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Abstract. A new era of space exploitation is fast ap-

proaching. An exponential number of CubeSats, shoe-

boxed spacecraft, will be launched into space, owing to

their low cost compared to traditional probes. At the cur-

rent pace, piloting CubeSats from the ground with stan-

dard radiometric tracking will become unsustainable. This

work tackles the problem from the navigation point of view

by developing a fully autonomous vision-based navigation

algorithm suited to deep-space miniaturized platforms. An

extended Kalman filter featuring planet position extrac-

tion from deep-space images is exploited to determine the

probe trajectory onboard. Preliminary results show that

accuracy of about 1000 km and 0.5 m/s for the position

and velocity components can be reached in deep space.

Introduction. The space economy is booming. A sig-

nificant role is played by deep space exploration, whose

growth is driven by the increasing number of missions

planned by space agencies and by the advent of deep-

space CubeSats. These miniaturized probes have trig-

gered a revolution in the way satellites have been launched

into space, owing to their low cost and reduced develop-

ment time compared to traditional spacecraft.1 Under the

propulsive momentum of the new space economy, several

deep-space CubeSats applications are foreseen.2,3 Yet,

their growth is unsustainable with current practice.4

Operating a deep-space probe involves determining its po-

sition, planning its trajectory, and controlling its motion.

Currently, the probe position is estimated by exchang-

ing a two-way signal between ground stations and space-

craft.5 Yet, ground control requires large teams of engi-

neers, takes a large share of the space mission cost, and

has a limited number of communication slots which re-

stricts the number of manageable probes. In other terms,

the escalation of miniaturized satellites into deep space

will soon lead to the saturation of ground-based facilities,

and human-in-the-loop navigation for interplanetary mis-

sions will quickly become unsustainable.4

Autonomous navigation alternatives could represent a so-

lution to this problem, such as autonomous X-ray pulsar-

based,6 autonomous radio-based,7 and vision-based navi-

gation (VBN). Among these approaches, VBN is a cheap

and fully ground-independent solution, which enables in-

terplanetary CubeSats to determine their position by ob-

serving the movement of celestial bodies on images taken

by optical sensors, such as cameras or star trackers.

In deep space, Solar System bodies, e.g., planets and as-

teroids, are unresolved, meaning their light falls in one

pixel only of the image.8 In this framework, the celestial

body Line-of-Sight (LoS) direction, extracted from the

image, can be exploited as information to navigate the

spacecraft.9,10

Moreover, to embrace the low-budget paradigm, the op-

tical camera placed onboard a CubeSat is usually cheap

and of limited performance, yielding an arduous detection

of fainter celestial objects, like asteroids, on images.11

Thus, when a commercial-off-the-shelf (COTS) miniatur-

ized camera is used, planet LoS directions only can be

exploited as observation for VBN of interplanetary Cube-

Sats. First, this information is extracted from the image

through image processing (IP) algorithms and, then, it is

processed by orbit determination (OD) filters, which out-

put the spacecraft state, i.e., position and velocity.

In the framework of autonomous interplanetary naviga-

tion, on one side, the state-of-the-art focuses mainly on

implementing onboard orbit determination algorithms to

estimate the probe state.12–14 On the other side, while a

detailed pipeline for Image Processing (IP) at mid- and

close-range is available,15–17 few are the works develop-

ing an IP pipeline for the extraction of the planet LoS

direction,18,19 and even fewer are the ones presenting a

complete navigation cycle. In this context, the present

work, framed within the ERC-funded EXTREMA (En-

gineering Extremely Rare Events in Astrodynamics for

Deep-Space Mission in Autonomy) project,20 wants to

propose an exhaustive autonomous vision-based naviga-

tion algorithm suited for deep-space miniaturized probes.

The work combines an image processing (IP) pipeline for

the extraction of planet information from the image18

with an extended Kalman filter (EKF) based on the celes-

tial triangulation approach.10,14,21 In addition, since in

interplanetary space light effects, i.e., light-time and light

aberration,10 become significant due to the consistent ve-

locity of the probe and the enormous distance between

the spacecraft and the planet, their action is included in

the DART Lab sky simulator,22 and their corrections are

implemented in the navigation filter.

