
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2022.DOI

Automated Creation of Mappings
between Data Specifications through
Linguistic and Structural Techniques
SAFIA KALWAR1, MATTEO ROSSI1, MERSEDEH SADEGHI2
1Politecnico di Milano (e-mail: firstname.lastname@polimi.it)
2University of Cologne (e-mail: sadeghi@cs.uni-koeln.de)

ABSTRACT The ability to perform automated conversions between different data formats is key to
achieving interoperability between heterogeneous systems. Conversions require the definition of mappings
between concepts of separate data specifications, which is typically a difficult and time-consuming task.
In this article, we present a technique that exploits, in part, semantic web technologies to automatically
suggest mappings to users based on both linguistic and structural similarities between terms of different
data specifications. In addition, we show how a machine-learned linguistic model created by gathering data
from domain-specific sources can help increase the accuracy of the suggested mappings. The approach has
been implemented in our prototype tool, SMART (SPRINT Mapping & Annotation Recommendation Tool),
and it has been validated through tests using specifications from the transportation domain.

INDEX TERMS Ontology, Linguistic Similarity, Word Embeddings, Natural Language Processing,
Structural Similarity, Automated Mapping

I. INTRODUCTION

In so-called Systems of Systems (SoSs) [1], [2], independent,
heterogeneous systems built using different technologies in-
teract to provide complex services. In the domain of SoSs,
data interoperability—that is, the ability to seamlessly ex-
change data among systems—is a key concern [3]. However,
achieving data interoperability is a challenge, as different
systems typically rely on heterogeneous data specifications,
but one that, crucially, needs to be tackled if one wants to
combine divergent data sources into one seamless applica-
tion.

Transportation systems are a paradigmatic example of
this phenomenon, as they are becoming more and more
integrated both at the regional (e.g., continental) and global
level. Indeed, a single transport mode cannot alone meet the
requirements of today’s travelers, so multi-modal, integrated
transportation systems have become key in modern societies.
In addition, the Mobility-as-a-Service (MaaS) paradigm [4]
requires the integration of the (already complex) software
systems of very different Transport Service Providers (TSPs).
For example, initiatives are underway in the European Union
to create a Single European Transportation Area [5]. More
specifically, the EU Shift2Rail Joint Undertaking [6], espe-
cially within its Innovation Programme 4, aims to provide

users with a “one-stop-shop” solution that allows them to
handle multi-modal trips across borders, using a single ap-
plication that integrates many different services (shopping,
booking, ticket issuing, etc.) from heterogeneous providers
of different countries. This requires integrating software ser-
vices that typically use different standards and specifications
(possibly specific to a single country) to describe data such
as travel offers, booking information, and so on. This leads
to a great heterogeneity of data representations, which in turn
significantly hinders the systems’ interoperability.

These obstacles to interoperability can be overcome
through the adoption of suitable conversion mechanisms
between data specifications. Any conversion mechanism is
usually—explicitly or implicitly—based on some mapping
between the concepts of the different data specifications (see,
for example, the work presented in [7], which relies on tech-
nologies typical of the semantic web). In this direction, we
have developed a tool, named SMART (SPRINT Mapping &
Annotation Recommendation Tool [8]), whose main purpose
is to automatically provide suggestions for the mapping
concepts from one data specification to another. The tool
takes as input two data specifications, one in XSD format and
one provided as a machine-readable ontology, and produces
a set of possible mappings using a two-step process: first, it

VOLUME x, 2022 1

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

looks for linguistic similarities between the terms appearing
in the XSD-based specification and those appearing in the
ontology, thus creating an initial mapping; then, it uses the
structure of the two specifications (i.e., how terms are related
to one another in each specification) to refine—and possibly
extend—the initial mapping.

In this paper we build on and extend the work presented in
[8] in several ways. First, we provide a more complete and
detailed account of the mechanisms underlying the mapping
generation process. Second, we improve the step that relies
on the linguistic similarities between terms by exploiting a
custom, machine-learned, linguistic model built using data
retrieved from sources specific to the domain of interest (in
our case, the transportation domain). The dataset that we
used to train the model is itself a contribution of this work,
and it is made publicly available to the research community.
Finally, we perform a systematic evaluation of the accuracy
of the suggested mappings on several case studies from the
transportation domain.

In a nutshell, the paper explores the following two research
questions. Q1. Can we create accurate, suitable mappings
between different data specifications which are applicable
in real-life situations? Q2. Can we create a domain-specific
model which provides us with more targeted suggestions than
a generic one?

The paper is structured as follows: Sect. II describes rele-
vant related works and provides some background regarding
the techniques used in this paper; Sect. III presents the mech-
anisms for generating the suggested mappings; Sect. IV de-
scribes the procedure followed to create the domain-specific
model, including the gathering of the domain-specific train-
ing dataset; Sect. V presents and discusses the results of the
validation, and Sect. VI concludes.

II. BACKGROUND AND RELATED WORKS
This section provides an overview of techniques and works
related to our approach. First (Section II-A) it presents work
that is more loosely related to ours; then (Section II-B), it
briefly describes the techniques that are at the core of the
approach presented in this paper.

A. RELATED WORKS
We consider work related to ours in the following areas: i)
dealing with data heterogeneity problems in different do-
mains, ii) data integration, and iii) word embeddings.

Data Heterogeneity: Generally speaking, integrating in-
formation from independently developed applications is dif-
ficult. Individual applications are usually not designed to
cooperate and are often based on different concepts and data
models [9]. Accordingly, the demand for interoperability has
increased in various application domains. One such example
is the healthcare domain, which has seen an increased interest
in semantic interoperability [10]. Indeed, a collaboration be-
tween processes is of the utmost importance in the healthcare
domain since it is a critical requirement to deliver quality
service care. In [11], the authors propose an approach for

the semi-automatic detection of synonyms and homonyms of
process element names by measuring the similarity between
business process models semantically captured through OWL
specifications. This is a two-fold approach to map two differ-
ent business process models semantically: it finds similarities
between concepts using WordNet by looking for synonyms,
and it determines their structural similarity by looking at the
linguistic similarity between process attributes. This work
differs from ours in terms of applied techniques, and it targets
models with the same schema, whereas in our proposed
approach we consider specifications with different schemas.

The transportation domain is another major application
field of semantic interoperability [12], [13]. The use of on-
tologies enables data interoperability among different com-
munity transport service providers of vehicle-sharing ser-
vices. In this case, users create and define their own onto-
logical model in different corporate domains. As a result,
it is difficult for different users and organizations to agree
on one common ontological model, as this would typically
not reflect the actual business requirements of each company
[14].

Accordingly, the heterogeneity caused by the existence of
multiple ontologies hampers systems’ interoperability. For
example, in [15], the authors propose an approach to adopt
a collaborative inter-organizational knowledge management
network methodology developed in [16]. This work, how-
ever, only targets ontologies. Therefore, to achieve ontol-
ogy merging, it expects different users to agree on specific
rules, which should be described specifically per ontology.
The approach proposed in [17] focuses on a visualization-
oriented urban mobility ontology. The ultimate goal of this
work is to benefit decision-makers by providing an ontology
that can support the process of developing semantically-rich
visualizations with knowledge extraction and interoperability
capabilities. In a similar vein, we have developed in [18] a
tool that allows users to visualize the mappings generated
through the mechanisms presented in this work, thus increas-
ing the usability and transparency of the mapping tool and
making it more explainable.

Data Integration: Regarding data integration approaches,
several works target the problem of generating a global
schema from a set of heterogeneous data sources. In this
direction, some approaches propose to find correspondences
between elements of schemas of heterogeneous data sources.
In particular, there are multiple methods in the literature
for producing mappings between XML-based data sets and
ontologies. For example, [19] defines rules to transform XML
documents into an existing ontology, using separate rules to
create mappings to OWL classes, data properties, and object
properties. Many techniques propose an automatic translation
of XSD into a newly-created ontology that captures the im-
plicit semantics existing in the structure of XML documents.
For example, in [20], the authors describe mechanisms to
create automatic mappings from XML to RDF and from
XML schema to OWL. The framework presented in [21]
creates a new ontology from an XML schema and transforms

2 VOLUME x, 2022

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

instances of the XML schema into instances of the created
ontology.

Our work differs from those presented above in that our
aim is to map an XSD-based specification to an existing
ontology rather than creating a new one; also, to achieve this,
we exploit, in addition to the structure of the specifications,
the linguistic properties of the terms appearing in them.

Word Embeddings: Several word embedding algorithms
have been introduced in the literature. Word2Vec, which is
used in our system and is described in Section II-B, and
Glove [22] are some of the best known. In particular, Glove
has been shown to produce a word vector space with a
meaningful substructure, as evidenced by its state-of-the-art
performance of 75% accuracy on the word analogy dataset.

ELMo (Embeddings from Language Models), introduced
by Peters et al. [23], is another word embedding approach
in which word vectors are learned functions of the internal
states of a deep bidirectional Language Model (biLM), which
is pre-trained on a large text corpus. Finally, Devlin et al.
[24] propose BERT (Bidirectional Encoder Representations
from Transformers), based on the bi-transformer technique,
which can effectively exploit the deep semantic information
of a sentence, and which can learn characterizations that can
consider the context in both directions.

Even though the Word2Vec-trained models used in this
work showed good performance, in the future we plan to
explore alternative approaches—and in particular those men-
tioned above—for creating word embeddings and compare
the effectiveness of the generated models against our current
ones.

