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ABSTRACT The appearance of new single-phase intensive and often coincident loads, such as the electric
vehicle private charging stations can affect the operation of low voltage (LV) distribution networks. Unbal-
ances among the three-phase loading are extremely common, even if the end-users of a given LV network have
similar behaviors. Due to the coincidence of such loads, excessive voltage drops may often appear, altering
the quality of supply voltage provided to the LV end-users. This work evaluates the effects of residential and
other charging stations in parking lots of shopping malls or workplaces on the quality of supply voltage of
LV grids. Then, a decentralized approach is proposed, based on the multi-agent system, which allows the
different flexibility resources available on the grid to act together to improve the network quality. The agents
cooperate to regulate the network nodal voltage, taking into account the characteristics of the resources they
are controlling and the needs of their owners. A case study derived from a portion of the Italian distribution
system demonstrates the validity of the approach in solving the network operation criticalities.

INDEX TERMS Distribution networks, electric vehicles, energy management system, multi-agent system,
voltage quality.

I. INTRODUCTION

THE increasing concerns on climate change and decar-
bonization have been pushing for a significant paradigm

variation in almost all the fields related to electrical energy,
i.e., not only for what pertains to production but also for its
usages. This process is being translated, among other actions,
into the introduction and consequent widespread installation
of renewable energy sources (RESs) and a more aware and
efficient use of electrical energy. In the wake of this rev-
olution, the transportation sector is one field that has been
affected the most, especially from the end-user viewpoint.
Electric vehicles (EVs) are gaining an ever-increasing role in
the energy transition. The transport sector is responsible for
high shares of global CO2 emissions. The EU is promoting
several programs (e.g., the ‘‘Fit for 55’’ package) to reduce

the use of internal combustion vehicles in favor of EVs.
In EU 27, in 2030, it is expected that electricity demand
for transport will increase by 11% from 2017 [1]. Charg-
ing infrastructures, spread on the distribution network both
at MV (through fast charging infrastructures) and LV level
(slow charging stations), will be fundamental for favoring
EV deployment. Even though they have multiple beneficial
effects [2], replacing traditional internal combustion vehicles
with EVs comes at a cost, at least for what concerns their
impact on the power distribution network.

In the UK, the British Regulator OFGEM estimated that
by 2050 EVs could determine an increase of 35% of the
peak demand if the charging process is not smart (i.e., with-
out considering network and components constraints) [3].
Similarly, an increase of about 10% of the total electricity
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load is expected in California by 2030 [4]. Such an increase
will be mostly due to residential charging since it will be
the most widespread type of recharge, being the cheapest
option for private EVs [5]. The impact of uncoordinated EVs
is not solely associated with the growth in energy demand
and peak power. Indeed, additional challenges arise because
of the increasing variability of power withdrawal caused by
the rising presence of distributed generation (e.g., rooftop
solar panels) and new electric loads (e.g., heat pumps, electric
stoves as greener replacements of traditional boilers and gas
stoves) and consequent relevant impact on power quality [6],
[7]. However, by adopting of proper coordination devices, the
EVs charging could become an opportunity for the energy
system [2], [8].

For these reasons, promoting a smart and cost-efficient
charging process is pivotal to support the electrification of the
private transportation sector, as foreseen by the most recent
European environmental targets.

For residential charging stations, the Italian Regulatory
Authority (ARERA) offered to EV owners the possibility to
increase, with no additional costs, their available capacity
during holidays and weekday night hours, as detailed in
Section III [9]. However, publicly available charging infras-
tructures or charging stations at work are fundamental for EV
drivers without a driveway or garage at home, thus encourag-
ing EVs to take up.

Unfortunately, despite the effort made by Regulators to
increase the spreading of residential EV charging, the low
voltage (LV) distribution grid is often not ready to accom-
modate many EVs under charge. This condition can become
critical also because the users often have similar habits, then
will probably tend to charge their EVs at the same hours of
the day (e.g., in the evening).

Such conditions may lead to exceeding the operational
limits of the distribution grids, overcoming the maximum
capacity of conductors and transformers, or worsening the
voltage profiles along lines. In addition, since residential
or small office charging is performed through single-phase
charging stations, the three-phase voltage can be affected by
unbalances. Also, in a shoppingmall parking lot, the charging
stations available to customers and workers could not be
balanced among the three-phases due to their use that depends
on the coincidence of the occupancy of the single station.

Regarding supply voltage unbalance, in particular, techni-
cal standard EN 50160 [10] prescribes that, under normal
operating conditions, the 10 min mean of the r.m.s. value
of the negative sequence component (fundamental) of the
supply voltage shall be within the range of 0–2% of the
positive sequence component. The general prescription of
the technical standard imposes that such conditions must be
complied with 95 % of the time. However, in some countries
(e.g., Norway [11]), such limits are imposed 100% of the time
at all supply terminals.

In this work, a methodology is proposed to evaluate the
effects of private charging on the voltage quality of LV grids,
specifically concerning voltage drops and unbalance of the

grid phase voltages. Moreover, the possible countermeasures
that the distribution system operator (DSO) could activate
to limit grid criticalities (i.e., voltage regulation issues, line
congestions, voltage unbalances, etc.) are identified.

The remainder of this paper is structured as follows.
Section II proposes a brief review of the recent literature on
the field. In Section III, the regulatory framework is analyzed.
Then, Section IV presents the mathematical model adopted to
represent EV residential charging and its impact on the LV
network. Then, in Section V, the approach adopted, based
on the multi-agent system (MAS), able to coordinate the
different flexibility resources available on the distribution
network, is depicted. The analyzed case study and the relevant
numerical results obtained are reported in Section VI, and,
according to them, conclusions are drawn in Section VII.

II. RELATED WORKS
The exploitation of distributed energy resource (DER) flex-
ibility to supply services to the MV and LV distribution
grid has recently shown increasing interest in the scientific
community [12]. The modeled resources, the scheduler archi-
tecture, and the optimization strategies are topics widely
debated.

