estimator for nonparametric regression (Wahba
1990; Green and Silverman 1993; Eubank 1999; Gu 2013) has been extended by dif-
ferent authors to take into account the non-uniform smoothness along the domain of
the function to be estimated (Ruppert and Carroll 2000; Pintore et al. 2006; Storlie
et al. 2010; Wang et al. 2013; Yang and Hong 2017).
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In this paper, a spatially adaptive estimator is proposed as the solution of the
following minimization problem

argminα∈Sk1,k2,M1,M2

{ n∑
i=1

∫
T

[
Yi (t) −

∫
S
Xi (s) α (s, t) ds

]2
dt

+
∫
S

∫
T

λs (s, t)
(
Lms
s α (s, t)

)2
dsdt+

∫
S

∫
T

λt (s, t)
(
Lmt
t α (s, t)

)2
dsdt

}
, (3)

where the two roughness parameters λs (s, t) and λt (s, t) are functions that produce
different amount of penalty, and, thus, allow the estimator to spatially adapt, i.e., to
accommodate varying degrees of roughness over the domain S × T . Therefore, the
model may accommodate the local behavior of β by imposing a heavier penalty in
regions of lower smoothness. Because λs (s, t) and λt (s, t) are intrinsically infinite
dimensional, their specification could be rather complicated without further assump-
tions.

The proposed estimator is applied to FoF linear regression model reported in (1),
and is referred to as adaptive smoothing spline (AdaSS) estimator. It is obtained as the
solution of the optimization problem in (3), with λs (s, t) and λt (s, t) chosen based on
an initial estimate of the partial derivatives Lms

s α (s, t) and Lmt
t α (s, t). The rationale

behind this choice is to allow the contribution of λs (s, t) and λt (s, t), to the penalties
in (3), to be small over regions where the initial estimate has large ms th and mt th
curvatures (i.e., partial derivatives), respectively. This can be regarded as an extension
to the FoF linear regression model of the idea of Storlie et al. (2010) and Abramovich
and Steinberg (1996). Moreover, to overcome some limitations of the most famous
grid-search method (Bergstra et al. 2011), a new evolutionary algorithm is proposed
for the choice of the unknown parameters, needed to compute the AdaSS estimator.
The method presented in this article is implemented in the R package adass, openly
available online on CRAN.

The rest of the paper is organized as follows. In Sect. 2.1, the proposed estimator
is presented. Computational issues involved in the AdaSS estimator calculation are
discussed in Sects. 2.2 and 2.3. In Sect. 3, by means of a Monte Carlo simulation
study, the performance of the proposed estimator is compared with those achieved by
competing estimators already appeared in the literature. Lastly, two real-data examples
are presented in Sect. 4 to illustrate the practical applicability of the proposed estimator.
The conclusion is in Sect. 5. Supplementary Material is available online where the
derivation of the approximations of theAdaSS penalty (SupplementaryMaterial 1) and
additional simulation studies are presented (Supplementary Material 2) together with
the optimal tuning parameter selected in the simulation study inSect. 3 (Supplementary
Material 3).
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2 The adaptive smoothing spline estimator

2.1 The estimator

The AdaSS estimator β̂AdaSS is defined as the solution of the optimization problem
in (3) where the two roughness parameters λs (s, t) and λt (s, t) are as follows

λs (s, t) = λAdaSS
s

1(
|̂βms

s (s, t) | + δs

)γs
, λt (s, t) = λAdaSS

t
1(

|β̂mt
t (s, t) | + δt

)γt

that is,

β̂AdaSS = argminα∈Sk1,k2,M1,M2

{ n∑
i=1

∫
T

[
Yi (t) −

∫
S
Xi (s) α (s, t) ds

]2
dt

+λAdaSS
s

∫
S

∫
T

1(
|̂βms

s (s, t) | + δs

)γs

(
Lms
s α (s, t)

)2
dsdt

+λAdaSS
t

∫
S

∫
T

1(
|β̂mt

t (s, t) | + δt

)γt

(
Lmt
t α (s, t)

)2
dsdt

}
, (4)

for some tuning parameters λAdaSS
s , δs, γs, λ

AdaSS
t , δt , γt ≥ 0 and̂β

ms
s and β̂

mt
t initial

estimates of Lms
s β and Lmt

t β, respectively. Note that the two roughness parameters

λs and λt assume large values over domain regions wherêβ
ms
s and β̂

mt
t are small.

Therefore, in the right-hand side of (4), (Lms
s α)2 and (Lmt

t α)2 are weighted through

the inverse of |̂βms
s | and |β̂mt

t |. That is, over domain regions wherêβ
ms
s and β̂

mt
t are

small, (Lms
s α)2 and (Lmt

t α)2 have larger weights than over those regions wherêβ
ms
s

and β̂
mt
t are large. For this reasons, the final estimator is able to adapt to the coefficient

function over regions of large curvature without over smoothing it over regions where
the ms th and mt th curvatures are small.