B. BACKGROUND
This section first briefly describes the main features of the
Word2Vec (W2V [25]) algorithm, which is used to train the
machine-learned linguistic models at the core of the pre-
sented approach, and of the models created through it. Then,
it overviews the main steps that are followed to train models
with W2V, and the most relevant parameters set during the
training phase.

W2V is an algorithm that, given a corpus C of text—
that is, a sequence of sentences—creates a model where
words appearing in the corpus are associated with vectors
representing their features (one vector per word). The idea
is that words that play similar roles in the corpus have similar
features; hence, in a well–trained model, their vectors are
close to one another in the vector space.

Once vectors are associated with words, the notion of
cosine similarity can be used. More precisely, given two
words, their similarity can be measured through the value
of the cosine of the angle between their corresponding vec-
tors (see Figure 1). In particular, given vectors −→a and

−→
b

associated with words a, b, respectively, their similarity is
computed through the formula shown in Equation (1), which
corresponds to the dot product of −→a and

−→
b , normalized by

the product of the vectors’ norms (i.e., the absolute values of

their respective lengths).

cosθ =
−→a .

−→
b

||−→a || ||−→b ||
(1)

It is easy to see that a value of 1 for the cosine similarity
between two words corresponds to the case in which the
vectors are the same, which in turn entails that the words are
equivalent in the corpus. Conversely, a value of 0—in which
case the vectors are orthogonal—signals that the two words
are unrelated to one another. Figure 1 provides a graphical
depiction (in a 2D feature space) of the notion of cosine
similarity between words.

RouteSource

Tram

Passenger

Bus!1

!2

Feature m

Fe
at

ur
e

n

FIGURE 1. Cosine Similarity using Word2Vec

More precisely, words Bus and Tram, which have a similar
meaning, would have similar vectors. Hence the value of
their cosine similarity would be close to 1; the vectors for
Passenger and Bus, on the other hand, would be farther apart,
and the value of their cosine similarity would be lower.

The W2V technique is able to associate feature vectors
not only with single words but also with “phrases”, which
are expressions made of multiple words, for example “train
station”, or “New York”. In particular, we refer to phrases
made of 2 words as “bi-grams” and, in general, to phrases
made of multiple words as “n-grams”. W2V associates vec-
tors directly with phrases when these appear very frequently
in the corpus (with respect to the separate composing words).
Even when W2V cannot directly associate a feature vector
with a sequence of words, it can compute, given the vectors
of the composing words, a vector for the whole sequence. In
a well-trained model, vectors resulting from the combination
of words (e.g., “vehicle” and “journey”) will be close to
vectors for similar words (e.g., “trip”). Typically, the com-
bination consists of adding the composing vectors, though
other possibilities (e.g., vector average) are available.

Let us now provide an overview of the steps that are taken
when training a model using W2V and of the most relevant
training parameters that influence the resulting model. First,
the raw data (the corpus, i.e., a sequence of sentences)
is collected and pre-processed. Pre-processing includes the
cleaning of the data (e.g., removing spurious characters),

VOLUME x, 2022 3

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 2. Example of the impact of the value of parameter window_size on the identification of the pairs of words during the training of W2V models

lowercasing, lemmatization (i.e., replacing a word with its
base form, for example in the case of verbs), and removing
punctuation and numerical forms. In addition, words that
appear only very rarely are removed to avoid introducing
noise in the model. The so-created corpus is further processed
and fed to the training algorithm to create the final model.
Several implementations of the W2V technique are available
in the literature (see, e.g., [26]); in this work, we use the
Gensim library [27], which also offers a few useful additional
utilities. Before performing the actual training, a step to
identify phrases (bi-grams, etc.) in the corpus is typically
performed (e.g., through module gensim.models.phrases of
the Gensim library). In particular, each pair of consecutive
words is analyzed and—provided the pair appears at least
min_count times in the corpus, where min_count is a param-
eter set by the user—it is assigned a score that measures how
many times the pair appears with respect to the individual
words (pairs that appear more often than individual words,
hence that are more relevant in pair than individually, have
higher scores). If the score is greater than the value of user-
defined parameter threshold, the pair is considered a phrase;
otherwise it is not (only individual words are considered).
Notice that the phrase identification step is performed in
multiple iterations to identify also phrases that are made of
more than two words. As mentioned above, after phrases
are identified in the corpus (e.g., “railway station”), they are
treated as single terms, and the algorithm will associate with
each of them a single feature vector. As a final processing
step before training, all terms (words or phrases) that appear
less than min_count times in the corpus are removed. Finally,
the actual training can start.

To train the model, W2V analyzes pairs of words that are
close to one another, where “close” is determined by param-
eter window_size. For example, a value of 2 for window_size
implies that to determine the set of pairs of words to be
analyzed, for every word w appearing in the corpus, every
word that is at a distance of at most 2 (either before or after
w) is paired with w, as depicted in Fig. 2 (where each row
corresponds to a different w, highlighted in bold). Notice
that the actual distance between the words in a pair does not
matter, only that the words are inside the stated window. A
smaller window size gives results that are more syntactic in
nature, whereas a larger window (e.g., window_size > 5)

produces results that are more semantic. Larger values of
parameter window_size increase the training time as more
pairs are analyzed in training. The parameter vector_size,
instead, determines the number of dimensions in the feature
vector associated with each term in the model. The number
of dimensions is typically chosen also depending on the size
of the corpus, and the higher the number of dimensions, the
longer the training time. A typical number of dimensions,
which seems to provide a good trade-off between accuracy
and training time, is 300; however, one could experiment
with different sizes of the feature vector, especially if the
size of the corpus exceeds 100M words. As mentioned above,
during the training phase W2V considers pairs of words
that appear in windows of size window_size. However, as
also highlighted by the example in Figure 2, many of these
pairs feature frequent but not very meaningful words such
as articles and prepositions (e.g., “the, pink”). To reduce the
impact of these words on the training, W2V allows users to
“down-sample” them—i.e., to consider only some of their
instances, but not all. In particular, the parameter sample
determines the probability that each instance is considered in
the training phase depending on the frequency of each word
in the corpus. The value of parameter sample, which typically
ranges between 1E-3 and 1E-6, has a significant impact on
the outcome of the training, as also shown in Section V.

III. METHODOLOGY
The overall workflow for creating the mappings, imple-
mented in the SMART tool, is shown in Figure 3. The
process starts by taking two data specifications, referred to as
“source” and “target”1 as input. The procedure is composed
of three main steps. The first step involves creating mappings
by identifying similar terms for the given data specifica-
tions. In particular, for each term in the source specification,
SMART suggests three terms from the target standard, along
with a confidence score. As the name suggests, it represents
how the system is confident about the similarity of the two
terms, which is an indicator of the similarity score calculated
through the formula (1). The second step then allows the user
to check and confirm those mappings. Users can either man-

1In the rest of this paper, we refer to the input specifications as “source”
and “target” to distinguish them. However, these notions are interchangeable,
and there is no direction in the mapping creation.

4 VOLUME x, 2022

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 3. WorkFlow of the SMART Tool.

ually inspect the suggestions or let SMART automatically
choose the suggestions with the highest confidence score.
Finally, in the third step, the confirmed mappings are further
used to generate annotations that capture the mappings and
that can be used to automatically translate data conforming
to one specification into the other format [7].

In this paper, we focus on the first phase of the workflow,
which deals with the automated generation of the mappings;
the remaining steps are presented in [8].

The mechanism to automatically generate suggested map-
pings relies on two main techniques: (i) linguistic map-
ping (which is detailed in Section III-A), and (ii) structural
mapping (described in Section III-B). The former applies
Natural Language Processing (NLP) and Machine Learning
(ML) techniques to identify similar terms. The latter, instead,
further exploits the structure of the data in the source and
target specifications to derive a new and more precise set
of mappings. The overall mapping procedure is captured by
Algorithm 1. For clarity, some parts have been encapsulated
in sub-algorithms that are shown as algorithms 2, 3 and 4.