In the literature, the scheduling architectures useful for
managing DERs, are usually classified into two groups,
according to the optimization models they are based on:
i) centralized or ii) decentralized. In the former cate-
gory, the Distributed Energy Resources Management System
(DERMS) decides on the operating points of the controlled
resources, for voltage regulation and power congestion relief.
The DERMS collects all relevant information about the units
and activates the regulating resources. On the other hand,
in the decentralized approach, the resources define their
strategies, considering internal and external limits. In such
an approach, each resource is equipped with a control sys-
tem, which dispatches the power exchanges to pursue a
local individual goal (e.g., energy cost minimization) [13].
The timescale, type, number, and location of the involved
resources influence the choice between the two strategies.
In a centralized logic, better coordination of the resources
is achieved since the architecture gathers all the system
data. However, complex communication systems and pri-
vacy issues limit the application of this control logic in a
framework characterized by different behaviors and needs
like those in a residential framework. On the other hand, the
decentralized system is characterized by reduced communi-
cation between the resource controllers, thus limiting privacy
problems. Furthermore, this class of architectures is more
suitable for a large aggregate of resources, characterized by
different technical limits and behavior, since they offer great
scalability, reliability, and resiliency [14], [15].

In [16], a distributed mixed integer linear programming
model is proposed tomanage the power exchanges of residen-
tial users. The proposed approach limits the private informa-
tion shared among the participants. Despite the novelties of
this work, the authors do not model either the presence of the
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electric vehicle or the possible criticalities on the distribution
grid.

In [17], a transactive control method is proposed to sched-
ule a fleet of private EV charging, limiting grid conges-
tions and maintaining adequate voltage profiles. However,
simplified assumptions are introduced to simulate EV usage
and the corresponding charging requests. On the contrary,
in this paper, EV usage and charging demand are modeled
to accurately represent the availability of flexible resources
and their impact on the network. In [18], a distributed control
algorithm is proposed to optimally schedule EV charging
requests to limit the grid reinforcement investments. The
authors model two different charging modes: commercial and
residential. However, the detailed evaluation of the distribu-
tion grid topology is not considered.

The study in [19] proposes a distributed optimization
method to coordinate several demand response users to pro-
vide frequency control services without introducing conges-
tions on the distribution grid. Although the analyzed case
study involves residential users, EV charging requests are not
simulated.

In [20], the authors propose a peer-to-peer energy trading
scheme between different microgrids, in which renewable
sources, conventional generation, and non-flexible loads are
connected. The distribution network security is guaranteed
by adopting an optimal ac power flow approach, while the
energy trading process is formulated through a Stackelberg
game model. Also, EV impacts on the grid are not examined.

A distributed optimization method, based on the alternat-
ing directionmethod ofmultipliers, is used in [21] to optimize
EV charging while taking into account the maximum power
constraints of the grid. The authors proposed a statistical
approach to simulate EV charging requests. However, the
presence of other DERs is neglected.

From the literature review, it emerges that most of the
works do not accurately simulate EV usage (e.g., [16],
[17], [19]). Moreover, only one type of EV charging mode
is usually modeled. Finally, the impacts of the DERs on
the distribution grid are evaluated by adopting a simpli-
fied approach based on a single-phase equivalent circuit
(e.g., [17], [19], [20]).

On the contrary, in this work, a detailed statistical approach
is adopted to simulate several charging modes and charging
patterns of EV stations located in residential and private
non-residential premises (e.g., offices, shopping mall park-
ing lots) derived from measurement data. Driving habits for
each of these categories and the technical characteristics of
commercially available EV models are used for scheduling
the charging patterns. Furthermore, to represent the unbal-
anced nature of the LV system, the distribution network feed-
ing the charging stations is accurately modeled through an
unbalanced three-phase four-wire system. The impact of EV
charging on the network is then evaluated by assessing the
voltage profiles and the voltage unbalances through unbal-
anced load flow calculations. Finally, since it clearly emerges
that uncontrolled charging worsens the quality of supply, a

decentralized multi-agent system for DER control proposed
by the Authors in previous works [22] is used to schedule the
charging patterns of EV stations with the aim of minimizing
their negative impact on the grid operation. The validity of
the proposed approach is tested on a three-phase four-wire
distribution system derived from a portion of the Italian LV
distribution system.

The main contributions of this article to the current state-
of-the-art can be summarized as follows:

• The reproduction of a realistic current and future urban
scenario of EV diffusion by modeling residential and
non-residential charging stations.

• The analysis of the regulatory frameworks with particu-
lar referencce to the Italian scenario where the Regulator
recently promoted an initiative that supports the electri-
fication of the private transportation sector.

• The evaluation of the impact of the private, residential,
and non-residential EV charging stations in a realistic
LV network (four-wire system), also in the light of the
Italian Regulatory initiative.

• Proving the need of LV network management systems to
coordinate the flexibility of the DERs connected to the
network to solve the upcoming network operation issues
and improve the system supply voltage quality.

III. REGULATORY FRAMEWORK
The large diffusion foreseen for EVs and charging points
underlines how this new sector is critical and requires a
regulatory framework to cover mobility and electricity sec-
tor needs. The main problem in this context is caused by
the many uncertainties about the sector and technology
evolution (e.g., battery degradation, standards for charging
equipment and communication protocols, users’ participa-
tion, etc.). Thus, strategies, plans, and measures should be
flexible enough to follow such uncertain development. From
the mobility point of view, in order to foster the use of EVs
also for those that cannot charge their vehicles at home, it is
pivotal to the presence and availability of public charge points
(e.g., installed at motorway stations and on streets), that
should be evenly distributed across the territory. Also, using
and paying for charging should be as simple as for traditional
oil-based fuels. EV owners should be able to access easy and
affordable charging services.

In the residential context, EV owners need to be supported
during the phases of choosing and purchasing the most suit-
able home charging equipment and tariffs.

The experimental initiative promoted by ARERA is mov-
ing in this direction [9]. The increase of the available power
capacity, without added costs during the night hours and
on holidays, may represent an attractive solution for drivers
that have to choose the EV model. Indeed, in Italy, the vast
majority of residential electricity contracts have a maximum
power demand which ranges from 3 to 4.5 kW, limiting the
possibility of charging the EV at home. In this experimental
phase, this limit is raisedwithout extra charges to 6 kWduring
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holidays and between 11:00 PM and 7:00 AM on working days,
as shown in Fig. 1. This experimental phase is designed to
make EV charging cheaper and more efficient for residential
users. In addition, from the system point of view, shifting the
charging loads to off-peak hours might help the dispatching
problems that may arise during the night (e.g., RES power
curtailment during windy nights) and do not further increase
the ramp of the evening demand.