The constants δs and δt allow β̂AdaSS not to have ms th and mt th-order inflection

points at the same location of̂βms
s and β̂

mt
t , respectively. Indeed, when δs and δt are

set to zero, wherêβ
ms
s = 0 and β̂

mt
t = 0 (ms th and mt th-order inflection points), the

corresponding penalties go to infinite, and, thus, Lms
s α (s, t) and Lmt

t α (s, t) become
zero in accordance with the minimization problem. Therefore, the presence of δs and
δt makes β̂AdaSS more robust against the choice of the initial estimate of the linear
differential operators applied to β with respect to s and t . Finally, γs and γt control the

amount of weight placed in̂β
ms
s and β̂

mt
t , whereas λAdaSS

s and λAdaSS
t are smoothing

parameters. The solution of the optimization problem in (4) can be obtained in a
closed form if the penalty terms are approximated as described in Sect. 2.2. There are

several choices for the initial estimateŝβms
s and β̂

mt
t . As in Abramovich and Steinberg
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(1996), we suggest to apply the ms th and mt th order linear differential operator to the
smoothing spline estimator β̂SS in (2).

2.2 The derivation of the AdaSS estimator

The minimization in (4) is carried out over α ∈ Sk1,k2,M1,M2 . This implicitly means
that we are approximating β as follows

β (s, t) ≈ β̃ (s, t) =
M1+k1∑
i=1

M2+k2∑
j=1

bi jψ
s
i (s) ψ t

j (t)

= ψ s (s)T Bψ t (t) s ∈ S, t ∈ T , (5)

where B = {bi j } ∈ R
(M1+k1)×(M2+k2). The two sets ψ s =

(
ψ s
1 , . . . , ψ

s
M1+k1

)T

and ψ t =
(
ψ t
1, . . . , ψ

t
M2+k2

)T
are B-spline functions of order k1 and k2 and

non-decreasing knots sequences 	s = {s0, s1, . . . , sM1 , sM1+1} and 	t = {t0, t1,
. . . , tM2 , tM2+1}, defined on S = [

s0, sM1+1
]
and T = [

t0, tM2+1
]
, respectively,

that generate Sk1,k2,M1,M2 . Thus, estimating β in (4) means estimating B. Let
α (s, t) = ψ s (s)T Bαψ t (t), s ∈ S, t ∈ T , in Sk1,k2,M1,M2 , where Bα = {bα,i j } ∈
R

(M1+k1)×(M2+k2). Then, the first term of the right-hand side of (4) may be rewritten
as (see Ramsay and Silverman (2005), pag 291-293, for the derivation)

n∑
i=1

∫
T

[
Yi (t) −

∫
S
Xi (s) α (s, t) ds

]2
dt

=
n∑

i=1

∫
T
Yi (t)

2 dt − 2 Tr
[
XBαY T

]
+ Tr

[
XT XBαW t BT

α

]
, (6)

where X = (X1, . . . , Xn)
T , with X i = ∫

S Xi (s) ψ s (s) ds,Y = (Y1, . . . ,Yn)
T with

Y i = ∫
T Yi (t)ψ t (t) dt , andW t = ∫

T ψ t (t)ψ t (t)T dt . The term Tr [A] denotes the
trace of a square matrix A.

In order to simplify the integrals in the two penalty terms on the right-hand side
of (4), and thus obtain a linear form in Bα , we consider, for s ∈ S and t ∈ T , the

following approximations of̂βms
s and β̂

mt
t

̂β
ms
s (s, t) ≈

Ls∑
i=0

Lt∑
j=0

̂β
ms
s

(
τs,i+1, τt, j+1

)
I[(τs,i ,τs,i+1)×(τt, j ,τt, j+1)] (s, t) , (7)

and

β̂
mt
t (s, t) ≈

Ls∑
i=0

Lt∑
j=0

β̂
mt
t

(
τs,i+1, τt, j+1

)
I[(τs,i ,τs,i+1)×(τt, j ,τt, j+1)] (s, t) , (8)
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where �s = {τs,0, τs,1, . . . τs,Ls , τs,Ls+1} and �t = {τt,0, τt,1, . . . τt,Lt , τt,Lt+1} are
non decreasing knot sequences with τs,0 = s0, τs,Ls+1 = sM1+1, τt,0 = t0, τt,Lt+1 =
tM2+1, and I[a×b] (z1, z2) = 1 for (z1, z2) ∈ [a × b] and zero elsewhere. In (7) and

(8), we are assuming that̂βms
s and β̂

mt
t are well approximated by a piecewise constant

function, whose values are constant on rectangles defined by the two knot sequences
�s and �t . It can be easily proved, by following Schumaker Schumaker (2007) (pag.
491, Theorem 12.7), that the approximation error in both cases goes to zero as the
mesh widths δ

s = maxi
(
τs,i+1 − τs,i

)
and δ

t = max j
(
τt, j+1 − τt, j

)
go to zero.