A. LINGUISTIC MAPPING PHASE
In the first phase of the mechanism (corresponding to lines
7-16 of Algorithm 1), a W2V-trained model is used to create
a first set of suggested mappings between terms of the two
input data specifications. For this reason, we refer to this
as the “linguistic step” of the process, though, as it will
be apparent later, the structure of the specifications is also
exploited in some points. In this work, we use and experiment
with several W2V-trained models; in particular, we use a
general-purpose model (referred to, in the following, as the
Google News model), publicly available from the literature
[28] and which has been trained on generic documents, and
several domain-specific models that we trained ourselves on
transportation-related documents (see Section IV for further
details). The linguistic mapping phase consists of several
steps, which are detailed below.

a) Specification pre-processing. In the first step, the
input data specifications are read, and the terms appearing
in them are organized into several categories depending on
their definitions. More precisely, the algorithm assumes that
one specification is in XSD format while the other is an
ontology defined in OWL format (though, as explained later

Algorithm 1 Mapping Algorithm
1: procedure SMARTMAPPING
2: input: X: XSD file, O: OWL file
3: output P: set of triples ⟨xt, ot, s⟩, xt ∈ X, ot ∈ O, s:Confidence score
4: oCl ← O .Class
5: oObPr ← O .ObjectProperty
6: oDtPr ← O .DatatypeProperty
7: xName ← (X .Attribute.name ∪X .Element .name)
8: xType ← (X .Attribute.type ∪X .Element .type)
9: xCl ← X .ComplexTypes

10: xObPr ← {xb|xb ∈ xName if XType(xName) =
ComplexType}

11: xDtPr ← {xd|xd ∈ xName if XType(xName) = Datatype}
12:
13: ▷ Create initial mapping between terms using linguistic similarity
14: mappedClass ← W2VlinguisticMap(xCl , oCl)
15: mappedObjProp ← W2VlinguisticMap(xObPr , oObPr)
16: mappedDataProp ← W2VlinguisticMap(xDtPr , oDtPr)
17:
18: ▷ New mappings between object properties (Alg. 2)
19: mappedObjProp ← AddObjPropFromClasses(

mappedObjProp,mappedClass,
xObPr , oObPr)

20:
21: ▷ New mappings btw. classes based on classes & obj. prop. (Alg. 3)
22: mappedClass ← AddClassesFromClassesAndObjProp(

mappedObjProp,mappedClass,
xCl , oCl)

23:
24: ▷ New mappings between classes based only on properties (Alg. 4)
25: mappedClass ← AddClassesFromObjProp(

mappedObjProp,mappedClass,
xCl , oCl)

26:
27: return mappedClass ∪mappedObjProp ∪mappedDataProp
28: end procedure

in this section, the mechanism also works when both inputs
are in XSD or OWL format). The categorization of terms is
performed according to the following rules, which are also
captured by Table 1.

We assume that the XSD specification [29] describes
concepts as ComplexTypes that can have Elements and At-
tributes, which in turn have types that can be Datatypes or
other ComplexTypes. The OWL specification [30], instead,
represents knowledge as a set of Classes to which properties
(which can be Datatype Properties or Object Properties)
belong. Properties correspond to binary relations between
their domain (which are instances of Classes) and their
ranges (which are instances of Classes or of Datatypes). The
algorithm first iterates through the terms of the OWL file.

VOLUME x, 2022 5

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 1. XSD to OWL Structural Mapping Rules

XSD OWL Type and Name
<xsd:complexType name = "A"> Class(A)
<xsd:complexContent> SubClassof(B)
<xsd:extension base = "B">
Where B is another ComplexType
<xsd:complexType name = "A"> ObjectProperty(hasE1)
<xsd:complexContent> Domain(Class(A))
<xsd:extension> Range(Class(B))
<xsd:element name = "E1" type=
"B">
Where B is another ComplexType
<xsd:complexType name = "A"> DataTypeProperty(hasE1)
<xsd:complexContent> Domain(Class(A))
<xsd:extension> Range(DataType(D))
<xsd:element name = "E1" type =
"D">
Where D is a DataType
<xsd:complexType name = "A"> ObjectProperty(hasAttr1)
<xsd:complexContent> Domain(Class(A))
<xsd:extension> Range(Class(B))
<xsd:attribute name = "Attr1" type =
"B">
Where B is another ComplexType
<xsd: complexType name = "A"> DataTypeProperty(hasAttr1)
<attribute name = "Attr1" type =
"D">

Domain(Class(A))

Where D is a DataType Range(DataType(D))

It creates three sets, oCl, oObPr and oDtPr, containing, re-
spectively, classes, object properties, and datatype properties
(lines 4-6 of Algorithm 1). Then, it goes through the terms
of the XSD file (lines 7-16), and it builds three further sets
of terms: xCl, which are candidates to be mapped to OWL
classes; xObPr, which are candidates to be mapped to OWL
object properties; and xDtPr, which candidates to be mapped
to OWL datatype properties. To do this, it applies the rules of
Table 1, which are briefly described in the following.

The rule captured by the first row of Table 1 defines
that a ComplexType (say, “A”) defined in the XSD file
should correspond to a Class in the OWL file. In addition, if
the ComplexType extends another ComplexType (say, “B”),
then this should correspond to a SubClass relationship in
the OWL file. The rule in the second row defines that an
element (say, “E1”) of a ComplexType (“A”) that has as
a type another ComplexType (“B”) should correspond to
an ObjectProperty in the OWL file; if instead, the type of
the element is a DataType (“D”), then it should correspond
to a DataProperty (third row). Similarly (fourth row), if
an attribute (say, “Attr1”) of ComplexType “A” has as a
type another ComplexType “B”, it should correspond to an
ObjectProperty in the OWL file; if instead (fifth row) the type
of the attribute is a DataType (“D”), it should correspond to
a DataProperty.
b) Similar term retrieval. In the second step, the W2V-
trained model is used to retrieve, for each term appearing
in each of the aforementioned six sets (oCl, xCl, etc.),
the n most similar terms (see Section II-B), where n is a

configurable parameter.2 Then, if x (resp., y) is the number
of terms from the source (resp., target) standard, after getting
n similar terms from the W2V-trained model, we obtain two
matrices (one for the source specification and one for the
target specification) that contain x · (n + 1) and y · (n + 1)
elements, respectively. Table 2 shows a snippet of examples
of tables (indicated as MatS for the source specification and
MatT for the target one) obtained at the end of this step (with
n = 4), where the left-most column shows the original terms
from the source (TermS) and target (TermT) standards, while
the other columns (SimTermS1, SimTermS2, etc.) show, for
each original term, the words suggested by the W2V-trained
model.

TABLE 2. Matrix Representation after Step (b)

MatS: W2V suggestions for terms in the first specification

TermS SimTermS1 SimTermS2 SimTermS3 SimTermS4

RequestStop Request Stop Pick_Drop Wait

FareZone Fare Zone Zonal TravelCard

MatT: W2V suggestions for terms in the second specification

TermT SimTermT1 SimTermT2 SimTermT3 SimTermT4

Layover Stop Schedule Stopover Waiting_Time

AccessZone Access Zonal Restrict Accessibility

c) Term matching. In this step, the algorithm retrieves the
W2V-computed similarity of each pair of terms (one taken
from MatS and one from MatT) appearing in the matrices
obtained at the end of step (b). The result is a list of triples
⟨SimTermSi,SimTermTj,Simij⟩, where Simij is the cosine
similarity of SimTermSi and SimTermTj. Notice that the
algorithm only considers pairs ⟨SimTermSi,SimTermTj⟩ that
belong to rows corresponding to terms (TermS and TermT)
that have the same nature, as determined by step (a) (i.e., such
that TermS belongs to xCl and TermT belongs to oCl, or to
xObPr and oObPr, or to xDtPr and oDtPr, respectively).

We filter out the triples whose similarity value Simij is
lower than a threshold th, where th is a configurable param-
eter set to 0.5 in our experiments. We consider that each pair
of terms whose similarity is higher than the threshold is a
potential generator of a mapping, according to the rules of
the next step (d).
d) Suggestion consolidation. In the final step of the linguis-
tic phase, each triple ⟨SimTermSi,SimTermTj,Simij⟩ that is
left after the final filtering performed in step (c) is traced back
to the pair of original terms ⟨TermS,TermT⟩. Also, for each
pair of original terms ⟨TermS,TermT⟩, we count the number
of triples ⟨SimTermSi,SimTermTj,Simij⟩ that are traced
back to it. For example, consider Table 2 again and imagine
that, after step (c), we have a triple ⟨Request,Stop, 0.677⟩.

2We experimented with different values for parameter n (3, 5, 10, 20), and
in the experiments of Section V we finally settled on n = 10.

6 VOLUME x, 2022

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

We trace it back to the original pair of terms ⟨RequestStop,
Layover⟩, and we increase by one the counter the num-
ber of matches between RequestStop and Layover. Finally,
we compute the confidence score CS ts,tt for the mapping
⟨TermS,TermT⟩ as the average of the values Simij of the
triples ⟨SimTermSi,SimTermTj,Simij⟩ that trace back to
it. At the end of this step, we produce a set of triples
⟨TermS,TermT,CS ts,tt⟩.

Notice that steps (b)-(d) described above are encapsulated
in lines 14-16 of Algorithm 1, and they are separately ap-
plied depending on the nature (class, object property, data
property) of each original term.

B. STRUCTURAL MAPPING PHASE

In the second phase of Algorithm 1, captured by lines
19-25, we use the structure of the ontology as guidance
to further refine the mappings returned by the linguis-
tic mapping phase. The results produced by the linguistic
mapping are stored in three sets of triples of the form
⟨TermS,TermT,CS ts,tt⟩ named mappedClass, mappedOb-
jProp and mappedDataProp, where TermS and TermT are
either both names of Classes, or of ObjectProperties, or of
DataProperties, depending on the set. Notice that, for the
sake of structural mapping, we categorize terms appearing
in XSD specifications as Classes, ObjectProperties, and Dat-
aProperties according to the rules of Table 1. Hence, in
this step, we consider that each specification defines triples
of the form ⟨Domain,ObjectProperty,Range⟩. In the fol-
lowing, we indicate a triple from the source (resp., target)
specification as ⟨DomainS,ObjectPropertyS,RangeS⟩ (resp.,
⟨DomainT,ObjectPropertyT,RangeT⟩).

Then, in the structural mapping phase, as depicted
in Figure 4, we look at pairs of triples, ⟨DomainS,
ObjectPropertyS,RangeS⟩ and ⟨DomainT, ObjectPropertyT,
RangeT⟩, that have some elements already mapped to one
another, and use this information to suggest new mappings.
These mechanisms are captured by algorithms 2-4 referenced
in Algorithm 1, and are detailed in the rest of this section. The
algorithms differ depending on which parts of the triples are
already matched to one another.