FIGURE 1. Example of the increase of the available peak power
in the Italian context.

Furthermore, the charging equipment should communicate
with another third party to enable the implementation of
innovative solutions, such as smart charging. Smart charg-
ing may be useful both for the network (e.g., for avoiding
criticalities) and for the customers (e.g., for saving money).
This aspect is fundamental since EV charging if properly
managed, could represent the largest source of flexibility
demand by 2050 due to the possibility of modulating (or
postponing) the power drawn from the network. EVs can be
considered small capacity service providers [23]. Thus, their
aggregation is compulsory in order to overcome theminimum
bid size limit, particularly at TSO-level markets, and reduce
the verification process compared to one asset of a larger size.
The aggregation of different vehicles with different charging
patterns could provide local and global ancillary services.

Whatever the charging type is, the standardization of smart
interfaces and advanced smart metering infrastructures capa-
ble of supporting network operation must drive to accessible
and interoperable systems (e.g., usable by different drivers
and cars). In this context, ARERA mandated the national
standardization body to devise a technical standard ensuring
interoperability at interfaces. In [24], the role of the charging
station controller (CSC) is defined based on second genera-
tion smart meters. The CSC is requested to:

• Collect data (i.e., the power drawn from the charging
infrastructure and exchanged with the grid) in real time.

• Optimize the capacity needed for charging EVs, depend-
ing on the absorption of other loads.

• Exploit on-site power production.
• Exchange data with a remote subject, namely the balanc-
ing service provider (BSP), for offering services through
the flexibility service market.

• Provide grid services for electric system security based
on the availability of local measurement of the grid
frequency.

IV. MODELING OF THE EV USAGE
To accurately compute the impacts of EV charging requests
on the LV grid and the advantages of exploiting their flexibil-
ity, it is essential to realistically simulate the vehicle usage.

In this work, a statistical model based on real data is
proposed. The schematic representation of the approach is
shown in Fig. 2. It is designed to accurately simulate three cat-
egories of trips and the corresponding charging requests [25].
In particular, the most common charging modes are modeled:
i) residential, ii) workplace/offices, and iii) shopping mall
charging [26]. Distance traveled and arrival and departure
hours are associated with these three charging modes and the
corresponding trip category.

As reported in Fig. 2, firstly, the procedure imports raw
data on driving habits for these three categories and the tech-
nical characteristics of commercially available EV models.
Then, an iterative process is executed (see the blue box in
Fig. 2) to simulate the behavior of each vehicle in the EV
fleet (∀ev ∈ NFleet ,). The charging mode (i.e., residential,
workplace, or shopping mall charging) and the EV model are
selected for each vehicle. In particular, the best-selling EVs
currently available in the Italian market and the correspond-
ing technical characteristics are considered.

The simulated time horizon is subdivided into working
days and holidays so to capture the variability of the vehi-
cle’s usage on different days. The probability that a specific
charging mode occurs also depends on the day simulated. For
example, during holidays, workplace charging requests are
neglected, and only residential and shopping mall charges are
considered.

Once the vehicle charging mode is selected, the departure
time (tevdep), the arrival time (tevarr ) and the distance covered
during the travel (devdist ) are extracted from a probability den-
sity function (PDF) associated with the corresponding travel
category.

Since these parameters (i.e., tevdep, t
rv
arr and d

ev
dist ) are obtained

from independent PDFs, it is necessary to check the coher-
ence of these values (see green box in Fig. 2). The algorithm
verifies if tevdep > tevarr and then checks if the average speed
during the travel (vev) is feasible. Incoherent behaviors are
discarded.

Finally, assuming a constant vehicle consumption per kilo-
meter (eevcns), specific for each EV model, it is possible to
evaluate the SoC when the vehicle is connected (SoCev

arr ):

SoCev
arr = SoCev

dep −
devdiste

ev
cns

Eevcap
(1)

where, SoCev,day
dep is the EV SoC at the departure from the

previous charging stop, while Eevcap is the battery capacity on
the ev-th vehicle.

Therefore, the proposed approach models the charging
requests by simulating the actual EV usage. This approach is
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FIGURE 2. Schematic representation of the approach adopted to simulate EV charging requests.

used as input of the model described in the following Section
to estimate the impact of e-mobility on LV grid operation and
to quantify the flexibility that residential EV charging could
provide to solve the issues on the grid.

V. MODELING OF THE EV MANAGEMENT SYSTEM
MAS represents a suitable technology for the management
of a multitude of resources dispersed in an environment
with different operating modes that have to act together to
achieve a global goal thanks to agents’ reactivity, proac-
tiveness, and social ability, i.e., their capacity to react to
environmental changes [27]. For this reason, this paper adopts
a MAS approach for the optimal coordination of charging
stations. The agents cooperate for the regulation of the net-
work nodal voltage, taking into account the characteristics
of the resources they are controlling and the needs of DER
owners. MAS hierarchy is characterized by a master agent
(MA) in charge of supervising the actions of DER agents,
which, in turn, control the resources by modifying their
expected active power profile (i.e., consumption, production,
charging/discharging) and, in some cases, also their expected
reactive power profile.

A. MASTER AGENT
The MA acts as an aggregator that connects the agents to the
DSO and vice versa. The MA broadcasts the data necessary
to perform the local optimizations (i.e., electrical quantities,
the energy price, etc.), gathers the results, and requires new
optimizations until an optimal stable solution is reached,
without imposing any setpoint.

B. DER AGENTS
DER agents control the active power exchange of different
types of DERs: Demand Response (DR), distributed genera-
tion (DG), EV, and distributed energy storage (DES). DG and
DES agents can also control the reactive power exchange,
contributing to the volt/var regulation, according to the Euro-
pean technical rules for DG connection in LV networks [28].

