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Abstract Memristor-based hardware accelerators play a crucial role in achieving 
energy-efficient big data processing and artificial intelligence, overcoming the limi-
tations of traditional von Neumann architectures. Resistive-switching memories 
(RRAMs) combine a simple two-terminal structure with the possibility of tuning the 
device conductance. This Chapter revolves around the topic of emerging memristor-
related technologies, starting from their fabrication, through the characterization of 
single devices up to the development of proof-of-concept experiments in the field of 
in-memory computing, hardware accelerators, and brain-inspired architecture. Non-
volatile devices are optimized for large-size crossbars where the devices’ conduc-
tance encodes mathematical coefficients of matrices. By exploiting Kirchhoff’s and 
Ohm’s law the matrix–vector-multiplication between the conductance matrix and a 
voltage vector is computed in one step. Eigenvalues/eigenvectors are experimentally 
calculated according to the power-iteration algorithm, with a fast convergence within 
about 10 iterations to the correct solution and Principal Component Analysis of the 
Wine and Iris datasets, showing up to 98% accuracy comparable to a floating-point 
implementation. Volatile memories instead present a spontaneous change of device 
conductance with a unique similarity to biological neuron behavior. This character-
istic is exploited to demonstrate a simple fully-memristive architecture of five volatile 
RRAMs able to learn, store, and distinguish up to 10 different items with a memory 
capability of a few seconds. The architecture is thus tested in terms of robustness 
under many experimental conditions and it is compared with the real brain, disclosing 
interesting mechanisms which resemble the biological brain.

S. Ricci (B) · P. Mannocci · M. Farronato · A. Milozzi · D. Ielmini 
Dipartimento Di Elettronica, Informazione E Bioingegneria (DEIB), Politecnico Di Milano, 
Piazza L. da Vinci 32, 20133 Milano, Italy 
e-mail: saverio.ricci@polimi.it 

© The Author(s) 2024 
F. Amigoni (ed.), Special Topics in Information Technology, 
PoliMI SpringerBriefs, https://doi.org/10.1007/978-3-031-51500-2_6 

65

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51500-2_6&domain=pdf
mailto:saverio.ricci@polimi.it
https://doi.org/10.1007/978-3-031-51500-2_6


66 S. Ricci et al.

1 Introduction 

With the advent of the Internet-Of-Things and with the ever-growing number of 
people gaining the possibility to purchase smartphones and tablets capable to store a 
large amount of photo, video, music and applications in a single portable device, the 
global amount of data has increased exponentially, which raises strong requirements 
in terms of energy efficiency and processing speed for data analysis [1–3]. To satisfy 
these requirements, the computing performance of modern computers has increased 
steadily in the past few decades thanks to the scaling down of the transistor dimen-
sions and the consequent higher density of information being stored in the same area, 
as predicted by Moore’s law. The downscaling is now approaching its natural end 
mainly due to the increasing leakage of the complementary metal–oxide–semicon-
ductor (CMOS) transistors due to their extreme miniaturization [2]. The operating 
frequency of each transistor has already reached an upper limit set by the maximum 
acceptable power dissipation, preventing further speed improvement at the device 
level to avoid an excessive temperature increase of the chip. 

If on one side we have reached a limit on data transport speed due to the transistors, 
on the other side we have to consider that there is an additional limit imposed by the 
fact that conventional computing systems are based on the von Neumann architecture 
[4, 5], where memory and processing units are physically separated, which leads to 
an additional inevitable bottleneck due to the necessary data movement between the 
two separated units, which causes significant latency and energy consumption. This 
latency becomes significant when operation must be repeated thousands or millions 
of times, as it happens to tensor products and matrix multiplications, where the 
operation between the elements of the matrices cannot be done in parallel but only 
one operation after the other, finally collecting all the results. 

Alternative in-memory computing approaches are becoming increasingly attrac-
tive to develop novel logics and neuromorphic computations to overcome Von 
Neumann bottleneck issues [4–6]. Indeed, typical operations like image learning, 
pattern recognition and decision exhibit high computational cost for boolean CMOS 
processors, while, for human brain, they represent elementary processes. In this 
scenario, the development of new devices designed specifically for neuromorphic 
computing could enable high density and low power networks to properly operate 
learning and recognition tasks. Among the various emerging memories, also known 
as memristors, resistive switching memories appear as one of the most promising 
technologies for in-memory computing, thanks to the CMOS-compatible fabrication 
process, the small area and the analog programming. 