Problem Statement. A probe, whose state is un-

known, is on an interplanetary orbit. The kinematic ce-

lestial triangulation problem can be exploited to recover

the probe position with only the requirement of acquiring

two LoS directions associated with different planets simul-

taneously.10 The methodology followed by this method

is briefly reported hereafter: Let the probe position r be

r = r1 − ρ1ρ̂1 = r2 − ρ2ρ̂2 (1)

where ri denotes the position of the i-esimal planet with

respect to the Sun in an inertial frame, ρi the position

magnitude of the i-esimal planet with respect to the ob-

server in an inertial frame and ρ̂i its direction. The plan-

ets positions with respect to the Sun in the inertial refer-

ence frame are available from their ephemerides, ρ̂1, ρ̂2
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can be measured onboard by the imager of the probe,

whereas, the ranges ρ1, ρ2 are unknown. The scalar mul-

tiplication of Eq. (1) by ρ̂1 and ρ̂2 yields to a system of

two equations which can be arranged in matrix form as[
−1 ρ̂⊤

1 ρ̂2

−ρ̂⊤
2 ρ̂1 1

]
︸ ︷︷ ︸

A

[
ρ1
ρ2

]
︸︷︷︸

x

=

[
ρ̂⊤
1 (r2 − r1)

ρ̂⊤
2 (r2 − r1)

]
︸ ︷︷ ︸

b

(2)

described by the linear-algebra problem, Ax = b. The

solution to Eq. 2 is determined as long as ∆(A) =

−1 + (ρ̂⊤
1 ρ̂2)(ρ̂

⊤
2 ρ̂1) ̸= 0, where ∆ is the determinant

of A. The expression of ∆(A) can be also written in

the function of γ, which describes the angle between

the two planets as seen by the observer (Fig. 1). Since

Figure 1. Celestial triangulation problem

cos γ = ρ̂⊤
1 ρ̂2, ∆(A) = −1 + cos2 γ. When ∆(A) ̸= 0,

the problem solution is x = A−1b, which plugged into

Eq. 1 yields the probe inertial position. Whereas, when

cos γ = ±1, A is singular and the solution is undeter-

mined. This scenario occurs when the probe and the

planets are in conjunction or opposition.23

Even if the proposed kinematic celestial triangulation

method is thought to have a general application, in this

work, the CubeSats case study is investigated. Thus, the

following constraints are enforced: 1) Only one miniatur-

ized COTS imager (star tracker or navigation camera) is

adopted on board, 2) only one beacon at a time is assumed

to be observed due to the narrow Field of View (FoV) of

the optical sensor, and 3) only planets are tracked because

of the limited performances (mainly limit magnitude) of

the imager. Therefore, dynamic methods, e.g., Kalman

filtering, based on the kinematic celestial triangulation

problem and which can work with asynchronous external

optical observations need to be adopted for the VBN of

interplanetary nanosatellites.

Another critical aspect to consider for deep-space navi-

gation is the action of light effects on the alteration of

the external observations adopted to correct the state es-

timate. In fact, the light-time effect acting on planet ob-

servation becomes significant in interplanetary space due

to the enormous distance between the spacecraft and the

planet. As a result of this effect, the observed projection

of the planet position in the sensor frame at the epoch t,

when the image is taken, does not correspond to its po-

sition projection at that time, but to a previous epoch τ ,

when the light has been emitted by the planet. The fur-

ther the planet is from the spacecraft, the more significant

the light-time effect is. Instead, the light-aberration effect

acquires importance whenever the probe velocity to the

target is not negligible, as in the case of a probe moving

in the solar system. As the light-time, this effect causes

an alteration of the acquired observation, which, in this

case, depends on the velocity intensity and direction with

respect to the LoS of the observed planet. Corrections of

these two effects need to be implemented inside the filter

to avoid systematic errors in the probe state estimation.