(i) Suggest properties if domains and ranges match

If in the data specifications, there are two triples ⟨DomainS,
ObjectPropertyS, RangeS⟩ and ⟨DomainT, ObjectPropertyT,
RangeT⟩ such that, in set mappedClass , DomainS is mapped
to DomainT and RangeS is mapped to RangeT, then triple
⟨ObjectPropertyS,ObjectPropertyT,CS ops,opt⟩ is added to
set mappedObjProp, where CS ops,opt is the average of
the confidence scores of the mappings between domains
and ranges—i.e., pair ⟨ObjectPropertyS,ObjectPropertyT⟩ is
suggested with a confidence score CS ops,opt. This step is per-
formed by the procedure invoked at line 19 of Algorithm 1; in
particular, the addition of every single new pair is performed
by lines 9-13 of Algorithm 2.

Algorithm 2 New Object Properties
1: procedure ADDOBJPROPFROMCLASSES
2: input: mappedObjProp, mappedClass , xObPr , oObPr
3: output P: set of triples ⟨xt, ot, s⟩, xt ∈ X, ot ∈ O, s:Confidence score
4:
5: propList ← ∅
6: foreach (xcj , ocj , sj) ∈ mappedClass do
7: foreach (xci, oci, si) ∈ mappedClass do
8: foreach (xp, op) ∈ xObPr × oObPr do
9: if xci = xp.ComplexType & oci = op.Domain &

10: xcj = xp.Type & ocj = op.Range then
11: s← (si + sj)/2
12: propList ← propList ∪ {(xp, op, s)}
13: end if
14: end foreach
15: end foreach
16: end foreach
17: return mappedObjProp ∪ propList
18: end procedure

(ii) Suggest domains (resp., ranges) if properties and ranges
(resp., domains) match
If ObjectPropertyS is mapped to ObjectPropertyT in
mappedObjProp and RangeS is mapped to RangeT in
mappedClass , then pair ⟨DomainS,DomainT⟩ is suggested
with confidence score CSds,dt, where CSds,dt is the average
of the confidence scores of the mappings between properties
and ranges. Similarly, if ObjectPropertyS is mapped to Ob-
jectPropertyT and DomainS is mapped to DomainT, then we
suggest pair ⟨RangeS,RangeT⟩. This step is performed by
the procedure invoked at line 22 of Algorithm 1, which is
detailed in Algorithm 3.

Algorithm 3 New Classes Based on Properties and Classes
1: procedure ADDCLASSESFROMCLASSESANDOBJPROP
2: input: mappedObjProp, mappedClass , xCl , oCl
3: output P: set of triples ⟨xt, ot, s⟩, xt ∈ X, ot ∈ O, s:Confidence score
4:
5: rangeList , domainList ← ∅
6: foreach (xci, oci, si) ∈ mappedClass do
7: foreach (xpj , opj , sj) ∈ mappedObjProp do
8: foreach (xc, oc) ∈ xCl × oCl do
9: ▷ Domain and property are mapped, we map range

10: if xci = xpj .ComplexType & xc = xpj .Type &
11: oci = opj .Domain & oc = opj .Range then
12: s← (si + sj)/2
13: rangeList ← rangeList ∪ {(xc, oc, s)}
14: end if
15: ▷ Property and range are mapped, we map domain
16: if xci = xpj .Type & xc = xpj .ComplexType &
17: oci = opj .Range & oc = opj .Domain then
18: s← (si + sj)/2
19: domainList ← domainList ∪ {(xc, oc, s)}
20: end if
21: end foreach
22: end foreach
23: end foreach
24: return mappedClass ∪ rangeList ∪ domainList
25: end procedure

(iii) Suggest domains and ranges if proprieties match
In this case, if ObjectPropertyS is mapped to Ob-
jectPropertyT in mappedObjProp, we suggest pairs
⟨DomainS,DomainT⟩ and ⟨RangeS,RangeT⟩, both with

VOLUME x, 2022 7

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 4. XSD to OWL Structural Mapping

confidence score that is 60% that of the mapping between
the properties (i.e., that is equal to 0.6 · CS ops,opt). This
step is performed by the procedure invoked at line 25
of Alg. 1 (see also Alg. 4). The rationale behind the
choice of the 0.6 factor is the following. Consider the case
in which triples ⟨DomainS,ObjectPropertyS,RangeS⟩ and
⟨DomainT,ObjectPropertyT,RangeT⟩ is such that properties
ObjectPropertyS and ObjectPropertyT are matched with
confidence score cp, but domains and ranges are not mapped.
If we consider that the domains are matched with confidence
score cd = 0, and we suggest the matching of the ranges
RangeS and RangeT, by computing, as done above, the
average of cp and cd to determine the confidence score of the
new mapping, we would obtain the value cr = (cp + 0)/2 =
0.5cp. However, since the new mapping ⟨RangeS,RangeT⟩
arises from structural considerations and not only linguistic
ones, we consider this as grounds to increase the confidence
score of the mapping, and we choose 0.6 as a consequence.

Algorithm 4 New Classes Based on Properties
1: procedure ADDCLASSESFROMOBJPROP
2: input: mappedObjProp, mappedClass , xCl , oCl
3: output P: set of triples ⟨xt, ot, s⟩, xt ∈ X, ot ∈ O, s:Confidence score
4:
5: rangeList , domainList ← ∅
6: foreach (xp, op, s) ∈ mappedObjProp do
7: foreach (xci, oci) ∈ xCl × oCl do
8: foreach (xcj , ocj) ∈ xCl × oCl do
9: if xci = xp.ComplexType & oci = op.Domain &

10: xcj = xp.Type & ocj = op.Range then
11: s← (s ∗ 0.6)
12: domainList ← domainList ∪ {(xci, oci, s)}
13: rangeList ← rangeList ∪ {(xcj , ocj , s)}
14: end if
15: end foreach
16: end foreach
17: end foreach
18: return mappedClass ∪ rangeList ∪ domainList
19: end procedure

Although the algorithms presented above assume that one
specification is given as an XSD file and the other as an
OWL ontology, they have been adapted to also work when
the input specifications have the same format (i.e., they are
both XSD files or both ontologies). More precisely, if both
inputs are XSD files, then the algorithm performs the same
pre-processing step explained in point (a) of the linguistic

mapping on both files to extract a set of “candidate classes”
xCl1, xCl2 from each file, which is then used in the rest of
the algorithm instead of xCl and oCl (similarly for object
and data properties).

IV. CREATING DOMAIN-SPECIFIC MODELS
In this section, we explain how we trained a domain-specific
model using W2V, to improve the quality of automatically
created suggestion of our framework.

The overall workflow is depicted in Figure 5. In particular,
we first collected a set of suitable data sources; then, the
texts retrieved from each data source were pre-processed and
cleaned to produce text that was suitable to be fed to the W2V
algorithm, where the cleaning process is specific for each
data source. Section IV-A describes the selected data sources
and the corresponding pre-processing operations, whereas
Section IV-B provides some details regarding the training
procedure and, in particular, the values of the parameters used
for the training, and the produced models.

A. CREATING THE INPUT DATASET
As mentioned in Section II-B, the input to a W2V training
procedure is a dataset that consists of a sequence of para-
graphs, where each paragraph is a list of words. The dataset
should have a few desired characteristics, as described below.
First of all, each paragraph should have a cohesive meaning.
Also, the dataset should include as many domain-specific
(e.g., transportation) terms as possible. Finally, the para-
graphs in the dataset should be “clean”—i.e., they need to be
in a format that can be understood by the training algorithm,
for example they should not contain spurious characters.
Hence, selecting the right sources is crucial. For example,
data sources that provide meaningful data but that are very
difficult to put in a format that is amenable for training are
not very useful—consider, for instance, paper documents,
which would require a complex acquisition and cleaning
process of scanning, text recognition, etc. We identified three
interesting data sources that have a good trade-off between
pertinence and usability: (i) abstracts from scientific articles
about transportation from the Scopus database; (ii) Wikipedia
pages talking about transportation issues; (iii) articles in
electronic magazines about transportation. In the rest of this

8 VOLUME x, 2022

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 5. Model training workflow.

section, we present the most relevant characteristics of each
data source and the specific steps that we had to take to
prepare their data for the training phase. Finally, we describe
how the data from the three sources were combined into the
corpus fed to the W2V algorithm.

a) Data Collection from Scoups: Scientific articles tend to
be focused and cohesive by their very nature. In addition,
the publication outlet (the specific conference or journal)
and the keywords that are included with each paper facilitate
the task of recognizing texts that are closely related to the
desired domain. On the other hand, the main text of scientific
articles usually includes technical terms that are of little
interest to our purposes. To mitigate this issue, we retrieve
only the paper abstracts, which normally provide higher-
level, less technical descriptions of the work (hence they
include more general terms, which are of greater interest for
the corpus being built). There exist multiple repositories of
scientific articles, such as IEEE Xplore3, the ACM Digital
Library4, and Springer Link5. We finally opted for the Scopus
repository6, because it is more diverse and general than
those mentioned above and it aggregates work from different
sources and domains. Abstracts are retrieved according to
expressions that appear in the text or in the list of keywords,
which should be representative of the desired domain. In
particular, for this work, we have gathered a set of relevant
expressions composed of the most common terms usually
appearing in transportation domain sources. Such expres-
sions include “Public Transport”, “Electric Scooters”, “Street
traffic control”, “Urban Transportation”, “Sustainable mo-
bility”, “Highway Traffic Control”. Ultimately, we retrieved
around 1000 articles from Scopus, which underwent some
pre-processing and cleaning steps before being merged into
one final file. In particular, the data fetched from Scopus