Differently from conventional memories based on transistors, which are able to 
store binary values only, specifically “1” (transistor in pass mode) and “0” (transistor 
switched off), memristors can store information in their electrical properties, like the 
resistance (or conductance) for example, in an analog way. Moreover, by organizing 
these memories in a matrix configuration, also known as crosspoint architecture, the 
matrix–vector multiplication is performed in one step only, carrying out all the single 
elements multiplications simultaneously exploiting the Kirchhoff’s law [5, 6, 8].
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Because of the novelty of this technology, problems of reliability and integration 
with existing technologies affect the emerging memories and further studies are 
required to overcome the limits by optimizing the materials and their responses and 
developing architecture designs and algorithms to exploit the innovative features 
and the strong parallelism of the physical multiplication [4, 5]. In this scenario, 
this Chapter focuses on the topic of RRAMs for high-density crosspoint arrays, 
starting from their fabrication, through the characterization of single devices up to the 
development of proof-of-concept experiments in the field of in-memory computing, 
hardware accelerators and brain-inspired architecture. 

2 Non-volatile RRAMs 

A resistive switching memory is a two-terminal device where the conductance can 
be manipulated by externally applied voltage pulses. The main structure is composed 
by an oxide layer sandwiched between two metals, in the so-called Metal–Insulator-
Metal. 

(MIM) structure. The RRAM switching mechanism refers to the possibility of 
creating and disrupting a conductive path across the oxide, creating a conductive 
bridge between the metals, by locally changing the oxygen vacancy concentration 
and for this reason they are also known as RedOx RRAMs (ReRAM). By applying 
a positive voltage to the top electrode (TE), the oxygen vacancies can migrate and 
reallocate inside the oxide layer with a consequent change of the electrical properties, 
where the formed oxygen vacancy-based conductive channel dictates a low resistance 
state (LRS), as depicted in Fig. 1a. The application of a negative voltage to the TE, 
instead, induces a vacancy dispersion into the oxide, the conductive path is dissolved 
and the resistivity rises-up, bringing the device in a high resistive state (HRS).

The typical electrical response of a RRAM is reported in Fig. 1b, where the 
hysteresis of the I-V curves changes according to the maximum current [1, 3, 6, 7], 
called compliance current (IC). The dependence of the conductance as a function of 
the IC is clearly visible in Fig. 1c, with a linear dependence linked to the possibility of 
enlarging the conductive channel diameter by increasing the current [3, 7]. Inversely, 
with the increase of the reset amplitude the conductive state is brought back to the 
HRS and the larger the voltage, the less conductive the device is, as seen in Fig. 1c. 
The exponential behavior is explained as the presence of an activation energy required 
to move the vacancies and the defects, resulting in an Arrhenius-like process. 

The tunability of the conductance is the key point of the RRAM technology and 
the advantage is clear when the devices are organized in a matrix configuration, 
with the TEs and the BEs placed orthogonally. By exploiting Kirchhoff’s and Ohm’s 
law the matrix–vector-multiplication between the conductance matrix and a voltage 
vector is computed in one step only [7–9]. Each element in the matrix must be 
programmed properly to a desired value, by using multiple set and reset operations, 
as seen in Fig. 2a, where a device is programmed passing from 0 µS to 82  µS using  
set operation and then reset till the target of 73 µS. Figure 2b and c report the before
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Fig. 1 Physical mechanism and quasi static characterization of Pt/HfO2/Ti non-volatile RRAMs. 
a Sketch of the switching mechanism with the formation and dissolution of the conductive channel. 
b I-V curves at different compliance currents in logarithmic scale. The device passes from the HRS 
to different LRS states through set transitions and then reset [7]. c Conductance levels as a function 
of IC. d Conductance levels associated with the reset amplitudes. The values spread in a range 
between 5 mS and 10 µS

and after programming of an 8 × 8 crossbar (visible in Fig. 2d). The final matrix 
encodes the coefficients of the covariance matrix of the Wine dataset [9], with an 
acceptable maximum error of ±3 µS.