Therefore,̂βms
s and β̂

mt
t can be exactly recovered by uniformly increasing the number

of knots Ls and Lt . In this way, the two penalties on the right-hand side of (4) can be
rewritten as (Supplementary Material 1)

λAdaSS
s

∫
S

∫
T

1(
|̂βms

s (s, t) | + δs

)γs

(
Lms
s α (s, t)

)2
dsdt

≈ λAdaSS
s

Ls+1∑
i=1

Lt+1∑
j=1

dsi j Tr
[
BT

α Rs,i BαW t, j

]
(9)

and

λAdaSS
t

∫
S

∫
T

1(
|β̂mt

t (s, t) | + δt

)γt

(
Lmt
t α (s, t)

)2
dsdt

≈ λAdaSS
t

Ls+1∑
i=1

Lt+1∑
j=1

dti j Tr
[
BT

α W s,i BαRt, j

]
, (10)

where W s,i = ∫
[τs,i−1,τs,i ] ψ s (s) ψ s (s)T ds, W t, j = ∫

[τt, j−1,τt, j ] ψ t (t)ψ t (t)T dt ,

Rs,i = ∫
[τs,i−1,τs,i ] L

ms
s

[
ψ s (s)

]
Lms
s

[
ψ s (s)

]T
ds and Rt, j = ∫

[τt, j−1,τt, j ] L
mt
t[

ψ t (t)
]
Lmt
t

[
ψ t (t)

]T
dt , and dsi j =

{
1(

|̂βms
s (τs,i ,τt, j)|+δs

)γs

}
and dti j =

{
1(

|β̂mt
t (τs,i ,τt, j)|+δt

)γt

}
, for i = 1, . . . , Ls + 1 and j = 1, . . . , Lt + 1.

The optimization problem in (4) can be then approximated with the following

B̂AS

≈ argminBα∈R(M1+k1)×(M2+k2)

{ n∑
i=1

∫
T
Yi (t)

2 dt − 2 Tr
[
XBαY T

]
+ Tr

[
XT XBαW t BT

α

]

+
Ls+1∑
i=1

Lt+1∑
j=1

(
λAdaSS
s dsi j Tr

[
BT

α Rs,i BαW t, j

]
+ λAdaSS

t dti j Tr
[
BT

α W s,i BαRt, j

]) }
, (11)
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or by vectorization as

b̂AS ≈ argminbα∈R(M1+k1)(M2+k2)

{
− 2 vec

(
XTY

)T
bα + bTα

(
W t ⊗ XT X

)
bα

Ls+1∑
i=1

Lt+1∑
j=1

(
λAdaSS
s dsi j b

T
α Lwr ,i j bα + λAdaSS

t dti j b
T
α Lrw,i j bα

) }
, (12)

where b̂AS = vec
(
B̂AS

)
, Lrw,i j = (

Rt, j ⊗ W s,i
)
and Lwr ,i j = (

W t, j ⊗ Rs,i
)
, for

i = 1, . . . , Ls + 1 and j = 1, . . . , Lt + 1. For a matrix A ∈ R
j×k , vec(A) indicates

the vector of length jk obtained by writing the matrix A as a vector column-wise, and
⊗ is the Kronecker product. Then, the minimizer of the optimization problem in (12)
has the following expression

b̂AdaSS

≈
⎡
⎣(

W t⊗XTX
)

+
Ls+1∑
i=1

Lt+1∑
j=1

(
λAdaSS
s dsi j Lwr ,i j + λAdaSS

t dti j Lrw,i j

)⎤
⎦

−1

vec
(
XTY

)

= K−1 vec
(
XTY

)
, (13)

where

K =
(
W t ⊗ XT X

)
+

Ls+1∑
i=1

Lt+1∑
j=1

(
λAdaSS
s dsi j Lwr ,i j + λAdaSS

t dti j Lrw,i j

)
.

The identifiability of β, i.e., the uniqueness of b̂AdaSS , comes from the fact that the
inverse of K exists. This is guaranteed with probability tending to one as the sample
size increases, under the condition that the covariance operator of X is strictly positive,
i.e., his kernel is empty (Prchal and Sarda, 2007). In Equation (13), this reverts into the
condition that XT X is positive definite. Moreover, Scheipl and Greven (2016) show
that identifiability still holds also in the case of rank deficiency of

(
W t ⊗ XT X

)
if,

and only if, the kernel of the covariate covariance operator does not overlap that of the
roughness penalties.