DER agent strategy consists of the minimization of the
objective function (OF), described in (2), subject to technical
constraints and DER owners’ needs [22]:

min Ji (Pi,P−i) =

T−1∑
t=0

{p (t,Pt) · P i (t)

+ δ · [P i (t)− avg (Pt)]2}, (2)

where p (t,Pt) = f
(
D(t)+

∑N
i=1 Pi(t)

Ptr

)
is a virtual cost func-

tion; Pt (t) =
∑N

i=1 Pi(t)is the sum of the power contributions
Pi(t) of the i-th (i = 1,. . . , N ) agent; N is the number of
the local agents; D (t) is the contribution to the forecasted
demand at the MV/LV transformer of the customers not
participating in the network operation at time t; Ptr is the
nominal power of the MV/LV transformer; avg(Pt ) is the
average power controlled by the agents, and δ is a tracking
parameter with non-negative constant value crucial for Nash’s
equilibrium, which links the individual behavior of the agent
to the social behavior.

The first term of the OF is the virtual cost of purchasing
energy from the system. This cost increases during peak
hours. The goal of the second term in (2) is to avoid the
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risk that by moving far from the peak, all agents will create
a new undesired peak in another hour. Indeed, each agent
tries to maximize its benefit, but the deviation from the mean
behavior is a cost that guides the global optimization to the
global (system) optimum.

The local minimization is subject to network technical con-
straints on nodal voltage, cable thermal limit, and DERs tech-
nical limits (e.g., battery capacity, PV capacity, inverter capa-
bility curve). DER owners’ needs (e.g., amount of curtailable
power, final SoC of the battery, end of charging session) are
additional constraints to the problem. When elaborating the
optimal charging strategy, the EV agent takes into account
the technical constraints of the charging station (maximum
deliverable power, charging and discharging efficiency, etc.)
and the characteristics of the vehicle battery (e.g., power and
energy). The user needs (initial and desired charging state at
the end of charging, time of the end of charging), as shown in
equations (3)–(7) are also inputs of the optimization:

SOC i(T − 1) = α · SOCmax (3)

1t · Pi (t) ·ηch ≤ SOCmax − SOCi (t − 1) (4)

SOCi (t) = SOC0 +

t∑
t ′=0

Pi(t ′) ·1t (5)

0 ≤ Pi(t) ≤ Pplug (6)

SOC i (t) ≤ SOC i,max = γmax,i · Cbat (7)

Pi (t) is the EV battery charging capacity in the time interval
1t , SOCi (t) is the state of charge at instant t , T is the number
of intervals in the considered period (e.g., one day), ηch is the
charging efficiency of the battery, SOC i,max is the allowable
charging limit (can be written as a function of the battery
capacity Cbat [kWh], as in (7)), α is a coefficient between
0 and 1 that reflects the user needs as it indicates the desired
state of charge at the end of the considered period (t = T−1),
and Pplug is the maximum power of the charging system.
Eq. (7) represents the technical constraints for preventing

charging beyond the allowed technical limits and avoiding the
deterioration of the battery (through the correction coefficient
γmax,i). In addition, the EV agent can also work in vehicle-to-
grid mode, in which the EV behaves as a distributed storage
system, charging itself, for example, during the hours of max-
imum production from renewable energy sources and then
discharging, thus providing services for grid regulation [29].

C. OPTIMIZATION PROCEDURE
As stated before, the MAS procedure is an iterative optimiza-
tion process for the coordination of DERs to obtain a global
optimum. The procedure starts when theMA (green blocks in
Fig. 3) that receives from the DSO the scheduled power and
voltage profile curves asks the agents to optimize their energy
profile on the basis of a virtual price. Each agent (blue blocks
in Fig. 3) performs the mono-dimensional optimization pro-
cess in (2), subject to the given constraints. The agent’s opti-
mal pattern is returned to the MA, which updates the requests
after all agents have completed the local optimization. If the

FIGURE 3. Iteration between MA and agents.

voltage limits are violated or if the convergence criterium
is not met, the MA sends again to the agents the relevant
voltage and the necessary data to start a new optimization.
The convergence of the procedure is reached if (i) a preset
maximum number of iterations reached (k = kmax), or (ii)
the difference between the results of subsequent iterations is
smaller than a predefined threshold ψ , under (8).

max|Pki − Pk−1
i | ≤ ψ (8)

VI. CASE STUDY AND NUMERICAL RESULTS
A. THE EV MODEL
The approach described in Section IV is designed to simu-
late the charging requests of a fleet of EVs. Thanks to the
decentralized scheduler proposed in Section V, it is used to
evaluate the impacts on the LV network and the flexibility
these resources can provide.

The technical characteristics and the market share of each
model are defined considering the best-selling EV models
in Italy in winter 2021–2022 [30]. For each model, the
corresponding market share is assumed to be equal to the
probability that the model is present in the simulated fleet.
Data adopted for this purpose are shown in Table 1.

To accurately model the residential charging requests, the
statistics collected from a large survey conducted in Italy have
been considered [31]. The raw data have been gathered and
preprocessed, obtaining the two PDFs displayed in Fig. 4.
As it can be seen, almost 60% of the simulated EVs leave the
residential charging stations (CSs) by 7 AM. For what concerns
the connection time (blue bars in Fig. 4), data show a higher
dispersion around the average value, which is 4:30 PM, and
90% of the EVs are connected before 8 PM. As a consequence,
on average, the EVs are connected to the residential CS for
15 hours. During this period, the proposed optimal scheduler
can exploit EV charging flexibility to solve grid criticalities.
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TABLE 1. EV characteristics and corresponding market share.

FIGURE 4. Discrete PDFs of the arrival (in blue) and departure (in
orange) times at the residential charging stations.

FIGURE 5. PDF of the arrival time at the shopping mall parking.

The simulation commercial and workplace charging
request is based on data gathered through Google Maps. The
collected data refer to the number of vehicles observed in
two parking lots in Milan (Italy) near a shopping mall and
a workplace. The arrival and departure time statistics are
derived from the collected data.

Fig. 5 shows the PDF of the arrival time at the shopping
mall parking, while the duration of the stop is described by a
normal distribution function having µ = 1 h and σ = 0.5.

Fig. 6 shows the PDFs of arrival (in blue) and departure
(in orange) times from the workplace parking. In this case,
almost 50% of the EVs are connected to the charging stations
between 7:30 AM and 9:00 AM, introducing a steep variation in
the power absorption. This load coincidence could introduce
further operation network criticalities.

FIGURE 6. PDFs of arrival (in blue) and departure (in orange)
times at the workplace parking.