Image Generation. The generation of the sky-field

images input in the VBN filter is performed by adopt-

ing an improved version of the DART Lab 1 sky simula-

tor,14,22 where the light effects are modeled.10 On one

side, the light-time effect is simply included by projecting

the planet position at epoch τ instead of at epoch t, when

the signal is received by the probe. On the other side, the

light-aberration effect is simulated by shifting the LoS di-

rections of the bright objects in the image accordingly

to the spacecraft velocity. The procedure illustrated in

[10] for the light-aberration correction is exploited, in this

work, in the inverse way to model the effect in the sky

simulator. The light-time effect shifts only the planet po-

sition projection in the image since stars are assumed still

in time inside the Solar System. Instead, the light aberra-

tion changes the projected position of all centroids found.

Furthermore, the sky simulator models also the event of

cosmic rays hitting the sensor by randomly turning on

some single pixels. Fig. 3a is representative of a sky-field

image exploited for deep-space VBN.

Navigation Workflow. In this section, the naviga-

tion workflow followed by the VBN filter is illustrated.

Over the interplanetary transfer, navigation and state-

propagation-only legs are alternated (see Fig. 4). Planets

observations are performed in navigation legs only, where

two planets are observed asynchronously to triangulate

the probe position. Initially, here, the spacecraft tracks

the first planet of the pair. Then, it performs a slew

maneuver, during which no external observations are ac-

quired, to point to the second planet of the pair, and,

eventually, it tracks this latter. During the two acquisi-

tion windows, where the spacecraft observes a planet, the

VBN filter propagates and corrects the probe state with

planet observations. Instead, between two navigation legs

and during the slew maneuver, the filter only propagates

the probe state as external observations are not acquired.

To determine which couple of planets is best to observe in

each navigation leg, the optimal planet selection method

is adopted,23 which yields the highest solution accuracy

in the estimation of the probe state.14 At the beginning

of each navigation leg, the observability of all the plan-

ets is assessed by evaluating their associated Solar Exclu-

sion Angle (SEA) and apparent magnitude. Only those

planets whose parameters respect the threshold values im-

1https://dart.polimi.it/
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posed by the optical sensor are considered visible by the

camera. Then, the optimal pair is found among the visi-

ble planets by minimizing the figure of merit J , which is

evaluated for each pair of traceable planets. J is defined

as

J = σ2
str

1 + cos γ2

sin γ4
d⊤

(
Li +Lj

)
d (3)

where Li = I3x3 − ρ̂iρ̂
⊤
i and Lj = I3x3 − ρ̂j ρ̂

⊤
j ; ρ̂i and

ρ̂j are the unitary LoS vectors to the i-th and j-th planet,

respectively. Moreover, σstr is the standard deviation of

the LoS angular error from the optical sensor, d = ri−rj
and γ = acos(ρ̂iρ̂j).

Vision-Based Navigation Filter. A VBN filter em-

bedding asynchronous planets observations in deep space

is exploited to recover the probe state. The dynamics and

measurement model and the procedure to get the planet

observation are described hereunder.

State Dynamics. The process state x is defined as

x(t) = [r(t),v(t),η(t)]⊤ (4)

where r and v are the inertial probe position and ve-

locity, respectively, and η is a vector of Gauss–Markow

(GM) processes accounting for unmodeled terms: a 3-

dimensional residual accelerations ηR and the stochastic

component of the Solar Radiation Pressure (SRP) ηSRP;

that is, η = [ηR,ηSRP]
⊤.

The process is modeled using the following equation of

motion

ẋ(t) = f(x(t), t) +w (5)

where f is the vector field embedding the deterministic

part, while w is the process white noise:

f =


v

aSun + aSRP + apli
−ξηR

−ξηSRP


where

aSun = −µSun
r

r3
(6)

aSRP = CR
P0R

2
0

c

As

ms

r

r3
(7)

apli
= µi

( rpli − r

||rpli − r||3
−

rpli
||rpli ||3

)
(8)

w =


03x1

ηR + ηSRP

wR

wSRP

 (9)

The terms that describe the SRP are:24 CR the coefficient

of reflection, P0 the solar power, R0 the Sun radius, As

the cross-section area of the probe, and ms its mass. The

third-body perturbation of the Earth-Moon barycenter,

Mars, and Jupiter is included. In the Langevin equations

the coefficient ξ defines the reciprocal of the correlation

time, while wR and wSRP are the process noises of the

GM parameters with σR and σSRP standard deviations,

respectively.25 The process noise covariance matrix is Q:

Q = diag(03x3,Qa,QR,QSRP) (10)

with QR = σ2
RI3x3, QSRP = σ2

SRPI3x3, and Qa = (QR+

QSRP)/(2ξ).