To obtain b̂AdaSS in (13) the tuning parameters λAdaSS
s , δs, γs, λ

AdaSS
t , δt , γt must

be opportunely chosen. This issue is discussed in Sect. 2.3.

2.3 The algorithm for the parameter selection

There are some tuning parameters in the optimization problem (12) thatmust be chosen
to obtain the AdaSS estimator. Usually, the tensor product space Sk1,k2,M1,M2 is chosen
with k1 = k2 = 4, i.e., cubic B-splines, and equally spaced knot sequences. Although
the choice of M1 and M2 is not crucial (Cardot et al. 2003), it should allow the final
estimator to capture the local behaviour of the coefficient function β, that is, M1 and
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M2 should be sufficiently large. The smoothness of the final estimator is controlled
by the two penalty terms on the right-hand side of (12).

The tuning parameters λAdaSS
s , δs, γs, λ

AdaSS
t , δt , γt could be fixed by using the

conventional K -fold cross validation (CV) (Hastie et al. 2009), where the combination
of the parameters to be explored are chosen bymeans of the classic grid searchmethod
(Hastie et al. 2009). That is, an exhaustive searching through a manually specified
subset of the tuning parameter space (Bergstra and Bengio 2012). Although, in our
setting, grid search is embarrassingly parallel (Herlihy and Shavit 2011), it is not
scalable because it suffers from the curse of dimensionality. However, even if this is
beyond the scope of the present work, note that the number of combinations to explore
grows exponentially with the number of tuning parameters and makes unsuitable the
application of the proposed method to the FoF linear model in the case of multiple
predictors. Then, to facilitate the use of the proposed method by practitioners, in what
follows, we proposed a novel evolutionary algorithm for tuning parameter selection,
referred to as evolutionary algorithm for the adaptive smoothing spline estimator
(EAASS) inspired by the population based training (PBT) introduced by Jaderberg
et al. (2017). The PBT algorithmwas introduced to address the issue of hyperparameter
optimization for neural networks. It bridges and extends parallel search method (e.g.,
grid search and random search) with sequential optimizationmethod (e.g., hand tuning
andBayesian optimization). The former runsmany parallel optimization processes, for
different combinations of hyperparameter values, and, then chooses the combination
that shows the best performance. The latter performs several steps of few parallel
optimizations, where, at each step, information coming from the previous step is used
to identify the combinations of hyperparameter values to explore. For further details
on the PBT algorithm the readers should refer to Jaderberg et al. (2017), where the
authors demonstrated its effectiveness and wide applicability. The pseudo code of the
EAASS algorithm is given in Algorithm 1.

Algorithm 1 EAASS algorithm
1: Choose the initial population P = {pi } of combinations of tuning parameter values
2: Obtain the set V = {vi } of estimated prediction errors corresponding to P
3: repeat
4: Identify the set Q ⊆ P and the corresponding Z ⊆ V � exploitation
5: for pi ∈ Q do � exploration
6: Obtain the new combination of tuning parameter values, p′

i
7: Obtain the new estimated prediction error v′

i corresponding to p′
i

8: end for
9: Define Q′ = {p′

i } and Z ′ = {v′
i }

10: Set P = P \ Q ∪ Q′ and V = V \ Z ∪ Z ′
11: until The stopping condition is met
12: Return pi ∈ P with the lowest vi ∈ V

The first step is the identification of an initial population P of the tuning parameter
combinations pi s. This can be done, for each combination and each tuning parameter,
by randomly selecting a value in a pre-specified range. Then, the set V of estimated
prediction errors vi s corresponding to P is obtained by means of K -fold CV. We
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choose a subset Q of P , by following a given exploitation strategy and, thus, the
corresponding subsetZ ofV . A typical exploitation strategy is the truncation selection,
where the worse r%, for 0 ≤ r ≤ 100, of P , in terms of estimated prediction error,
is substituted by elements randomly sampled from the remaining (100 − r)% part of
the current population (Jaderberg et al. 2017). Then the following step consists of an
exploration strategy where the tuning parameter combinations inQ are substituted by
new ones. The simulation study in Sect. 3 and the real-data Examples in Sect. 4 are
based on a perturbationwhere each tuning parameter value of the given combination is
randomly perturbed by a factor of 1.2 or 0.8. The exploitation and exploration phases
are repeated until a stopping condition is met, e.g, maximum number of iterations.
Other exploration and exploitation strategies can be found in Bäck et al. (1997). At
last, the selected tuning parameter combination is obtained as an element of P that
achieves the lowest estimated prediction error.