Finally, the statistics on the daily distance covered by users
are collected from [32]. As it is possible to observe from
Fig. 7, during holidays, the probability of covering longer
trips is higher [33]. For example, 75% of EVs travel for
less than 35 km during working days, while the percentage
decreases to 65% during holidays. It is worth noting that
the proposed tool models trips completed on the same day
(i.e., the number of EVs in the fleet remains constant during
the simulated period). For this reason, the maximum daily
distance is assumed equal 150 km/day.

B. DISTRIBUTION NETWORK MODEL
The proposedmodel of charging requests from the EV drivers
has been included in a test network derived from a portion
of the Italian LV distribution system, shown in Fig. 8. It is
a typical suburban network supplied by a secondary sub-
station equipped with a 400 kVA MV/LV transformer. Four
feeders deliver energy to different kinds of customers of the
network, residential and non-residential, with three-phases
and single-phase connections. Real daily profiles of con-
sumption derived from a measurement campaign are used for
simulating the end users’ behavior for one month [34]. The
length of the feeders varies from a few meters (feeder F_3)
to approximately 1 km (feeder F_2). Some PV generators are
included in the test LV network.

In the simulated current scenario, all the 17 residential cus-
tomers (mainly households) of the test network have one EV
each, and consequently, a residential charging station appears
in the corresponding node of connection. In a future year (i.e.,
2030), doubling the number of residential charging stations
and a few charging columns for each non-residential build-
ing, private but publicly available (i.e., offices or shopping
malls) have been supposed, as represented in Fig. 8. Further-
more, the loads other than EVs increase their consumption
with variable growth rates (i.e., 0.9 %/year and 0.6 %/year
for residential and non-residential customers, respectively),
according to the forecast proposed in [1].

In the model, it is supposed that the recharging stations
are included in the same point of delivery for the existing
customer with no extra meter installed either in the commer-
cial center office or in the household facilities. This assump-
tion limits the maximum number of recharging columns that
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FIGURE 7. Distance covered by the vehicle during weekdays
(above) and holidays (below).

TABLE 2. Simulation parameters.

can be hypothesized for each customer and the maximum
available power for charging that depends on the hourly
consumption of the loads other than EVs. In particular, the
nominal power of the charging station, assumed in the paper,
is equal to 6 kW, and the number of charging stations for each
customer is detailed in Fig. 8.

In the proposed case study, the flexibility of the work-
place and shopping mall charging stations is not exploited
by the MAS. Therefore, the charging requests of these two
modes are considered non-flexible load, and the correspond-
ing power absorptions are calculated by assuming that all
vehicles start charging at full power as soon as they are
connected to the charging station.

C. RESULTS AND DISCUSSION
Regarding the EV charging request model, for each consid-
ered year four scenarios, plus one variant of one of them,
with different characteristics have been simulated through
unbalanced load flow calculations by using OpenDSS for
three-phase four-wire distribution systems to highlight the
relevant effect on the network operation and the benefits of
MAS architecture. Table 2 reports the parameter used for the
simulations.

In particular, the studied cases for both the considered
current and the future year are:

• Case 1: the EVs start to recharge right after they arrive
home. The charging stations use the maximum available
power allowed by their contract, calculated hour by hour,
as the difference between the peak power (i.e., 110 % of
the rating power) and the hourly consumption (i.e., the
power requested by household appliances). The maxi-
mum power is constant over time.

• Case 2: the MAS coordinates the agents for solving the
possible operation issues and, at the same time, guaran-
tees the EV recharging by considering the arrival and
departure hours used in Case 1.

• Case 3: as in Case 1 but with variable maximum power
for some users. It is, thus, supposed that the customers
with 3 or 4.5 kW contracts exploit the increase of their
peak power, as regulated by ARERA, in the evening and
night hours of working days and during holidays.

• Case 3b: as in Case 3, but differently than Case 3, the
customers with the increase of their peak power start the
EV charging at 11:00 PM.

• Case 4: the MAS coordinates the agents by exploiting
the power peak increase of Case 3.

The voltage drop limit is assumed to be –10% of the
nominal value Vn for the MV and LV distribution systems.
Nevertheless, if the DSO decides to equally share the allow-
able voltage reduction between LV and MV networks (i.e.,
–5% Vnfor each voltage level), undervoltages (UVs) below
0.95 p.u. are excessive for the LV grid. Table 3 reports
the resulting number of violations in the network in non-
optimized cases. As expected, UVs that exceed –5% Vn and
unbalances with Vrms_n/Vrms_p ratio, i.e., the ratio between
the negative sequence component of the supply r.m.s. voltage
and the positive sequence component of the supply r.m.s.
voltage, greater than a 2% increase in future year cases.
But the most interesting result is that by shifting the charge
starting hour of the small residential customers to 11:00 PM,
the number of violations increases by 25% in the current
year (i.e., 215 vs. 172) and about 40% in the future year
(i.e., 1170 vs. 836). The artificially created coincident peak
at 11:00 PM causes network operation issues during hours that
are normally non-critical in distribution systems.

In Case 1, in the current year, despite Vrms_n does not
exceed 2% of Vrms_p during the simulated period at all
terminals, the EV charging profiles cause voltage drops in
some nodes in several critical hours. Fig. 9 shows the phase
voltage profiles of feeder F_2 on a Sunday of the considered
period: some customers connected to phase 1 suffer exces-
sive voltage drops, being 1.43 % of the maximum value of
Vrms_n/Vrms_p on this day. The MAS solves the operation
issues by rescheduling the EV charging requests (Case 2).
The voltage profiles comply with the technical constraints
without resorting to any other flexibility services from the
other network resources. In Fig. 10, the improved phase
voltage profiles resulting from the optimization also shows
that the unbalancing is reduced (i.e., the maximum value of
Vrms_n/Vrms_p is 0.27 % on the same day of Fig. 9).

The increase of peak power allowed by the Italian Reg-
ulator in the evening and holidays in Case 3 produces more
severe voltage drops. Indeed, the maximum ratio between the
negative and the positive phase sequences of the r.m.s. voltage
overcomes the limit of 2 % in some time intervals. Fig. 11
shows the phase voltage profiles of the feeder F_2 of the test
network by considering the EV charging schedules of Case 3.
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FIGURE 8. The LV test network.