3ieeexplore.ieee.org/
4dl.acm.org/
5link.springer.com
6www.scopus.com

is downloaded as a single CSV (Comma-Separated Values)
file, which already contains a list of paragraphs (one per row,
where each paragraph corresponds to an abstract), as required
by the W2V algorithm. The cleaning step involves removing
special (non-alphabetic) characters, extra spaces, and empty
lines.

b) Data collection from Wikipedia: In this case, we build
the dataset by retrieving relevant pages from Wikipedia.
As before, the search is done through significant keywords
that are manually selected from the various resources in the
domain of interest, including domain-specific standards and
data specifications (for example, those mentioned in Sec-
tion V). The keywords are organized in a list (the “term query
list”) that is used to automatically retrieve the pages. In this
work, we used transportation-related keywords such as “Bus
Station”, “Location”, “Passenger”, “Quay”, “Airport”. We
retrieve the corresponding Wikipedia page for each element
in the term query list, which typically includes links to other
related pages. We follow these links and, to avoid retrieving
pages that are only indirectly related to the starting one, we
stop at the first level of linking. Data fetched from Wikipedia
is already in text format, hence, as in the case of Scopus
abstracts, the data cleaning concerns the removal of special
characters, empty spaces/lines, and unwanted punctuation.
Finally, the cleaned data is ready to be merged into the final
corpus.

c) Data collection from transportation magazines: The
third data source used to create the training corpus are
electronic documents from books and magazines focusing on
the desired domain. We selected relevant magazines through
suggestions provided by experts in the transportation domain,
for example, Intelligent Transport [31], Metro [32], and oth-
ers. These magazines cover topics such as “Smart Cities”,
“Metro and Light Rail” and “Road Traffic Congestion”. We
also performed a manual internet search to retrieve books
and white papers tackling issues mentioned in the magazine
articles (e.g., [33], [34]). The data fetched from magazines

VOLUME x, 2022 9

http://ieeexplore.ieee.org/
http://dl.acm.org/
https://link.springer.com
https://www.scopus.com

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

and books is in pdf format rather than pure text, and a
pre-processing step is necessary to make it suitable to be
integrated in the final corpus. This was done through a script
that, given a pdf document, traverses it and breaks it down
into paragraphs, where each paragraph corresponds to one
page in the pdf document. Then, a cleaning step is performed
similar to those carried out for the other sources, and finally,
the dataset is merged with the others for the training step.

In the final stage before launching the training, data are
combined from the three sources into a single file, as they
in are the same format after cleaning. The final version of
the corpus (obtained through various iterations, as described
in Section IV-B) has a size of 67MB, where 45MB of data
originate from magazines and books, 8MB from Wikipedia
pages, and the remaining 14MB from abstracts retrieved from
Scopus. Then, to make sure that the dataset does not con-
tain spurious elements, further cleaning steps are performed.
More precisely, special characters, punctuation symbols (e.g.,
commas) and any remaining empty lines are removed. Also,
duplicated data and filler words (e.g., “a”, “an”, “the”, “of”)
are deleted. After this, the dataset is ready for the training
phase. The corpus used to train the W2V model is available
at [35].

B. TRAINING THE MODEL
The goal of the training phase is to obtain a model that
is of good quality, which means that it is able to provide
reasonable similarity measures between words (including n-
grams). The quality of the model has a deep impact on the
ability of the whole mapping creation process to provide
good suggestions; hence, we can say that, ultimately, it mani-
fests itself in the ability to provide accurate mappings, which
is evaluated in Section V. The quality of the trained model is
influenced both by the corpus (size, variety) provided as input
to the training algorithm, and by the parameters used during
the training phase. Hence, the creation of the dataset and the
corresponding training are two tightly related processes that
mutually influence one another. As depicted in Figure 5, we
followed an iterative process where after each iteration, the
quality of the trained model was analyzed through manual
inspection and, if it was deemed unsatisfactory, the dataset
was expanded, and the model was re-trained, until the qual-
ity was deemed sufficient. In addition, during this corpus-
building step, we experimented with various values, for the
training parameters (see Section II-B), until we settled on a
final domain-specific trained model.

To evaluate the goodness of the trained model, we man-
ually inspected it using a qualitative approach (notice that
it is not possible to use a quantitative, automated approach
to evaluate the goodness of the trained model, as there is
no “ground truth”—i.e., a reference model—against which
the trained model can be compared). More precisely, we
selected a few representative words and n-grams of the target
domain (in this case, transportation), for example “rail sta-
tion”, “path”, “stop”, also taking inspiration from the terms

appearing in standards widely used in the domain. Then, we
used the trained model to retrieve the terms that have the
highest similarity to the selected phrases, and we manually
checked them. When the set of similar words was deemed
reasonable, we considered the trained model satisfactory.
We refer to the final, domain-specific trained model as the
Transport model.

TABLE 3. Number of words/phrases in domain-specific and general
W2V-trained models.

Model Number of words/phrases in model

Transport model 12282

Google news 3000000

The size of the final Transport model was 33MB. Table 3
shows the number of phrases that have a vector associated
with them in the Transport model, compared against the
one in the pre-trained model based on the Google News
corpus. As the table shows, the Transport model contains a
much smaller number of phrases (and it takes only a few
minutes to train on commodity hardware, as depicted in Table
4). Nevertheless, as Section V shows, its performance in
terms of the accuracy of suggested mappings is overall better
than the one of the Google News model. Concerning the
values of the hyper-parameters used in the training phase,
after experimenting with various values it turned out that the
default values (a window_size of 5, a vector_size of 300, and
a min_count of 2) worked very well, so we used them. The
only parameter that had a significant impact on the outcome
of the training was the sample value (see Section II-B). We
experimented with many different values of sample, varying
from 1E-6 to 1E-2, for a total of 17 different trained models.
Of these 17 models, 3, corresponding to sample values 1E-6,
2E-6, and 2E-4, seemed the most promising. These models
were finally selected to carry out the evaluation presented in
the next section (the trained models are available at [35]).

TABLE 4. Transport model Training Time depending on the value of
parameter sample. Training was carried out on a MacBook Air, with an Intel®

1.6GHz i5 processor and 8GB of RAM.

Sample value Training Time

1E-6 2.55 minutes

2E-6 2.94 minutes

2E-4 7.16 minutes

V. VALIDATION
This section presents the experiments that we carried out to
provide an answer to the research questions introduced in
Section I, which are repeated here for the ease of the reader:
Q1: Can we create accurate, suitable mappings between

different data specifications which are applicable in real-
life situations?

10 VOLUME x, 2022

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Q2: Can we create a domain-specific model which provides
us with more targeted suggestions than a generic one?

In this evaluation, we focused on data specifications from
the transportation domain; in particular, we selected several
XSD-based and ontology-based specifications, and we ran
our tool on various pairs of them. The rest of this section first
describes the selected data specifications (Section V-A), then
it presents the methodology used to evaluate the algorithm
(Section V-B) and the corresponding results (Section V-C);
finally, Section V-D discusses the obtained results.

A. SELECTION OF THE DATA SPECIFICATIONS
In selecting the data specifications from the transportation
domain to be used for the validation of the automated map-
ping generation mechanisms, we considered a few desired
characteristics. In particular, we required that the specifi-
cations be used by key transportation actors and that they
cover a wide range of terms used in public transportation
services or models. Finally, we selected three XSD-based
specifications—the Network Timetable Exchange (NeTEx,
[36]), the Full Service Model (FSM, [37]) and the Traveler
Realtime Information and Advisory Standard (Trias, [38])—
and two ontology-based specifications—the Public Transport
Reference Data Model (Transmodel, [39]) and the one de-
veloped within the Information Technologies for Shift2Rail
(IT2Rail, [6]) project.

Table 5 lists, for each selected specification, the number of
unique terms appearing in it. It also shows how many of them
also appear in the custom-trained Transport model and in the
generic Google News model. In the rest of this section, we
provide a brief overview of each chosen specification.

TABLE 5. Standards and Unique Terms

Standards Unique
Terms

Transport
model

GoogleNews
model

Transmodel 231 164 209

IT2Rail 543 426 481

NeTEx 174 131 151

FSM 113 101 113

Trias 128 113 126

Transmodel is a European Committee for Standardization
(CEN) reference data model for public transportation infor-
mation [40], which provides an abstract model of common
public transport concepts related to various areas, including
timetabling, fares, operational management, real-time data,
vehicle scheduling, network description, timing information,
and journey planning. Transmodel can support the develop-
ment of software applications and their interaction or combi-
nation in an integrated information system. In our validation
experiments, we used an ontological version of the Trans-
model standard, which is publicly available [39] and covers
a subset of the topics captured by the original standard,

such as journeys, facilities (e.g., accessibility facilities), and
connections.

The IT2Rail ontology was developed within the project
with the same name. The ontology is at the core of the
innovative framework developed within the project, which
enables interoperability among existing transportation sys-
tems without prerequisites for centralized standardization.