Observation and Measurement Model.

Extraction of the planet observation from the image.

The information used for the correction of the state

estimate is the position projection of the planet in the

sensor frame. A graphic representation of the procedure

used to obtain this information is illustrated in Fig.

2. Once the IDs of the optimal pair and its associated

Take a photo 

Apply IP pipeline + Light Aberration correction

Image

Get desired pointing direction +


Add perturbation 


Get planet ephemeris

Workflow to get the planet observation

Time 

Figure 2. Workflow to get the planet observation

ephemeris N rpl in the inertial frame N are found, and

by knowing a previous estimation of the probe position

rp, the orientation matrix desired to point to the planet

is determined. Since the estimation of the probe position
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is known with a certain uncertainty (up to 105 km), the

beacon projection is not perfectly centered in the image,

but still contained in it, which is a sufficient condition

to let the IP pipeline18 extract the planet observation

from the image. Moreover, to increase the fidelity of

the simulation, a random perturbation is added to the

desired pointing direction, and, eventually, an image

corresponding to the perturbed probe orientation Ad

and observation time t is captured.

To acquire the planet observation from the deep-space

image, an IP pipeline suited for the extraction of the

position projection of unresolved beacons is adopted.

The main steps of this IP pipeline are illustrated in 18.

The algorithm performs two tasks:

1. It determines the attitude of the probe through

star-pattern recognition by applying the k-vector

method.26 Fig. 3b shows the results of the star iden-

tification step.

2. It detects the planet in the image and extracts its

position projection by computing the statistical mo-

menta associated with it, which define the Gaussian

probability to find the planet in that portion of the

image.

Besides these steps, due to the presence of the light-

aberration effect, a further procedure needs to be intro-

duced between attitude determination and beacon detec-

tion to compensate for it. At this point of the IP pipeline,

the light-aberration effect only can be corrected since the

planet position projection is still not identified in the im-

age. The compensation is applied to the centroids of the

bright objects recognized as stars by the star identification

procedure to correct the attitude determination. The de-

cision to not correct the light aberration of the non-stellar

objects, among which there is the planet, is to avoid cou-

pling the observation with the state prediction. Indeed,

light-aberration compensation requires an estimation of

the spacecraft velocity to be implemented as illustrated

hereunder.10 Once an updated value of the probe atti-

tude, i.e., Ae, is determined thought the observed stars

position projection C
hrsobs , the observed LoS direction of

the star as seen by the spacecraft in the inertial reference

frame Nρsobs is computed

Nρsobs = (KAe)
−1C

hrsobs (11)

with K the camera calibration matrix. Moreover, let θobs
be the angle between the observed unitary star LoS direc-

tion N ρ̂sobs and v̂p the estimated unitary velocity vector

of the probe, θobs can be thus defined as

tan θobs =
||N ρ̂sobs × v̂p||

N ρ̂⊤
sobs v̂p

(12)

So, the aberration angle ε is

tan ε =
(vp/c) sin θobs

1− (vp/c) cos θobs
(13)

and the correct unitary LoS direction of the star N ρ̂scorr

can be retrieved such that

N ρ̂scorr =
N ρ̂sobs sin θcorr − v̂p sin ε

sin θobs
(14)

with θcorr = θobs + ε. Once N ρ̂scorr is found, Eq. (11) is

applied in the direct form and the position projection of

the star corrected for the light-aberration effect in the C
reference frame is computed:

C
hrscorr = KAe

N ρ̂scorr (15)

At this point, the attitude matrix of the probe is redeter-

mined, i.e., Ac, by solving the Wahba problem,27 in which

the corrected star position projections are taken into ac-

count. Then, the planet identification step is performed.