TABLE 3. Voltage violations.

It is worth noticing that on Sunday, the peak power increase is
allowable all the time, and the most critical hour is the one at
which most EV drivers get home and start charging their EVs.
The unbalancing also worsens, being 2.40% of the maximum
ratio Vrms_n/Vrms_p.
Case 3b worsens the network condition but shifts the criti-

cal hour to 11:00 PM. Fig. 12 shows the phase voltage profiles
of the feeder F_2 on the same day. The maximum voltage
drop is more significant (i.e., 0.898 p.u.) and overcomes the
total allowable limit for the whole MV and LV distribution
system (i.e., –10% Vn).
Again, the MAS used in Case 4 solves the technical con-

straint violations and significantly improves the unbalancing,
ensuring compliance with the limit at all terminals 100%
of the time (max ratio Vrms_n/Vrms_p = 0.27%). Despite
the agents of the MAS having a greater degree of freedom,
due to the increase of available power for recharging, the

FIGURE 9. Case 1: voltage profile of the three phases of the
feeder F_2 in one critical hour (5:00 PM on one Sunday of the
considered month) – current year.

resulting voltage profile of feeder F_2 in Case 4 is the same
as in Case 2.

Fig. 13 shows the comparison of the recharging profiles
of the EV of the 3 kW-customer connected to phase 1 of the
node N_457 of the test network, placed approximately 0.6 km
from the secondary substation, on the same day. The EV
arrives home at 5:00 PM and departs at 8:00 AM the following
day. In Case 1 and Case 3, the recharging starts immediately
when the EV arrives home. In Case 3, the allowed peak
increase reduces the recharge duration to three hours only.
Such uncontrolled charging profiles provoke the excessive
voltage drop at the node of connection (Fig. 9 and Fig. 11).

VOLUME 10, 2023 359



FIGURE 10. Case 2: improved voltage profile of the three phases
of the feeder F_2 in one critical hour (5:00 PM on one Sunday of
the considered month) - current year.

FIGURE 11. Case 3: voltage profile of the three phases of the
feeder F_2 in one critical hour (5:00 PM on one Sunday of the
considered month) - current year.

FIGURE 12. Case 3b: voltage profile of the three phases of the
feeder F_2 in the new starting charging hour (11:00 PM on one
Sunday of the considered month) - current year.

MAS (Case 2 and Case 4) delays the recharging profile to
less critical hours and solves the voltage constraint violations
(Fig. 13). It is important to observe that the recharging power
in the same hours of the optimized cases and the Case 3b are
very different. Less exploitation of the available capacity by
the MAS improves the voltage profiles.

In the future year, when the residential EVs have doubled,
the operation of the grid is expected to be more critical.
In Fig. 14 the comparison of the EV recharging profile is
made for a working day of the considered future year. The
represented charging profile refers to the same residential
customer in Fig. 13. The arrival time of the EVs is 6:00 PM, and
the total energy absorbed in the day for the future year is about

FIGURE 13. EV recharging profile comparison – holiday, current
year.

FIGURE 14. EV recharging profile comparison – working day,
future year.

21.6 kWh. The change of peak power at 11:00 PM quickens the
charging duration in Case 3 and Case 3b (i.e., Case 1 charging
lasts 8 hours, Case 3 charging lasts 7 hours, and Case 3b
charging lasts only 4 hours). Nevertheless, such an exploita-
tion of the increased peak power raises critical issues in the
grid operation (Table 3). MAS delays the start of charging
by one hour (i.e., 7:00 PM) and maintains lower absorption
than the non-optimized cases. With optimal scheduling, the
network operation issues disappear.

VII. CONCLUSION
The electrification of the final energy uses, including the
transport sector is a necessity and a significant challenge
for the future of electrical distribution networks. The anal-
yses carried out in the paper highlighted how the increasing
adoption of residential charging, if not properly coordinated,
could significantly affect the quality of supply voltage on
LV networks, worsening both voltage drops and voltage
unbalance. Such a condition is even exacerbated in future
scenarios. Furthermore, the shifting of coincident loads in
off-peak hours, as promoted for supporting the residential EV
diffusion, causes critical operation issues that can be solved
only with intelligent scheduling of the EV charging. Energy
management system architectures, such as the proposed one,
based on a multi-agent system technology, can effectively
solve such critical network operation issues. In addition, new
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tools able to coordinate EV charging with the other flexibility
resources available on distribution networks could be even
more beneficial in opening the ancillary services market to
aggregators. In this scenario, by using the regulation capa-
bilities of residential charging stations, transmission and dis-
tribution system operators could collect new control services
aimed at improving power system reliability and efficiency
with little incremental costs.

REFERENCES
[1] Eurelectric, Monitor Deloitte. Connecting the Dots: Distribution Grid

Investment to Power the Energy Transition. Accessed: Jan. 2021.
[Online]. Available: https://www2.deloitte.com/content/dam/Deloitte/ch/
Documents/energy-resources/deloitte-ch-en-eurelectric-connecting-the-
dots-study.pdf

[2] F. Pilo et al., ‘‘Impact of e-mobility participation in the ancillary service
market on the operation of high-density urban low voltage distribution
networks,’’ in Proc. AEIT Int. Conf. Elect. Electron. Technol. Automot.
(AEIT AUTOMOTIVE), Nov. 2021, pp. 1–6.

[3] Ofgem. (2021).Enabling the Transition to Electric Vehicles: The Regulator
Priorities for a Green and Fair Future. [Online]. Available: https://www.
ofgem.gov.uk/sites/default/files/2021-09/Enabling%20the%20transition
%20to%20electric%20vehicles%20-%20the%20regulators%20priorities
%20for%20a%20green%20fair%20future.pdf

[4] A. Jenn and J. Highleyman, ‘‘Distribution grid impacts of electric vehi-
cles: A California case study,’’ iScience, vol. 25, no. 1, Jan. 2022,
Art. no. 103686.

[5] Italian Energy Authority (ARERA). (2018). Prices of Charging Ser-
vices for Electric Vehicles. [Online]. Available: https://www.arera.
it/allegati/elettricita/schede/TariffePrezziRicariche_st.pdf

[6] A. Tavakoli, S. Saha, M. T. Arif, M. E. Haque, N. Mendis, and
A. M. T. Oo, ‘‘Impacts of grid integration of solar PV and electric vehicle
on grid stability, power quality and energy economics: A review,’’ IET
Energy Syst. Integr., vol. 2, no. 3, pp. 243–260, 2020.