The choice of the initial population P may have an impact on the selection of
the optimal tuning parameters. Although a perturbation step in the EAASS algorithm
may allow escaping fromP , it cannot be excluded that if the optimal tuning parameter
combination is too far from this region, the algorithm may terminate before reaching
it. This behaviour can be mitigated by either considering an adaptive stopping con-
dition, which depends on the prediction error improvement between two consecutive
iterations, or appropriately selecting P . However, in some cases the former solution
may need too many iterations of the EAAS algorithm and consequently, it may result
inefficiently slow. The latter solution is more suitable as a general recommendation
and can be specifically implemented by preliminary running a few iterations of the
EAASS algorithm to assess the coherence of the chosen region with the optimal tun-
ing parameter combination. This is in fact the procedure used to select P in both the
simulation study of Sect. 3 and real-data examples of Sect. 4. Moreover, as explained
in Jaderberg et al. (2017), when the size ofP is too small, the performance of the PBT
algorithm may deteriorate. Being a greedy algorithm, the PBT algorithm may in fact
get stuck in local optima for small population sizes. A simple guideline is to select
the population size as large as possible to maintain enough diversity and scope for
exploration with respect to the computational resources available.

The intuition on which the EAASS algorithm is based is quite straightforward.
Instead of finding the optimal tuning parameter combination across the whole param-
eter space, which is clearly infeasible, the combinations in P are the only ones to be
considered in two phases, i.e., the exploitation and exploration phases. The former
decides the combinations in P that should be abandoned to focus on more promising
ones, whereas the latter proposes new parameter combinations to better explore the
tuning parameter space. In this way, tuning parameter combinations with unsatisfac-
tory predictive performance are overlooked. Then, the computational effort is focused
on tuning parameter regions that are closer to the tuning parameter combinations with
the smallest prediction errors. Moreover, models obtained for each tuning parameter
combination in P could be estimated in a parallel fashion. In such a way, the EAASS
algorithm comprises the features of both the parallel search and sequential methods.
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3 Simulation study

In this section, the performance of the AdaSS estimator is assessed on several sim-
ulated datasets. In particular, we compare the AdaSS estimator with cubic B-splines
andms = mt = 2 with five competing methods that represent the state of the art in the
FoF liner regression model estimation. The first two are those proposed by Ramsay
and Silverman (2005). The first one, hereinafter referred to as SMOOTH estimator,
is the smoothing spline estimator described in (2), whereas, the second one, here-
inafter referred to as TRU estimator, assumes that the coefficient function is in a finite
dimensional tensor product space generated by two sets of B-splines with regulariza-
tion achieved by choosing the space dimension. Then, we consider also the estimator
proposed by Yao et al. (2005b) and Canale and Vantini (2016). The former is based
on the functional principal component decomposition, and is hereinafter referred to as
PCA estimator, while the latter relies on a ridge type penalization, hereinafter referred
to as RIDGE estimator. Lastly, as the fifth alternative, we explore the estimator pro-
posed by Luo and Qi (2017), hereinafter referred to as SIGCOMP. For illustrative
purposes, we also consider a version of the AdaSS estimator, referred to AdaSStrue,
whose roughness parameters are calculated by assuming that the true coefficient func-
tion is known. Obviously, the AdaSStrue has not a practical meaning because the
true coefficient function is never known. However, it allows one to better understand
the influence of the initial estimates of the partial derivatives on the AdaSS perfor-
mance. All the unknown parameters of the competing methods considered are chosen
by means of a 10-fold CV. The tuning parameters of the AdaSS and AdaSStrue esti-
mators are chosen through the EAASS algorithm. The initial population P of tuning
parameter combinations for the EAASS algorithm is generated by randomly selecting
24 values in pre-specified ranges. Specifically, δs and δt are uniformly sampled in[
0, 0.1max |̂βms

s (s, t) |
]
and

[
0, 0.1max |β̂mt

t (s, t) |
]
, respectively; the constants γs

and γt are uniformly sampled in [0, 4]; and the two roughness parameters λs and λt
are uniformly selected in

[
10−8, 103

]
. The set V is obtained by using a 10-fold CV,

the exploitation and exploration phases are as described in Sect. 2.3 and a maximum
number of iterations equal to 15 is set as the stopping condition. For each simula-
tion, a training sample of n observations is generated along with a test set T of size
N = 4000. They are used to estimate β and to test the predictive performance of
the estimated model, respectively. Three different sample sizes are considered, viz.,
n = 150, 500, 1000. The estimation accuracy of the estimators are assessed by using
the integrated squared error (ISE) defined as

ISE = 1

A

∫
S

∫
T

(
β̂ (s, t) − β (s, t)

)2
dsdt, (14)

where A is the measure of S × T . The ISE aims to measure the estimation error of β̂

with respect to β. Whereas, the predictive accuracy is measured through the prediction
mean squared error (PMSE) defined as
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PMSE = 1

N

∑
(X ,Y )∈T

∫
T

(
Y (t) −

∫
S
X (s) β̂ (s, t) ds

)2

dt .