Once the corrected probe attitude matrix Ac, the pre-

dicted position of the spacecraft rp, and the ephemeris

of the planets are known, the expected position projec-

tion of the observed planet in homogeneous coordinates

is computed as

C
hrpl0 = KAc(

N rpl − rp) (16)

If Crpl0 falls inside the image boundaries, its covariance

matrix and the associated uncertainty ellipse, which de-

pend on the uncertainties of the spacecraft pose and

planet position, can be defined.18 The covariance ma-

trix of the expected planet position projection represents

a portion in the image plane, in which the planet is iden-

tified with the highest probability, here considered 3σ.

If one or more not-stellar objects are contained in the 3σ

uncertainty ellipse, the not-stellar object closest to the ex-

pected planet position projection is labeled as the planet

projection itself. The closest one is selected because, from

a statistical point of view, it is the one with the highest

probability of being the projected planet. Therefore, the

planet observation adopted to correct the state estima-

tion, i.e., Crpl, is obtained. Figures 3c and 3d graph-

ically show the results of the planet identification step

applied to a deep-space image. The green marker ⋄ rep-

resents the expected position projection of the planet,

whose 3σ uncertainty is represented by the green ellipse.

Measurement model. For what concerns the measurement

model equation h, it is implemented to represent the

planet position projection in the sensor frame affected by

the light-time and light-aberration effects. Therefore, h

describes the planet position projection at epoch τ altered

by the light-aberration effect. By including the effects

on the measurement model equation and not correcting

directly the observed planet projection, the dependency

between the observation and the prediction is avoided,

and, thus, the correlation of the measurement and process

noise error. Eventually, the measurement error covariance

matrix R is defined:

R = σ2
Crpl

I (17)

where σ2
Crpl

is the standard deviation of the measurement

error in pixels.
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(a) Sky-field image input in the IP pipeline.
(b) Result of the star identification step applied to
Fig. 3a, shown on reverse colors

(c) Results of the planet identification step applied
to Fig. 3a, shown on reverse colors

(d) Close-up of Fig. 3c to highlight the recognized
planet

Figure 3. Steps of the IP pipeline. The centroids not recognized as stellar objects are labeled as spiked,

whereas the stars are associated with their ID.
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Filtering Strategy. The orbit determination algorithm

chosen for the development of the autonomous naviga-

tion pipeline is selected by taking into account the lim-

ited computation capabilities of a CubeSat miniaturized

processor. In particular, the chosen algorithm is a non-

dimensionless EKF fed by planet position projections.

The non-dimensionless EKF is proved in [14] to be an

optimal choice for cutting down the computational effort

and increasing the numerical stability of the filter. A po-

sition r̄ and an epoch t̄ parameter are exploited to non-

dimensionalize the filtering procedure. The dimensionless

state vector x̄ is defined as

x̄ =


r/r̄

v/(r̄t̄−1)

ηR/(r̄t̄
−2)

ηSRP/(r̄t̄
−2)

 (18)

and the same argument is applied for evaluating the

dimensionless equation of motion f̄ , the measurement

model equation h̄, their associated Jacobian matrices F̄

and H̄, respectively, and the other covariance matrices

Q̄, R̄ and P̄0.

The filter scheme adopted in the VBN algorithm is re-

ported in Tables 1, 2, and 3, where the state space, the

propagation and the correction block are described, re-

spectively. For sake of simplicity, the bar superscript is

omitted. In the Tables hereunder, xpk represents the pre-

dicted state vector at epoch tk with error covariance ma-

trix Ppk , Kk is the Kalman gain, xck is the corrected

state vector with error covariance matrix Pck , rplk is the

observed beacon position, and νk is the measurement er-

ror.

Table 1. System State Space

ẋ = f(x(t), t) +w

rplk = h(xk) + νk
Ṗ = FP + PF⊤ +Q

Table 2. Propagation Block

xpk = xck−1 +
∫ tk
tk−1

f(x(t), t)dt

xc0 = E[x0]

Ppk = Pck−1 +
∫ tk
tk−1

Ṗdt

Pc0 = E[x0x
⊤
0 ]

Table 3. Correction Block

Kk = PpkH
⊤
k (HkPpkH

⊤
k +Rk)

−1

xck = xpk +Kk[rplk − h(xpk )]

Pck = (I −HkHk)Ppk (I −KkHk)
⊤ +KkRkK

⊤
k

Eventually, since large outliers can worsen the estima-

tion, an online outlier rejection approach is introduced28

in the filter correction block. When the absolute value

of the innovation term (||rplk − h(xpk )||) is greater than

a threshold, the innovation term is set to zero, and the

correction of the propagated state estimation is not per-

formed. It is, indeed, preferred to keep an old but good

prediction to not worsen the estimation.