[7] D. Falabretti, F. Gulotta, and D. Siface, ‘‘Scheduling and operation
of RES-based virtual power plants with e-mobility: A novel integrated
stochastic model,’’ Int. J. Electr. Power Energy Syst., vol. 144, Jan. 2023,
Art. no. 108604.

[8] G. Celli, F. Pilo, G. Pisano, S. Ruggeri, and G. G. Soma, ‘‘Risk-oriented
planning for flexibility-based distribution system development,’’ Sustain.
Energy, Grids Netw., vol. 30, 2022.

[9] Italian Energy Authority (ARERA), Resolution 541/2020/R/eel.
(2020). Electric Vehicle Charging: Experimental Phase Aimed at
Facilitating the Charging at Night and Holiday. [Online]. Available:
https://www.arera.it/it/docs/20/541-20.htm

[10] Voltage Characteristics of Electricity Supplied by Public Electricity Net-
works, European Standard EN 50160, May 2011.

[11] Voltage Characteristics of Electricity Supplied by Public Electricity Net-
works, European Standard EN 50160:2011-05/A1, Sep. 2015.

[12] H. Khajeh, H. Firoozi, M. R. Hesamzadeh, H. Laaksonen, and
M. Shafie-Khah, ‘‘A local capacity market providing local and system-
wide flexibility services,’’ IEEE Access, vol. 9, pp. 52336–52351, 2021.

[13] E. A. Bhuiyan, M. Z. Hossain, S. M. Muyeen, S. R. Fahim, S. K. Sarker,
and S. K. Das, ‘‘Towards next generation virtual power plant: Technology
review and frameworks,’’ Renew. Sustain. Energy Rev., vol. 150, Oct. 2021,
Art. no. 111358.

[14] D. Espín-Sarzosa, R. Palma-Behnke, and O. Núñez-Mata, ‘‘Energy man-
agement systems for microgrids: Main existing trends in centralized con-
trol architectures,’’ Energies, vol. 13, no. 3, p. 547, Jan. 2020.

[15] Z. Cheng, J. Duan, and M.-Y. Chow, ‘‘To centralize or to distribute: That is
the question: A comparison of advanced microgrid management systems,’’
IEEE Ind. Electron. Mag., vol. 12, no. 1, pp. 6–24, Mar. 2018.

[16] M. N. Akter, M. A. Mahmud, M. E. Haque, and A. M. T. Oo,
‘‘An optimal distributed energy management scheme for solving trans-
active energy sharing problems in residential microgrids,’’ Appl. Energy,
vol. 270, Jul. 2020, Art. no. 115133.

[17] J. Hu, G. Yang, H. W. Bindner, and Y. Xue, ‘‘Application of network-
constrained transactive control to electric vehicle charging for secure
grid operation,’’ IEEE Trans. Sustain. Energy, vol. 8, no. 2, pp. 505–515,
Apr. 2017.

[18] M. Botkin-Levy, A. Engelmann, T. Muhlpfordt, T. Faulwasser, and
M. R. Almassalkhi, ‘‘Distributed control of charging for electric vehicle
fleets under dynamic transformer ratings,’’ IEEE Trans. Control Syst.
Technol., vol. 30, no. 4, pp. 1578–1594, Jul. 2022.

[19] J. Engels, B. Claessens, and G. Deconinck, ‘‘Grid-constrained distributed
optimization for frequency control with low-voltage flexibility,’’ IEEE
Trans. Smart Grid, vol. 11, no. 1, pp. 612–622, Jan. 2020.

[20] M. Yan, M. Shahidehpour, A. Paaso, L. Zhang, A. Alabdulwahab, and
A. Abusorrah, ‘‘Distribution network-constrained optimization of peer-
to-peer transactive energy trading among multi-microgrids,’’ IEEE Trans.
Smart Grid, vol. 12, no. 2, pp. 1033–1047, Mar. 2021.

[21] C.-K. Wen, J.-C. Chen, J.-H. Teng, and P. Ting, ‘‘Decentralized plug-in
electric vehicle charging selection algorithm in power systems,’’ IEEE
Trans. Smart Grid, vol. 3, no. 4, pp. 1779–1789, Dec. 2012.

[22] S. Mocci, N. Natale, F. Pilo, and S. Ruggeri, ‘‘Demand side integration in
LV smart grids with multi-agent control system,’’ Electr. Power Syst. Res.,
vol. 125, pp. 23–33, Aug. 2015.

[23] Achieving Net Zero Electricity Sectors in G7 Members, IEA, Paris, France,
Sep. 2021.

[24] Reference Technical Rules for the Connection of Active and Passive Users
to the LV Electrical Utilities, Standard CEI 021, Mar. 2022.

[25] F. Gulotta, ‘‘E-mobility scheduling for the provision of ancillary services
to the power system,’’ Int. J. Elect. Electron. Eng. Telecommun., vol. 9,
no. 5, pp. 349–355, Sep. 2020.

[26] G. Rancilio, F. Bovera, andM. Delfanti, ‘‘A techno-economic evaluation of
the impact of electric vehicles diffusion on Italian customer billing tariffs,’’
in Proc. E3S Web Conf., 2021, pp. 1–6.

[27] M. Wooldridge, An Introduction to Multiagent Systems. Hoboken, NJ,
USA: Wiley, 2002.

[28] Requirements for Generating Plants to be Connected in Parallel With Dis-
tribution Networks—Part 1: Connection to a LV Distribution Network—
Generating Plants up to and Including Type B, Standard CENELEC TS
50549-1, Jul. 2019.

[29] S. Mocci, N. Natale, F. Pilo, and S. Ruggeri, ‘‘Multi-agent control system
for the exploitation of vehicle to grid in active LV networks,’’ in Proc.
CIRED Workshop, 2016, pp. 1–4.