NeTEx is a CEN technical standard for exchanging public
transport schedules and related data. It is divided into three
parts, each covering a functional subset of Transmodel. The
standard covers many aspects within its scope, but we focus
on information regarding stops, routes, timetables, fares, and
schedules.

The FSM specification represents information about tick-
eting and reservations in a heterogeneous transport environ-
ment. More precisely, it provides a framework to support
the distribution of rail passenger products, which allows
companies to distribute their products via (or combined with
the products of) other operators or ticket vendors. Our ex-
periments focus on the parts of the specification that capture
information related to itineraries, stops, vehicles, fares, and
timings.

Finally, the Trias specification was introduced by the Ver-
band Deutscher Verkehrsunternehmen (VDV) [41]. It covers
a wide range of topics, such as positions of vehicles and
passengers, disruptions, departure/arrival events, fares, con-
nections, and journeys. In our case studies, we used a subset
of the Trias standard, covering the topics of stations, location
search, departures, navigation, and ticket price calculation.

B. VALIDATION METHODOLOGY
We designed six test cases by combining different pairs
of data specifications (presented in Section V-C and sum-
marized in Table 6). Each test case uses an XSD-based
specification as the “source” specification and an ontology as
the “target” one. This choice derives from the consideration
that one of the main uses that we envisage for the technique
developed in this paper is the creation of mappings towards
a “pivot” ontology to be used in the frame of approaches
such as the one presented in [7]. Hence, to evaluate the
accuracy of our technique, we check its ability to suggest
proper mappings in the target ontology starting from the
terms in the source XSD specification. As a consequence, in
the following, when referring to “the total set of terms,”, we
consider the terms appearing in the source specification—i.e.,
those for which we are actually looking for a mapping.

For each test case, we have carefully assessed the output
results to determine the accuracy of the mapping suggestions.
To this end, for each selected pair of specifications, we relied
on the available documentation to create the “ground truth”,
that is, the expected mappings, between terms of the two
specifications. We remark that in the creation of the expected
mappings there is a degree of subjectivity that cannot be
avoided, as different people could interpret the meaning of
a term differently, even given the same documentation. To
automatically check the mappings suggested by our tool

VOLUME x, 2022 11

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

against the ground truth we have prepared, for each pair of
specifications, a file listing the expected mappings (and an
explanation of the rationale for the identified mapping). For
each pair of selected specifications, we have executed the
tool for each version of the Transport model listed in Table
4 and also for the Google news model, and we collected the
suggested mappings.

To analyze the results, we categorized each term TermS
of the source specification as Correct, Incorrect, Unfeasible,
or Leftout, depending on whether the tool was able to find a
proper mapping ⟨TermS,TermT⟩ for it or not (as mentioned
above, the ultimate goal is to find correspondences in the
target ontology for terms appearing in the source XSD spec-
ification). More precisely, we label a term TermS as Correct
when there is a mapping ⟨TermS,TermT⟩ that is presented as
one of the top three suggestions presented by our tool (these
are indeed the pairs actually shown to the user, as explained in
[8]), and the pair also appears in the validation file capturing
the ground truth. We label TermS as Incorrect when none
of the mappings ⟨TermS,TermT⟩ suggested for it appears in
the validation file, but the latter contains another—correct—
mapping for ⟨TermS,TermT′⟩. A term TermS is Unfeasible
if there is no pair ⟨TermS,TermT⟩ for it in the validation
file. A term of the source specification that is not Correct,
nor Incorrect, nor Unfeasible is tagged as Leftout. That is, a
term is Leftout if no suggestion is ultimately provided for it
because the suggested mapping is filtered out at some stage
in the process (which includes the case in which one of the
two terms of the correct mapping does not appear in the
trained model). Notice that a Leftout term is one for which
the mapping creation procedure is inconclusive since the
mapping tool does not have enough information to venture
a suggestion, but no incorrect mapping is suggested.

To calculate the accuracy of the model, we use two crite-
ria termed Accuracy and Accuracytotal, respectively. The
value of Accuracy is computed, as shown in Formula (2),
taking into account only correct and incorrect pairs, as the
share of correct pairs with respect to the total number of
pairs for which a clear categorization (correct or incorrect)
was given.

Accuracy(%) =
Correct

Correct + Incorrect
∗ 100 (2)

The formula (3) defines how the value of Accuracytotal is
calculated. As shown by the formula, in this case, also terms
labeled Leftout are considered, to consider also situations in
which the tool does not venture a conclusive answer.

Accuracytotal(%) =
Correct

Correct + Incorrect + Leftout
∗ 100

(3)

C. VALIDATION RESULTS
The six pairs of specifications used to validate our approach
are the following: (i) FSM to Transmodel; (ii) Trias to Trans-
model; (iii) NeTEx to Transmodel; (iv) NeTEx to IT2Rail;

(v) Trias to IT2Rail; (vi) FSM to IT2Rail. Table 6 sum-
marizes the results of the experiments, which are described
in the rest of this section, and which are then discussed in
Section V-D (the raw results themselves are available at [35]).

TestCase 1. FSM To Transmodel: Figure 6 shows the
number of Correct, Incorrect, Unfeasible and Leftout terms
obtained with the various models. As shown in the figure,
there are 55 Unfeasible terms. Indeed, many of the concepts

21 25
8 12

22 20
27 23

15 13 23 23

55 55 55 55

0

20

40

60

80

100

120

1E-06 2E-06 2E-04 Google news

FSM <----> Transmodel
Correct Incorrect Leftout Unfeasible

Model Version

FIGURE 6. Case 1: Results of the FSM to Transmodel mapping..

that appear in the FSM standard (for example, “Coach Id”,
“Compartment Id”, “Mobility Aid Type Id”) do not have a
corresponding term in Transmodel. In fact, the Transmodel
ontology mostly contains information about routes, lines,
journey patterns, and information related to stop points,
etc. Table 6 shows the computed values for Accuracy and
Accuracytotal.

In this case, Transport model version 2E-6 has the highest
value, 55%, for Accuracy, whereas the second-best model is
version 1E-6, which has an accuracy of 49%. On the other
hand, the table shows that Google news model has only 34%
accuracy.

TestCase 2. Trias To Transmodel: The results of this
experiment are shown in Figure 7. Also in this case, there

34
15 8 10

19
39 40 34

7 6 12 16

68 68 68 68

0

20

40

60

80

100

120

140

1E-06 2E-06 2E-04 Google news

Trias <----> Transmodel

Correct Incorrect Leftout Unfeasible

Model Version

FIGURE 7. Case 2: Results of the Trias to Transmodel mapping.

is a considerable number of Unfeasible terms. For exam-
ple, in the Transmodel ontology, there are no corresponding
concepts for the terms “Booking Deadline” and “Fare Zone
Text”, since the specification does not cover topics related to

12 VOLUME x, 2022

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

booking, whereas those related to fares are not covered with
the same level of detail as in the Trias standard.

Transport model version 1E-6 exhibits the highest accu-
racy, 64%, as shown in Table 6, while the second-best one
is Transport model version 2E-6, for which the accuracy is
28%.

TestCase 3. NeTEx To Transmodel: Figure 8 shows the
results of this test case for different models. As in all test

41 34 20 39

49 56
50

48

10 10
30 13

74 74 74 74

0
20
40
60
80

100
120
140
160
180
200

1E-06 2E-06 2E-04 Google news

NetTEx <-----> Transmodel

Correct Incorrect Leftout Unfeasible

Model Version

FIGURE 8. Case 3: Results of the NeTEx to Transmodel mapping.

cases, in addition to a number of Unfeasible, there are also
a few Leftout terms. Indeed, some of the phrases from the
NeTEx standard are filtered out by the tool at the very initial
stage because one or more of the words appearing in the
phrase does not belong to the vocabulary of the trained model
(this is the case, for example, for phrases “Group Of Lines”
and “Type Of Sales Package”).

Given these statistics in this case, Transport model version
1E-6 model shows the highest (46%) accuracy, whereas
Google news model exhibits 45% accuracy as shown in the
Table 6.

TestCase 4. NeTEx To IT2Rail: Figure 9 shows the
results of the mapping process for this case study. The high

49
31 30 44

48
63 51

61

27 30 43
19

50 50 50 50

0

20

40

60

80

100

120

140

160

180

200

1E-06 2E-06 2E-04 Google news

NeTEX <----> IT2RAIL

Correct Incorrect Leftout Unfeasible

Model Version

FIGURE 9. Case 4: Results of the NeTEx to IT2Rail mapping.

number of Unfeasible terms is due to the fact that the NeTEx
specification covers topics related to fares, transport agencies
and geographical information with a level of detail that
is much higher than in the IT2Rail ontology; hence many

source terms do not have a corresponding concept in the
target standard. In addition, as shown in the figure, there are
quite a few Leftout terms. Many of them were filtered out by
the tool because one or more of the words appearing in the
phrase do not belong to the vocabulary of the trained model
(e.g, “logical displays”).

Considering the feasible terms, Transport model’s version
1E-6 provides the most accurate results (with a value of
Accuracy equal to 50%, as shown in Table 6), while Google
news is the second-best model, with a value of Accuracy of
42%.