Results.

Navigation Strategy. The navigation algorithm is

tested on an interplanetary trajectory leg between Earth

and Mars. Starting from the initial time t0, the spacecraft

tracks the first planet of the optimal pair for 60 min-

utes. Then, it performs a slew maneuver of 30 minutes

and, eventually, it observes the second planet for another

hour. This navigation cycle is repeated every five days for

a 50-days trajectory leg. Figure 4 shows the selected nav-

igation cycle. At the beginning of each navigation leg,

Planet 1

observation

Planet 2

observation

Slew

maneuver
State-only propagation leg

5 days 1 hour 30 min 1 hour

Navigation leg

Figure 4. Navigation cycle

the optimal selection approach is adopted to determine

which couple of planet is best to track to obtain the high-

est filter performances. The threshold values of the SEA

and apparent magnitude considered to assess the planet

visibility are 20 [deg] and 7, respectively. For the ana-

lyzed test case, the optimal selection method results in

the selection of the pair Earth-Mars in each navigation

leg.

Filter Settings. The initial probe position and velocity

is selected by randomly sampling a Gaussian distribution

centered in the probe nominal state and with σr = 104

km, σv = 10−1 km/s, respectively. The probe initial

state in the ecliptic J2000 reference frame is reported in

Table 4. Instead, the uncertainties σSRP, σR and σCrpl
to

determine the error covariance matrices P0, Q, and R are

detailed in Table 5. Note that the matrix R is defined by

taking into account in a conservative way the results of

the Monte Carlo analysis performed in 18, which assesses

the planet projection errors as a function of the probe

position uncertainty.

Camera Settings. The onboard camera is assumed to

have the characteristics reported in Table 6, where F is

the f-number, Qe × Tlens is the quantum efficiency ×

Table 4. Probe state at t0 = 9901 mjd2000

r0 [km] v0 [km/s] η0 [km/s2]

x-component -1.28·108 -23.28 0

y-component 1.18·108 -13.46 0

z-component 5.40·107 -5.81 0
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lens transmission, σd is the defocus level, and nCR is the

number of single pixels that are turned on for simulating

the presence of hitting cosmic rays.

Filter Performances. The filter performances are stud-

ied through a Monte Carlo analysis conducted on 100

samples. Figures 5 and 6 show the position and veloc-

ity error profiles and covariance bounds over the trajec-

tory leg considered in the J2000 ecliptic reference frame.

Since both the planets and the spacecraft lie almost on

the ecliptic plane, the x and y components represent the

in-plane error, whereas z is the out-of-plane one. At the

end of the trajectory leg, the filter estimates the space-

craft position and velocity with a 3σ accuracy of 1025

km and 0.42 m/s, respectively. The 3σ sample and filter

covariance profiles are mostly overlapped, which suggests

that the filter and its covariance matrices, in particular

R, are well tuned. Moreover, a comparison with the per-

formances of the orbit determination algorithm described

in 14 can be performed. By considering the same set-

tings for the camera and navigation cycle, it is possible

to notice that the orbit determination algorithm in 14 fed

by the planet LoS directions reaches a higher accuracy

in the estimation of the spacecraft state (about 900 km

for the position). The reason is that the external obser-

vations have been modeled by considering a smaller 3σ

error, equal to 15 arcsec, which is also adopted to build

the measurement error covariance matrix R. Instead, in

this paper, the 3σ measurement error of the planet obser-

vation extracted from deep-space images is revealed to be

greater than the past prediction. Indeed, the error is es-

timated to be about 0.3 px along both directions of the C
camera frame, which means about 20 arcsec for a camera

with FoV of 20 [deg] and sensor frame of dimension 1024

× 1024.