[30] Automobile Club d’Italia (ACI). Dati e Statistiche. Accessed: Mar. 17,
2023. [Online]. Available: https://www.aci.it/laci/studie-ricerche/dati-e-
statistiche.html

[31] Regione Lombardia. Origin-Destination Matrix Lombary 2020.
Accessed: Mar. 17, 2023. [Online]. Available: https://www.dati.lombardia.
it/Mobilit-e-trasporti/Matrice-OD2020-Passeggeri/hyqr-mpe2

[32] L. Akkermans et al., ‘‘Analysis of national travel statistics in Europe:
OPTIMISM WP2: Harmonization of national travel statistics in Europe,’’
Publications Office, Joint Res. Centre, Inst. Prospective Technol. Stud.,
2013. [Online]. Available: https://data.europa.eu/doi/10.2788/59474

[33] G. Benetti, M. Delfanti, T. Facchinetti, D. Falabretti, andM.Merlo, ‘‘Real-
time modeling and control of electric vehicles charging processes,’’ IEEE
Trans. Smart Grid, vol. 6, no. 3, pp. 1375–1385, May 2015.

[34] F. Pilo, G. Pisano, S. Ruggeri, andM. Troncia, ‘‘Data analytics for profiling
low-voltage customers with smart meter readings,’’ Appl. Sci., vol. 11,
no. 2, p. 500, Jan. 2021.

GIUDITTA PISANO (Senior Member, IEEE)
received the Laurea degree (magna cum laude)
in electrical engineering and the Ph.D. degree
from the University of Cagliari, Cagliari, Italy,
in 2001 and 2006, respectively. She is currently
an Associate Professor of power systems with
the Department of Electric and Electronic Engi-
neering, University of Cagliari. She has coau-
thored more than 100 scientific papers, published
in national and international journals or conference

proceedings. Her research interests include planning and operation of innova-
tive electric distribution systems and smart grids, flexibility assessment and
market participation of distributed energy resources, and network modeling
and load forecasting. Since 2020, she has been a Secretary of the Italian
Chapter of the IEEE Power and Energy Society.

VOLUME 10, 2023 361



SIMONA RUGGERI (Member, IEEE) received
the Ph.D. degree in industrial engineering from
the University of Cagliari, Cagliari, Italy, in 2015.
Since 2020, she has been an Assistant Professor
with the Department of Electric and Electronic
Engineering, University of Cagliari. She is cur-
rently a lecturer of the courses smart grid labo-
ratory and critical infrastructures for innovative
power distribution. She is also the Manager of the
Isgan WG 3: Cost Benefit Analysis and Toolkit.

Her research interests include power distribution planning and operation,
multi-agent control system for smart grid and microgrid management, flexi-
bility assessment, and market participation of distributed energy resources.

GIAN GIUSEPPE SOMA (Member, IEEE)
received the degree (magna cum laude) in elec-
trical engineering and the Ph.D. degree from the
University of Cagliari, Cagliari, Italy, in 2005 and
2009, respectively. He has over 15 years of expe-
rience in distribution networks, with a specific
knowledge in planning, operation and optimiza-
tion issues. He is a registered professional engi-
neer, a co-founder, and the CEO of the company
RESPECT. He has been a Research Fellow with

the Department of Electrical and Electronic Engineering (DIEE), University
of Cagliari, since 2009. He has coauthoredmore than 103 papers published in
international journals or presented in national and international conferences;
and Scopus H-index is 18 and Google Scholar H-index is 22. His research
interests include distribution planning and operation with smart grids, micro-
grids, and multi-objective methodologies for network planning.

DAVIDE FALABRETTI is currently an Associate
Professor with the Energy Department, Politec-
nico di Milano, within the Electric Power System
Group. He is also a lecturer of the courses ‘‘power
systems and electrical machines’’ and ‘‘distribu-
tion of electrical energy.’’ His current research
interests include the assessment of the technical
and regulatory impact of dispersed generation,
energy storage systems and electric mobility on
electricity networks, with particular reference to

distribution power systems, and on the dispatching and coordination of
aggregated flexibility resources to supply ancillary services to the grid. In the
last 15 years, he has been active in many national and international research
and consultancy projects, mostly focusing on the operation of electrical
power systemswith high penetration of dispersed generation and energy stor-
age systems, involving system operators, research bodies, national regulatory
authorities, and other energy sector stakeholders.

SAMUELE GRILLO (Senior Member, IEEE)
received the Laurea degree in electronic engineer-
ing and the Ph.D. degree in power systems from
the University of Genova, Italy, in 2004 and 2008,
respectively. He is currently an Associate Profes-
sor with the Dipartimento di Elettronica, Infor-
mazione e Bioingegneria, Politecnico di Milano,
Milan, Italy. Since 2018, he has been a Contribu-
tor to CIGRÉ Working Group B5.65 ‘‘Enhancing
Protection System Performance by Optimizing the

Response of Inverter-Based Sources.’’ His research interests include smart
grids, integration of distributed renewable sources, energy storage devices
in power networks, optimization, and control techniques applied to power
systems.

FRANCESCO GULOTTA received the M.Sc.
degree in energy engineering from the Politecnico
diMilano, where he is currently pursuing the Ph.D.
degree in electrical engineering. His research
activity involves optimization models for the man-
agement of distributed energy resources in pres-
ence of non-programmable renewable sources,
provision of ancillary services by new players of
the electric markets, and e-mobility impact on
electric grids. Since 2020, he has been a Teaching

Assistant for the M.Sc. course of electric power systems and machines with
the Politecnico di Milano.

FABRIZIO PILO (Senior Member, IEEE)
received the Laurea degree (magna cum laude)
in electrical engineering from the University of
Cagliari, Cagliari, Italy, in 1992, and the Ph.D.
degree from the University of Pisa, Pisa, Italy,
in 1998. He has co-founded theUniversity Spin-off
Respect in 2008. He is a registered professional
engineer. He is currently a Full Professor of power
systems with the Department of Electric and Elec-
tronic Engineering, University of Cagliari. He is a

CIRED Board of Director Member, the Chairperson of CIRED Session 5,
an ISGAN WG 3 Leader, a CIGRE C6 Expert Member, and the CEI
TC 316 President. He has coauthored more than 200 articles. He has been
responsible for several national and international research projects. His
research interests include power systems, distribution systems, distribution
planning, and distributed generation.

Open Access funding provided by ‘Università degli Studi di Cagliari’ within the CRUI CARE Agreement

362 VOLUME 10, 2023