The observations in the test set are centred by subtracting from each observation the
corresponding sample mean function estimated in the training set. The observations in
the training and test sets are obtained as follows. The covariate Xi and the errors εi are
generated as a linear combination of cubic B-splines, �x

i and �ε
i , with evenly spaced

knots, i.e., Xi = ∑32
j=1 xi j�

x
i and εi = k

∑20
j=1 ei j�

ε
i . The coefficients xi j and ei j ,

for i = 1, . . . , n; j = 1, . . . , 32 and j = 1, . . . , 20, are independent realizations
of standard normal random variable and the numbers of basis have been randomly
chosen between 10 and 50. The constant k is chosen such that the signal-to-noise ratio
SN

.= ∫
T VarX [E (Yi |Xi )]/

∫
T Var (εi ) is equal to 4, where VarX is the variance with

respect to the random covariate X . Then, given the coefficient function β, the response
Yi is obtained.

It is worth remarking that the coefficient function β is not identifiable in L2(S×T ),
because Xi is generated as a finite linear combination of basis functions. This means
that the null space of KX , i.e., the covariance operator of Xi , is not empty. In this
case, the coefficient function β is identifiable only in the closure of the image of KX

(Cardot et al. 2003), which is denoted by Im(KX ) = {KX f : f ∈ L2(S)}. Thus,
to obtain a meaningful measure of the estimation accuracy, I SE should be computed
by considering estimate projections onto Im(KX ). This allows the estimation method
performance to be compared over the identifiable part of the model, only. Also in
accordance with James et al. (2009); Zhou et al. (2013); Lin et al. (2017), the space
spanned by the 32 cubic B-splines used to generate Xi is sufficiently rich to reconstruct
the true coefficient function β and its estimate β̂ for the proposed and competing
methods. Hence, I SE in Equation (14) can be still suitably used.

In the Supplementary Material 2, additional simulation studies are presented to
study the performance of both the proposed estimator with respect to different choices
of partial derivative estimates (Supplementary Material 2.1) and the repeated applica-
tion of the AdaSS estimation method (Supplementary Material 2.2).

3.1 Mexican hat function

The Mexican hat function is a linear function with a sharp smoothness variation in
central part of the domain. In this case, the coefficient function β is defined as

β (s, t) = −1 + 1.5s + 1.5t + 0.05φ (s, t) , s, t ∈ [0, 1] × [0, 1]

where φ is a multivariate normal distribution with meanμ = (0.6, 0.6)T and diagonal
covariance matrix � = diag (0.001, 0.001). Figure 1 displays the AdaSS and the
SMOOTH estimates along with the true coefficient function for a randomly selected
simulation run.

The proposed estimator tends to be smoother in the flat region and is able to better
capture the peak in the coefficient function (at t ≈ 0.6) than the SMOOTH estimate.
The latter, to perform reasonably well along the whole domain, selects tuning param-
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Fig. 1 AdaSS (solid line) and SMOOTH (dashed line) estimates of the coefficient functions and the TRUE
coefficient function β (dotted line) for different values of t in the case of the Mexican hat function

eters that may be not sufficiently small on the peaky region, or not sufficiently large
over the flat region. This is also confirmed by the graphical appeal of the AdaSS esti-
mate with respect to the competitor ones. In Fig. 2 and top of Table 1, the values of
ISE and PMSE achieved by the AdaSS, AdaSStrue, and competitor estimators are
shown as functions of the sample size n. Without considering the AdaSStrue estima-
tor, the AdaSS estimator yields the lowest ISE for all sample sizes and thus has the
lowest estimation error. In terms of PMSE, it is the best one for n = 150, whereas
for n = 500, 1000 it performs comparably with SIGCOMP and PCA estimators. The
performance of the AdaSStrue and AdaSS estimators is very similar in terms of ISE,
whereas the AdaSStrue shows a lower PMSE. However, as expected, the effect of the
knowledge of the true coefficient function tends to disappear as n increases, because
the partial derivative estimates become more accurate.

3.2 Dampened harmonic motion function

This simulation scenario considers as coefficient function β the dampened harmonic
motion function, also known as the spring function in the engineering literature. It is
characterized by a sinusoidal behaviour with exponentially decreasing amplitude, that
is
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Fig. 2 a The integrated squared error (ISE) and b The prediction mean squared error (PMSE)
±standard error for the TRU, SMOOTH, PCA, RIDGE, SIGCOMP, AdaSS and AdaSStrue estima-
tors in the case of the Mexican hat function

β (s, t) = 1 + 5 exp [−5 (s + t)] [cos (10πs) + cos (10π t)] , s, t ∈ [0, 1] × [0, 1] .