TestCase 5. Trias To IT2Rail: The results of this case
study are shown in Figure 10. As can be seen in the figure,

40
22

44
14

44
62

36
71

13 13 17 12

31 31 31 31

0

20

40

60

80

100

120

140

1E-06 2E-06 2E-04 Google news

Trias <---> IT2rail

Correct Incorrect Leftout Unfeasible

Model Version

FIGURE 10. Case 5: Results of the Trias to IT2Rail mapping.

there are quite a few Incorrect terms. A manual inspection
of the results showed that this phenomenon was, in partic-
ular, relevant for n-grams. For example, the term “Trip Leg
Structure” (which refers to the structure of passenger trips)
is mapped to “Air Transport”, though the correct mapping
should be “Itinerary”. In this (and other) cases, the phrases
to be mapped to one another are very different, and one can
imagine that, in the texts used for training the models, they
appear in contexts that are related but not very similar. Hence,
the mapping tool ultimately provides a suggestion, but it is
not accurate because of the context difference.

A comparison of the results obtained with the different
models shows that Transport model version 2E-4 has the
highest accuracy (55%), while Transport model version 1E-6
provides the second-best accuracy (48%).

TestCase 6. FSM To IT2Rail: The results of the mapping
process for this case study are shown in Figure 11. The figure
highlights that Transport model version 1E-6 is, by far, the
best model for this case. In particular, out of 82 feasible
terms, model version 1E-6 accurately maps 52 of them, for
a value of Accuracy of 68% (see Table 6); Transport model
version 2E-6 is the second-best in terms of performance, with
Accuracy equal to 41%.

D. DISCUSSION
The results of the test cases presented above, which are
summarized in Table 6, show that, with respect to research
question Q1, the mapping tool is indeed able to provide

VOLUME x, 2022 13

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

52
30 25 28

24
43 41 43

6 9 16 11

31 31 31 31

0

20

40

60

80

100

120

1E-06 2E-06 2E-04 Google news

FSM <-----> IT2RAIL

Correct Incorrect Leftout Unfeasible

Model Version

FIGURE 11. Case 6: Results of the FSM to IT2Rail mapping.

reasonably accurate suggestions when it is able to create a
suggestion with sufficient confidence.

TABLE 6. Accuracy Comparison between different model versions (where Act
= Accuracytotal and Ac = Accuracy). Dark grey cells correspond to the
W2V-trained model that shows the highest level of accuracy, whereas light
grey cells highlight the second best one

Testcases
1E-6 2E-6 2E-4 GN

Ac Act Ac Act Ac Act Ac Act

FSM - Trans-
model 49% 36% 55% 43% 23% 14% 34% 20%

Trias -
Transmodel 64% 56% 28% 25% 16% 13% 23% 16%

NeTEx -
Transmodel 46% 41% 38% 34% 28% 20% 45% 39%

NeTEx -
IT2Rail 50% 39% 33% 25% 37% 24% 42% 35%

Trias -
IT2Rail 48% 41% 26% 23% 55% 45% 16% 14%

FSM -
IT2Rail 68% 63% 41% 36% 38% 30% 39% 34%

In particular, in all test cases, there is at least one version
of the domain-specific Transport model that shows a value
of Accuracy that is greater than 45% (indeed, in most cases,
it is higher than 50%). Even if one considers the value of
Accuracytotal, which takes into account also Leftout terms,
for which the tool is not able to provide a suggestion with
enough confidence, the accuracy is higher than 45% in half
the cases and close to that value in two other cases.

A possible way to reduce the number of Leftout terms
and thus increase the value of Accuracytotal is to expand
the range of phrases included in the W2V-trained model
at the core of the mapping mechanism. This could be
achieved by providing a larger dataset to the training algo-
rithm, thus covering a wider range of concepts. Nevertheless,
even with a fairly small (around 12K phrases) but domain-
focused model, the level of accuracy (both Accuracy and
Accuracytotal) can be deemed satisfactory.

Concerning research question Q2, Table 6 highlights that,
in each case, the general-purpose Google News model is
outperformed by at least one version of the domain-specific
Transport model (the table highlights the best-performing
model through dark grey cells and the second-best model
with light grey cells). In particular, the table shows that
Transport model version 1E-6 has the highest accuracy in
four out of six test cases; versions 2E-6 and 2E-4, instead,
are most accurate in one test case each (FSM-Transmodel
and Trias-IT2Rail, respectively), though version 1E-6 is, in
any case, the second best. Overall, then, we can conclude
that Transport model 1E-6 has the best accuracy among all
models, which shows the benefits of using a domain-specific
model with respect to a general-purpose one.

Given the experiments carried out, we can identify several
threats to the validity of the results. The first threat lies in
the fact that we ran a limited number of test cases, focusing
on a single domain (transportation). However, the transporta-
tion domain is very complex and heterogeneous, with a wide
range of standards used by different actors. As such, it can
be considered a paradigmatic example of a complex environ-
ment, and we are confident that the issues and difficulties
that it highlights are highly representative also for other
domains. In this context, we chose relevant standards used
in the transportation domain, and we considered all pairings
of one XSD-based specification and one ontology, so, in this
sense, the tests carried out were exhaustive. A second threat
to the validity of the obtained results lies in the correctness of
the validation file that we used as “ground truth” to evaluate
the accuracy of the mapping mechanism. In this regard, we
first notice that, as also mentioned in Section V-B, there is
a level of subjectivity in the interpretation of the standards,
and different, reasonable people could come up with different
mappings if they were created by hand; hence, an “ultimately
correct mapping” does not really exist, but one can say that
there are “several reasonable ones”. In particular, to create
the ground truth, we relied on our own understanding of the
standards, and we made our best effort to identify a plausible
mapping between the concepts. In addition, in the validation
workflow, we first created the validation file, and only after
that, we ran the experiments with the mapping tool. This
should reduce considerably, if not eliminate entirely, any bias
that there might be in the creation of the ground truth and
avoid the possibility that the validation file were skewed to
artificially increase the accuracy of our tool.

VI. CONCLUSIONS
This article presented in detail and extended the mechanisms
for the automated generation of mappings between concepts
in different data specifications that underlie the SMART tool.
Our mapping technique is unique in that it follows a two-
fold approach by combining linguistic similarity while also
taking into account the structural position of concepts in
specifications. In this paper, we also showed how the training
of a custom, domain-specific model for word embeddings
could help increase the accuracy of the generated mappings.

14 VOLUME x, 2022

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

The work presented in this article can help increase the level
of interoperability between heterogeneous data specifications
used by different actors in a specific domain.

In future work, we plan to improve the linguistic and
structural mechanisms underpinning our approach. More pre-
cisely, we will improve the linguistic part, on the one hand, by
training our models on bigger corpora and, on the other hand,
by exploring the effectiveness of alternative word embedding
techniques. In addition, we will enhance the structural part
of the technique by covering more aspects of the structure of
the data specifications. Finally, we plan to apply the proposed
technique to domains other than the transportation one.

REFERENCES
[1] M. Jamshidi, Systems of systems engineering: principles and applications.

CRC press, 2017.
[2] P. Uday and K. Marais, “Designing resilient systems-of-systems: A survey

of metrics, methods, and challenges,” Systems Engineering, vol. 18, no. 5,
pp. 491–510, 2015, doi:10.1002/sys.21325.

[3] M. Sadeghi, A. Carenini, O. Corcho, M. Rossi, R. Santoro, and A. Vo-
gelsang, “Interoperability of heterogeneous systems of systems: Review
of challenges, emerging requirements and options,” in Symposium on
Applied Computing (SAC), 2023, doi:10.1145/3555776.3577692.

[4] P. Jittrapirom, V. Caiati, A.-M. Feneri, S. Ebrahimigharehbaghi, M. J.
Alonso González, and J. Narayan, “Mobility as a Service: A critical
review of definitions, assessments of schemes, and key challenges,” Urban
Planning, vol. 2, no. 2, pp. 13–25, 2017, doi:10.17645/up.v2i2.931.

[5] “Roadmap to a single european transport area – towards a competitive and
resource efficient transport system,” European Commission, White Paper.
[Online]. Available: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?
uri=COM:2011:0144:FIN:EN:PDF

[6] “Shift2Rail,” www.shift2rail.org.
[7] M. Scrocca, M. Comerio, A. Carenini, and I. Celino, “Turning transport

data to comply with EU standards while enabling a multimodal transport
knowledge graph,” in ISWC 2020: 19th International Semantic Web
Conference Proceedings, Part II 19, J. Z. Pan, V. Tamma, C. d’Amato,
K. Janowicz, B. Fu, A. Polleres, O. Seneviratne, and L. Kagal, Eds.,
Athens, Greece, 2020, pp. 411–429, doi:10.1007/978-3-030-62466-8_26.

[8] S. Kalwar, M. Sadeghi, A. J. Sabet, A. Nemirovskiy, and M. Rossi,
“SMART: Towards automated mapping between data specifications,”
in 33rd International Conference on Software Engineering and Knowl-
edge Engineering, SEKE 2021, S. Chang, Ed., 2021, pp. 429–436,
doi:10.18293/SEKE2021-161.

[9] S. Pereira Detro, D. Morozov, M. Lezoche, H. Panetto, E. Portela Santos,
and M. Zdravkovic, “Enhancing semantic interoperability in healthcare
using semantic process mining,” in 6th International Conference on In-
formation Society and Techology, ICIST 2016, vol. 1, Kopaonik, Serbia,
Feb. 2016, pp. 80–85.

[10] O. Iroju, A. Soriyan, I. Gambo, J. Olaleke et al., “Interoperability in
healthcare: benefits, challenges and resolutions,” International Journal of
Innovation and Applied Studies, vol. 3, pp. 262–270, 2013.