The power iteration is an algorithm able to extract the eigenvector components of a 
matrix by computing vector matrix multiplication between the matrix and the vector 
obtained in the previous step [8, 10]. After some iterations the values converge to 
asymptotic values, which are proportional to the mathematical eigenvector (the factor 
is linked to the one to convert the matrix to a conductance matrix) [10]. Figure 2e 
sketches the equivalent circuits which implements the power iteration algorithm: the 
current coming from a first MVM product is converted in voltage, which feed again
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Fig. 2 Program and verify operation for In-Memory Computing and PCA. a Tuning of the conduc-
tive state using set and reset operations. b Initial state of an 8 × 8 crossbar after fabrication. 
c Conductance matrix programmed through the program and verify algorithm. The matrix encodes 
the Wine dataset covariance matrix [9]. d Optical image of an 8 × 8 crossbar bonded. e Conceptual 
circuit to implement the power iteration algorithm. f Eigenvector computation for PC1 (on the left) 
and PC2 (on the right). The curves stand for the evolution of the current values. g Wine dataset 
projection along the first two PCs [9]. h Iris dataset projection [7]

the MVM. The extraction of the first and second greater eigenvectors, also called 
principal components (PC), can be followed in Fig. 2f. Within 10 iterations, the 
currents converge to the asymptotic values [9]. Finally, the extracted PCs are used to 
project the dataset along the components and to group the different wines, as seen in 
Fig. 2g, with an accuracy of 98%, comparable with the floating point 64 software-
based computation [9]. The Wine dataset contains 3 different wines classified with 
6 properties, like chemical values, color and sugar content. The eigenvectors are 
proportional to these values and all the wines can be written as a combination of such 
components. To validate the approach, the same experiment is repeated in Fig. 2h
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by looking at the Iris dataset [7], containing three different Iris flowers labelled with 
petal and sepal length and width. These results support RRAM crosspoint arrays for 
accelerating advanced machine learning with IMC. 

3 Volatile RRAMs 

Filamentary switching memories are a different class of RRAMs which rely on a 
metallic filament to change the electrical properties, where high mobility metal ions 
migrate from one electrode to the other creating a conductive bridge [11, 12]. Silver-
based RRAMs exhibit spontaneous disruption of the metallic conductive filament 
with a lifetime ranging from few microseconds to several seconds, thus by controlling 
and predicting the filament lifetime, devices can be engineered for a wide range of 
applications. When a positive bias is applied to the Ag electrode, the electric field 
leads the Ag ions to migrate across the oxide and the resistivity drops down, creating 
a conductive path made of nanoclusters [11]. Reducing the voltage, the filament 
spontaneously disrupts, the resistivity rises-up and a gap occurs, which is responsible 
for the absence of conductance. Figure 3a reports the electrical response associated 
to the mechanisms described. 

Because of the spontaneous disruption of the filament [11–13], it is important to 
study the temporal evolution of the devices, by switching on the memory and then 
monitoring the state until it switches off. The time window in which the filament 
remains stable is called retention time. Figure 3b collects the cumulative distribution 
curves of the retention time as a function of the maximum current reached during 
the switching [12], current which is limited by exploiting the saturation region of 
transistors. The larger is the current and the longer is the average retention time,

Fig. 3 Ag-based volatile 1T1R RRAM electrical characterization. a Quasi-static I–V sweep. 
b Retention time distributions for different maximum current. 3 V and 1 ms triangular pulse are 
applied to set the device, and a constant −150 mV bias voltage is applied to monitor the status of 
the device. c Impact of the number of pulses applied. Considering a group of pulses, the probability 
of finding the device in the ON state increases with the number of applied pulses 
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according to the fact that the filament has a greater diameter and thus it is naturally 
more robust. 

Moreover, the devices result to be sensitive also to the pulse amplitude [12, 13], 
meaning that for small amplitudes the devices do not switch on while for large values 
(>3 V for example) the devices always switch on. The trends of the probability that the 
device switches on after a pulse as a function of the pulse amplitude and the number 
of pulses [13] are  shown in Fig.  3c. By increasing the pulse amplitude (Vpulse), the 
probability increases and it starts saturating at 100% after few pulses (like in the case 
of 2.1 V, the darker curve). For low voltages (1 V pulses, the lighter green curve) the 
probability weakly increases with the number of pulses. 