Figure 3 displays theAdaSS and theSMOOTHestimates alongwith the true coefficient
function. Also in this scenario, the AdaSS estimates are smoother than the SMOOTH
estimates in regions of small curvature. But, it is more flexible where the coefficient
function is more wiggly. Note that intuitively, the SMOOTH estimator trades off its
smoothness over the whole domain. Indeed, it over-smooths at small values of s and
t and under-smooths elsewhere.

In Fig. 4 and in the second tier of Table 1, values of the ISE and PMSE for the
AdaSS, AdaSStrue, and competitor estimators are shown as a function of the sample
size n. Even in this case, the AdaSS estimator achieves the lowest ISE for all sample
sizes, and thus, the lowest estimation error, without taking into account the AdaSStrue
estimator. Strictly speaking, in terms of PMSE, note that the proposed estimator is not
always the best choice, but it shows only a small difference with the best methods, viz.,
PCA and SIGCOMP estimators. In this case, the AdaSS and AdaSStrue performance
is very similar for n = 500, 1000, whereas, for n = 150, the AdaSStrue performs
slightly better especially in terms of PMSE.

3.3 Rapid change function

In this scenario, the true coefficient functionβ is obtained by the rapid change function,
that is

β (s, t) = 1 − 5

1 + exp [10 (s + t − 0.2)]
+ 5

1 + exp [75 (s + t − 0.8)]
,

s, t ∈ [0, 1] × [0, 1] .
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Fig. 3 AdaSS (solid line) and SMOOTH (dashed line) estimates of the coefficient functions and the TRUE
coefficient function β (dotted line) for different values of t in the case of the dampened harmonic motion
function
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case of the dampened harmonic motion function. The Ridge estimator is not considered due to its too
different performance
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Fig. 5 AdaSS (solid line) and SMOOTH (dashed line) estimates of the coefficient functions and the TRUE
coefficient function β (dotted line) for different values of t in the case of the rapid change function

Figure 5 shows theAdaSS andSMOOTHestimatewhenβ is the rapid change function.
The SMOOTH estimate is rougher than the AdaSS one in regions that are far from
the rapid change point. On the contrary, the AdaSS estimate is able to be smoother in
the flat region and to be as accurate as the SMOOTH estimate near the rapid change
point.

In Fig. 6 and the third tier of Table 1, values of the ISE and PMSE for the AdaSS,
AdaSStrue, and competitor estimators are shown for sample sizes n = 150, 500, 1000.
The AdaSS estimator outperforms the competitors, both in terms of ISE and PMSE.
The performance of the AdaSStrue estimator is slightly better than that of the AdaSS
one and this difference in performance reduces as n increases.

4 Real-data examples

In this section, two real datasets, namely Swedish mortality and ship CO2 emission
datasets, are considered to assess the performance of the AdaSS estimator in real
applications.
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Fig. 6 a The integrated squared error (ISE) and b The prediction mean squared error (PMSE)
±standard error for the TRU, SMOOTH, PCA, SIGCOMP, AdaSS and AdaSStrue estimators in the
case of the rapid change function. The Ridge estimator is not considered due to its too different perfor-
mance

4.1 Swedishmortality dataset

The Swedishmortality dataset (available from theHumanMortalityDatabase—http://
mortality.org—) is very well known in the functional literature as a benchmark dataset.
It has been analysed by Chiou and Müller (2009) and Ramsay et al. (2009), among
others. In this analysis, we consider the log-hazard rate functions of the Swedish
female mortality data for year-of-birth cohorts that refer to females born in the years
1751-1935 with ages 0-80. The value of a log-hazard rate function at a given age is
the natural logarithm of the ratio of females who died at that age and the number of
females alive of the same age. The 184 considered log-hazard rate functions (Chiou
and Müller 2009) are shown in Fig. 7. Without loss of generality, they have been
normalized to the domain [0, 1].

The functions from 1751 (1752) to 1934 (1935) are considered as observations Xi

(Yi ) of the predictor (response) in (1), i = 1, . . . , 184. In this way, the relationship
between two consecutive log-hazard rate functions becomes the focus of the analysis.
To assess the predictive performance of the methods considered in the simulation
study (Sect. 3), for 100 times, 166 observations out of 184 are randomly chosen, as
training set, to fit the model. The 18 remaining ones are used as a test set to calculate
the PMSE. The averages and standard deviations of PMSEs are shown in the first line
of Table 2. The AdaSS estimator outperforms all the competitors. Only the RIDGE
estimator has comparable predictive performance.