[11] M. Ehrig, A. Koschmider, and A. Oberweis, “Measuring similarity be-
tween semantic business process models,” in Proceedings of the Fourth
Asia-Pacific Conference on Comceptual Modelling, ser. APCCM ’07,
F. R. John and H. Annika, Eds., vol. 67. Ballarat, Australia: Australian
Computer Society, Inc., 2007, p. 71–80.

[12] S. K. Lau, R. Zamani, and W. Susilo, “A semantic web vision for an intel-
ligent community transport service brokering system,” in 2016 IEEE In-
ternational Conference on Intelligent Transportation Engineering (ICITE),
Singapore, 2016, pp. 172–175, doi:10.1109/ICITE.2016.7581328.

[13] D. Chaves-Fraga, P. Colpaert, M. Sadeghi, and M. Comerio, “Editorial
of transport data on the web,” Semantic Web, pp. 1–4, doi:10.3233/SW-
223278.

[14] N. K. Y. Leung, S. K. Lau, and J. Fan, “Enhancing the reusability of inter-
organizational knowledge: An ontology-based collaborative knowledge
management network,” in Proceedings of the 5th International Confer-
ence on Intellectual Capital, Knowledge Management and Organisational
Learning: ICICKM. Academic Conferences Limited, 2008, p. 269,
doi:10.58729/1941-6687.1094.

[15] W.-D. Yang and T. Wang, “The fusion model of intelligent transportation
systems based on the urban traffic ontology,” Physics Procedia, vol. 25, pp.
917–923, 2012, 10.1016/j.phpro.2012.03.178.

[16] N. K. Y. Leung, S. K. Lau, and N. Tsang, “An ontology-based col-
laborative inter-organisational knowledge management network (CIK-
NET),” Journal of Information & Knowledge Management, vol. 12, 2013,
10.1142/S0219649213500056.

[17] T. Sobral, T. Galvão, and J. Borges, “Semantic integration of urban mo-
bility data for supporting visualization,” Transportation research procedia,
vol. 24, pp. 180–188, 2017, 10.1016/j.trpro.2017.05.106.

[18] N. O. Pinciroli Vago, M. Sacaj, M. Sadeghi, S. Kalwar, A. Vogelsang,
and M. G. Rossi, “On the visualization of semantic-based mappings,”
in Proceedings of the 3rd International Workshop Semantics And The
Web For Transport, co-located with Semantics Conference (SEMAN-
TiCS 2021), Online, September 6, 2021, D. Chaves-Fraga, P. Colpaert,
M. Sadeghi, M. Scrocca, and M. Comerio, Eds., vol. 2939. CEUR
Workshop Proceedings, 2021.

[19] T. Rodrigues, P. Rosa, and J. S. Cardoso, “Mapping XML to existing
OWL ontologies,” in Proceedings of the IADIS International Conference
on WWW/Internet, 2006, pp. 72–77.

[20] M. Ferdinand, C. Zirpins, and D. Trastour, “Lifting XML schema to
OWL,” in Web Engineering: 4th International Conference, ICWE 2004,
Munich, Germany, July 26-30, 2004. Proceedings, N. Koch, P. Frater-
nali, and M. Wirsing, Eds., vol. 3140. Springer, 2004, pp. 354–358,
doi:10.1007/978-3-540-27834-4_44.

[21] R. García, F. Perdrix, and R. Gil, “Ontological infrastructure for a semantic
newspaper,” in Semantic Web Annotations for Multimedia Workshop,
SWAMM, 2006.

[22] J. Pennington, R. Socher, and C. D. Manning, “GloVe: Global vectors for
word representation,” in Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar, A. Moschitti, B. Pang, and W. Daelemans, Eds., 2014,
pp. 1532–1543, doi:10.3115/v1/d14-1162.

[23] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee,
and L. Zettlemoyer, “Deep contextualized word representations,” in Pro-
ceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technolo-
gies, NAACL-HLT 2018, New Orleans, Louisiana, USA, June 1-6, 2018,
Volume 1 (Long Papers), M. A. Walker, H. Ji, and A. Stent, Eds., 2018,
pp. 2227–2237, doi.org/10.18653/v1/n18-1202.

[24] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of
deep bidirectional transformers for language understanding,” in Proceed-
ings of the 2019 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies,
NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1
(Long and Short Papers), J. Burstein, C. Doran, and T. Solorio, Eds., 2019,
pp. 4171–4186, doi:10.18653/v1/n19-1423.

[25] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013, doi:10.48550/arXiv.1301.3781.

[26] “Word2Vec_Implementation,” github.com/rahul1728jha/Word2Vec_Imple-
mentation.

[27] “Gensim library,” radimrehurek.com/gensim.
[28] “word2vec tool,” code.google.com/archive/p/word2vec.
[29] “XML schema definition language (XSD),” www.w3.org/TR/xmlsche-

ma11-1.
[30] “Web Ontology Language (OWL),” www.w3.org/OWL.
[31] “Intelligent Transport,” www.intelligenttransport.com/magazine.
[32] “Metro,” www.metro-magazine.com .
[33] E. S. Prassas and R. P. Roess, Engineering Economics and Finance for

Transportation Infrastructure, ser. Springer Tracts on Transportation and
Traffic. Springer, 2013, doi:0.1007/978-3-642-38580-3.

[34] V. Profillidis, Railway management and engineering. Routledge, 2016.
[35] “SMART data repository,” github.com/safia-k/SprintData.
[36] “NeTEx (Network Timetable EXchange) XML schema,” github.com/

NeTEx-CEN/NeTEx.
[37] “FSM – Full Service Model,” tsga.eu/fsm.
[38] “TRIAS,” opentransportdata.swiss/en/cookbook/triprequest.
[39] “Transmodel ontology - organisations,” oeg-upm.github.io/snap-docs/tm-

organisations.owl/documentation/index-en.html.
[40] “CEN european reference data model for public transport information,”

www.transmodel-cen.eu.
[41] “Vdv,” www.vdv.de.

VOLUME x, 2022 15

https://doi.org/10.1002/sys.21325
https://doi.org/10.1145/3555776.3577692
https://doi.org/10.17645/up.v2i2.931
https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2011:0144:FIN:EN:PDF
https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2011:0144:FIN:EN:PDF
http://www.shift2rail.org/
https://doi.org/10.1007/978-3-030-62466-8_26
https://doi.org/10.18293/SEKE2021-161
https://doi.org/10.1109/ICITE.2016.7581328
https://doi.org/10.3233/SW-223278
https://doi.org/10.3233/SW-223278
https://doi.org/10.58729/1941-6687.1094
https://doi.org/10.1016/j.phpro.2012.03.178
https://doi.org/10.1142/S0219649213500056
https://doi.org/10.1016/j.trpro.2017.05.106
https://doi.org/10.1007/978-3-540-27834-4_44
https://doi.org/10.3115/v1/d14-1162
https://doi.org/10.18653/v1/n18-1202
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.48550/arXiv.1301.3781
https://github.com/rahul1728jha/Word2Vec_Implementation
https://github.com/rahul1728jha/Word2Vec_Implementation
https://radimrehurek.com/gensim/
https://code.google.com/archive/p/word2vec/
https://www.w3.org/TR/xmlschema11-1/
https://www.w3.org/TR/xmlschema11-1/
https://www.w3.org/OWL//
https://www.intelligenttransport.com/magazine/
https://www.metro-magazine.com
https://doi.org/10.1007/978-3-642-38580-3
https://github.com/safia-k/SprintData
https://github.com/NeTEx-CEN/NeTEx
https://github.com/NeTEx-CEN/NeTEx
https://tsga.eu/fsm
https://opentransportdata.swiss/en/cookbook/triprequest/
https://oeg-upm.github.io/snap-docs/tm-organisations.owl/documentation/index-en.html
https://oeg-upm.github.io/snap-docs/tm-organisations.owl/documentation/index-en.html
https://www.transmodel-cen.eu/
https://www.vdv.de/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

SAFIA KALWAR is an PhD student in Computer
Science at Politecnico di Milano. Her main re-
search interests are semantic web, machine learn-
ing and security of Big Data. Contact her at
safia.kalwar@polimi.it

MATTEO ROSSI is an associate professor at
Politecnico di Milano. His research interests are
in formal methods for safety-critical and real-time
systems, architectures for real-time distributed
systems, and transportation systems both from the
point of view of their design, and of their applica-
tion in urban mobility scenarios. Contact him at:
matteo.rossi@polimi.it.

MERSEDEH SADEGHI obtained her Ph.D. in
Computer Science at Politecnico di Milano and
currently, she is a postdoctoral researcher at the
University of Cologne. Her main research inter-
est includes software engineering, distributed sys-
tems, semantic-aware systems, and the explain-
ability of context-aware pervasive systems. Con-
tact her at: sadeghi@cs.uni-koeln.de

16 VOLUME x, 2022

	Introduction
	Background and Related Works
	Related Works
	Background

	Methodology
	Linguistic Mapping Phase
	Structural Mapping Phase

	Creating Domain-Specific Models
	Creating the Input dataset
	Training the Model

	Validation
	Selection of the Data Specifications
	Validation Methodology
	Validation Results
	Discussion

	Conclusions
	REFERENCES
	Safia Kalwar
	Matteo Rossi
	Mersedeh Sadeghi