Moreover, the importance of the implementation of

strategies for correcting the light-time and light-

aberration effects is here demonstrated. Indeed, when

these are not included, the performances of the au-

tonomous deep-space navigation filter greatly degrade,

and the error profiles do not converge to zero. In par-

ticular, Figure 7 displays the filter performances in the

estimation of the position and velocity errors when the

light effects are not corrected. The sample error profiles

are biased, which reflect a modeling error in the measure-

ment equation of the filter.

Conclusion. A vision-based navigation filter suited

for deep-space CubeSats is developed in this paper. A

dimensionless extended Kalman filter fed by planet po-

sition projections retrieved from deep-space images18 is

chosen to take into account the limited capabilities of a

Table 5. Filter uncertainties of the process and

measurement noise

σSRP [km/s2] σR [km/s2] σCrpl
[px]

10−10 10−10 [0.1 0; 0 0.1]

Table 6. Onboard camera characteristics.

FoV [deg] 20

F [-] 2.2

T [ms] 400

Image size [px] 1024× 1024

f [mm] 40

Qe× Tlens 0.49

σd [px] 0.9

nCR 2

deep-space CubeSat processor. The IP pipeline exploited

to extract the planet information from the generated im-

age is described in 18, in which a correction step is added

between attitude determination and planet identification

to compensate for the light-aberration effect on stars cen-

troids. Instead, for correcting the light-time and light-

aberration effects affecting the planet position projection,

the measurement model equation h is derived such that

it represents the planet position projection at time τ and

is shifted by the quantity defined by the light-aberration

effect. In this way, the observation adopted to correct the

prediction is not dependent on the estimation itself.

At the end of the analyzed trajectory leg between Earth

and Mars, the filter estimates the spacecraft position and

velocity with a 3σ accuracy of 1025 km and 0.42 m/s, re-

spectively. Future analysis should test the performances

of the IP pipeline for different working conditions, such

as on orbits toward outer and inner planets, and by in-

cluding the estimation of the probe attitude in the filter.

Moreover, it has been noticed that the pair of planets se-

lected as optimal by the optimal selection method that

yields the highest accuracy in the state estimation is not

generally optimal for the IP pipeline. Indeed, on one side,

the optimal planet selection method prefers planets close

to the spacecraft and with an angle γ near 90 [deg]. On

the other side, the IP pipeline has a higher success rate

when the planet is further from the spacecraft since the

region where it could be detected would become more un-

dersized, and a misidentification is less likely to occur.

Eventually, future analysis should test the performances

of the IP pipeline during hardware-in-the-loop simula-

tions. In this context, a camera acquires a sky-field im-

age, rendered on a high-resolution screen, and gives the

associated matrix of digital counts to the IP algorithm,29

which retrieves the planet observation that feeds a VBN

filter deployed on a processor representative of a CubeSat

miniaturized onboard computer.14
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Figure 5. Position error profiles and covariance bounds when light effects are corrected in the filter.

The sample error profiles are represented with blue solid lines, the 3σ filter covariance bounds with black

dashed lines, and, the 3σ samples covariance bounds with orange solid lines. The x-axis represents the

seconds since 01-01-2000, 12:00 noon.

Figure 6. Velocity error profiles and covariance bounds when light effects are corrected in the filter. The

sample error profiles are represented with blue solid lines, the 3σ filter covariance bounds with black

dashed lines, and, the 3σ samples covariance bounds with orange solid lines. The x-axis represents the

seconds since 01-01-2000, 12:00 noon.
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Figure 7. Position error profiles when light effects are not corrected in the filter. The sample error

profiles are represented with blue solid lines, the 3σ filter covariance bounds with black dashed lines,

and, the 3σ samples covariance bounds with orange solid lines. The x-axis represents the seconds since

01-01-2000, 12:00 noon.

Figure 8. Velocity error profiles when light effects are not corrected in the filter. The sample error

profiles are represented with blue solid lines, the 3σ filter covariance bounds with black dashed lines,

and, the 3σ samples covariance bounds with orange solid lines. The x-axis represents the seconds since

01-01-2000, 12:00 noon.
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