Figure 8 shows the AdaSS estimates along with the RIDGE estimates that rep-
resents the best competitor methods in terms of PMSE. The proposed estimator has
slightly better performance than the competitor, but, at the same time, it is much more
interpretable. In fact, it is much smoother where the coefficient function seems to
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Fig. 7 Log-hazard rate functions
for Swedish female cohorts from
1751 to 1935
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Fig. 8 AdaSS (solid line) and RIDGE (dashed line) estimates of the coefficient functions for different values
of t in the Swedish Mortality dataset

be mostly flat and successfully captures the pattern of β in the peak region. On the
contrary, the RIDGE estimates are particularly rough over regions of low curvature.
The optimal tuning parameters selected for the AdaSS estimates depicted in Fig. 8
are λAdaSS

s = 102.16, λAdaSS
t = 100, δ̃s = 0.003, δ̃t = 0.052, γs = 2.46, γt = 3.60,

where δ̃s = δs/max |̂βms
s (s, t) | and δ̃t = δt/max |β̂mt

t (s, t) |.
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4.2 Ship CO2 emission dataset

The ship CO2 emission dataset has been thoroughly studied in the very last years
(Lepore et al. 2018; Reis et al. 2020; Capezza et al. 2020; Centofanti et al. 2021). It
was provided by the shipping company Grimaldi Group to address aspects related to
the issue of monitoring fuel consumptions or CO2 emissions for a Ro-Pax ship that
sails along a route in the Mediterranean Sea. In particular, we focus on the study of the
relation between the fuel consumption per hour (FCPH), assumed as the response, and
the speed over ground (SOG), assumed as the predictor. The observations considered
were recorded from 2015 to 2017. Figure 9 shows the 44 available observations of
SOG and FCPH (Centofanti et al. 2021).

Similarly to the Swedish mortality dataset, the prediction performance of the meth-
ods are assessed by randomly chosen 40 out of 44 observations to fit the model and by
using the 4 remaining observations to compute the PMSE. This is repeated 100 times.
The averages and standard deviations of the PMSEs are listed in the second line of
Table 2. The AdaSS estimator is, in this case, outperformed by the RIDGE estimator,
which achieves the lowest PMSE. However, as shown in Fig. 10, it is able both to
well estimate the coefficient function over peaky regions, as the RIDGE estimator,
and to smoothly adapt over the remaining part of the domain. Also, the PCA estimator
achieves a smaller PMSE than that of the proposed estimator. However, the PCA esti-
mator is even rougher than the RIDGE estimator and, thus, it is not shown in Fig. 10.
The optimal tuning parameters selected for the AdaSS estimates depicted in Fig. 10
are λAdaSS

s = 101.93, λAdaSS
t = 100.49, δ̃s = 0.06, δ̃t = 0.01, γs = 2.22, γt = 2.22.

5 Conclusion

In this article, the AdaSS estimator is proposed for the function-on-function linear
regression model where each value of the response, at any domain point, depends lin-
early on the full trajectory of the predictor. The introduction of two adaptive smoothing
penalties, based on an initial estimate of its partial derivatives, allows the proposed
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Fig. 10 AdaSS (solid line) and RIDGE (dashed line) estimates of the coefficient functions for different
values of t in the ship CO2 emission dataset

estimator to better adapt to the coefficient function. Bymeans of a simulation study, the
proposed estimator has proven favourable performance with respect to those achieved
by the five competitors already appeared in the literature before, both in terms of
estimation and prediction error. The adaptive feature of the AdaSS estimator is advan-
tageous for the interpretability of the results with respect to the competitors.Moreover,
its performance has shown to be competitive also with respect to the case where the
true coefficient function is known. Finally, the proposed estimator has been success-
fully applied to real-data examples considered, viz., the Swedish mortality and ship
CO2 emission datasets. However, some challenges are still open. Even though the
proposed evolutionary algorithm has shown to perform particularly well both in the
simulation study and the real-data examples, the choice of the tuning parameters still
remains in fact a critical issue, because of the curse of dimensionality. This could be
even more problematic in the perspective of extending the AdaSS estimator to the FoF
regression model with multiple predictors.

Supplementary information The online version contains supplementary material
available at https://doi.org/10.1007/s00180-022-01223-6. Supplementary Material is
available online and contains the derivation of the approximation of the AdaSS penalty
terms (Supplementary Material 1), and additional simulation studies to assess the
performance of both the proposed estimator for different choices of partial derivative
estimates (Supplementary Material 2.1) and the repeated application of the AdaSS
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estimation method (Supplementary Material 2.2). Supplementary Material 3 presents
the optimal tuning parameter selected in the simulation study in Section 3.
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