The fact that stochastic properties, retention time and switching probability, 
are tunable with the voltage and the temporal dynamic is adaptable according to 
the compliance current are explored in a simple neuromorphic circuit. Short-term 
memory is a primary concept in human life, since it is responsible of the storing 
of acquired information in the meantime that it is processed and evaluated. The 
proposed system has two main features: storing the information in the memory and 
later recognizing it, as depicted in. 

Figure 4a: the memory has an item stored inside, for example an advertisement 
spot (marked with a specific color), which is linked to specific areas that are activated. 
When the true item arrives (the orange in the example), the system recognizes it, 
and a trigger signal is generated. When other items arrive, the system does not 
recognize them and thus it is not triggered. Being a short-term memory, if the system 
is not refreshed somehow, providing for example the true item, it forgets the stored 
information.

The circuit is implemented using 5 different devices (in Fig. 4b) where the 
total current is summed together, and the transistor share the same gate to have 
similar time responses. At each device is sent a signal which is calibrated to have 
a specific switching probability (PON), considering the device-to-device variability. 
This switching probability can be seen as the volume, thus the higher the volume 
the higher the relevance we give to the spot. Figure 4c shows the evolution of the 
system when a pattern is applied multiple times as soon it is impressed in the system 
(3 devices are switched on) and then random patterns are applied. When the right 
pattern arrives (marked with a dot) the system is triggered and recognizes it, otherwise 
no. Different experimental parameters, in terms of pattern rate, delay and amplitude, 
are tested, finding the best condition when the switching probability is low while the 
refresh is high (in Fig. 4d). This condition is in good agreement with what happens 
to the human brain during the advertisement: all the spots have a small relevance, but 
when the right one is on the tv the attention is high because the spot is recognized, 
thus we can distinguish what we like from the other spots. Differently, when the spot 
is less broadcasted (small spike rate, in Fig. 4e) the information is lost, and it is more 
difficult to recognize it. On the other hand, the volume plays a crucial role, because 
our attention changes drastically. For great PON (so large volume) the system easily 
changes the information stored and thus is not able anymore to recognize the first 
one.
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Fig. 4 Sketch of the memristive implementation of a working memory circuit emulator. a After 
an object (a color for example orange) is stored in the mnemonic architecture, a stream of objects 
is sent to the system. When the true object arrives, the system is refreshed and triggered. b Real 
implementation using 5 Ag-based volatile 1T1R RRAMs. The devices are connected in parallel to 
sum the currents and share the same gate voltage to have the similar electrical responses. c Example 
of an experimental trace. In the store phase the same pattern is sent multiple times to switch ON 
the right devices, until all the 3 RRAMs are in the ON state. In the recall phase random pattern are 
sent. The current is discretized in four levels, according to the number of ON devices. A suitable 
current threshold is used to discriminate when the true pattern arrives. d Correlation plot of the 
best experimental parameters to check the accuracy of the system. e Behavior of the memristive 
architecture by changing experimental parameters. The best results are achieved when the system 
is frequently refreshed

4 Conclusions 

This Chapter aimed to give an overview on emerging memories and on the potential-
ities of resistive switching devices in the field of in-memory computing, hardware 
accelerators and brain-inspired architecture. In RRAMs with Pt/HfO2/Ti stack the 
conductance value of the memory can be tuned in an analog way according to external 
parameters, such as the current flowing through the device. This gives the possibility 
to directly map mathematical weights into conductance values and, in a suitable 
crossbar configuration, to operate the MVM operation in one step. The eigenvalue/ 
eigenvector calculation is experimentally demonstrated, and the extracted component 
is used in the PCA of a large dataset, showing not only a fast convergence but also an 
accuracy comparable to the FP64 software-based solution, with a value up to 98%. 
On the other side, by changing one of the electrodes, silver-based devices feature a 
spontaneous change of device conductance with a retention ranging from 1 ms to
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several seconds, as it happens in the biological systems. This similarity is crucial 
to implement biological functions and tasks, as the short-term-memory typical of 
living animals. The simple structure combined with a wide flexibility in terms of 
electrical responses and properties, supports the RRAM technology as interesting 
candidate for accurate acceleration of machine learning, in-memory computing, and 
neuromorphic systems. 
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