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ABSTRACT 25 

We develop a comprehensive and efficient workflow for a stochastic assessment of key parameters 26 

governing two-phase flow conditions associated with core-scale experiments. We rely on original and 27 

detailed datasets collected on a Berea sandstone sample. These capture the temporal evolution of pressure 28 
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drop across the core and three-dimensional maps of phase saturations (determined via X-ray CT) in oil- and 29 

brine-displacement flooding scenarios characterized by diverse brine/oil viscosity contrasts. Such 30 

experiments are used as a test-bed for the proposed stochastic model calibration strategy. The latter is 31 

structured across three main steps: (i) a preliminary calibration, aimed at identifying a behavioral region of 32 

the model parameter space; (ii) a Global Sensitivity Analysis (GSA), geared towards identification of the 33 

relative importance of model parameters on observed model outputs and assessment of non-influential 34 

parameters to reduce dimensionality of the parameter space; and (iii) a stochastic inverse modeling 35 

procedure. The latter is based on a differential-evolution genetic algorithm to efficiently explore the reduced 36 

parameter space stemming from the GSA. It enables one to obtain a probabilistic description of the relevant 37 

model parameters through their frequency distributions conditional on the detailed type of information 38 

collected. Coupling GSA with a stochastic parameter estimation approach based on a genetic algorithm of 39 

the type we consider enables streamlining the procedure and effectively cope with the considerable 40 

computational efforts linked to the two-phase scenario considered. Results show a remarkable agreement 41 

with experimental data and imbue us with confidence on the potential of the approach to embed the type of 42 

rich datasets considered towards model parameter estimation fully including uncertainty. 43 

1. Introduction 44 

Characterization of two-phase flow processes in porous media is key in environmental and industrial 45 

scenarios. In this broad context, multiphase flow processes are critically important in driving, e.g., 46 

sustainable and enhanced use of underground energy resources (e.g., [1]) . 47 

Real-time three-dimensional (3D) imaging techniques of transient multiphase flow laboratory 48 

experiments are becoming increasingly appealing due to their non-invasive nature. A variety of imaging 49 

techniques are nowadays applied to study fluid displacement in porous media. These include X-ray 50 

Computer Tomography (CT) (e.g., [2–7]) and micro-CT ([8–11]), neutron radiography [12], and magnetic 51 

resonance imaging (e.g., [13–17]). A variety of applications of these imaging techniques tackle observation 52 

and modeling of multi-phase flow dynamics at the pore-scale (e.g., [9–11]). Here, we focus on continuum-53 

scale patterns of two-phase (oil and brine) flow settings of the kind related to core-flooding experiments. 54 



Saturation data based on 3D core imaging have been recently used to characterize CO2-brine interaction [5] 55 

and waterflood dynamics in oil-displacement experiments [6]. Recently, Fannir et al. (2020) [17] rely on 56 

three-dimensional (3D) imaging to assess oil saturation in core scale two-phase oil displacement and 57 

quantify some relevant aspects of the setting through a set of dimensionless quantities. Wang et al. (2020) 58 

[18] employ 3D images of a CO2/water core flooding scenario to evaluate the effect of errors caused by 59 

simplified modeling of heterogeneous systems. In this context, even as 3D models might be associated with 60 

a higher level of operational complexity and computational requirements than their streamlined 1D 61 

counterparts, relying on such modeling approaches can provide major insights on the structure of two-phase 62 

flow fields that can exhibit complex patterns of displacement fronts due to flow instabilities and/or 63 

heterogeneities in the hydraulic properties of the host porous medium (e.g., [2,19,20]). 64 

In this framework, a rigorous and robust approach to quantification of the way uncertainties associated 65 

with the key parameters driving the system dynamics are constrained through rich datasets of the kind 66 

described above is still lacking. Here, we tackle this objective by merging parallel streams of research. 67 

These include Global Sensitivity Analysis (GSA) and stochastic inverse modeling. 68 

Considering GSA (e.g., [21]) enables one to diagnose the behavior of a selected interpretive model as 69 

well as the relative contribution of uncertain model parameters to model output uncertainty ([22–27]). 70 

Furthermore, it has the additional advantage of being conducive to the identification of non-influential (or 71 

only minimally influential) model parameters. This enables streamlining the computational efforts linked 72 

to stochastic inverse modeling ([28–33]) upon setting some parameter(s) (which are deemed as 73 

uninfluential) at prescribed value(s) without significantly affecting modeling results. Our study is patterned 74 

after the approach proposed by Morris (1991) [34]. The latter is a versatile and convenient approach in the 75 

presence of highly demanding (in terms of computational effort) model simulations. These types of analyses 76 

have been applied to selected basin-scale depositional settings across geologic time scales (e.g., [33] and 77 

references therein). Similarly, sensitivity and uncertainty analyses have been recently applied to aid the 78 

appraisal of key elements driving the documented complexities associated with multiphase flow through 79 

porous media ([35–38]). The solution of an inverse problem is challenging due to a variety of factors, 80 



including e.g., issues related to non-uniqueness (see, e.g., [39], and, [37,38]with reference to two-phase 81 

flow scenarios). Here, we consider a stochastic inverse modeling framework. As opposed to a deterministic 82 

approach, the latter yields probability distributions of uncertain model parameters (i.e., [40,41]). In this 83 

sense, one obtains a collection of possible solutions of the inverse problem, each constrained through (i.e., 84 

conditional on) the available information content. This approach enables one to provide predictions under 85 

uncertainty. The latter is quantified in terms of the above mentioned (posterior) distribution of model 86 

parameters, i.e., the probability distribution of parameters conditional to available experimental 87 

observations (see e.g., [42,43] for recent applications stochastic inverse modeling approaches). 88 

The study is structured as follows. Section 2 includes a detailed description of the available 89 

experimental investigations and the ensuing dataset. It also introduces the methodological workflow, 90 

together with key theoretical elements underpinning the selected Global Sensitivity Analysis and stochastic 91 

inverse modeling approach. Implementation of the workflow and the ensuing results are discussed in 92 

Section 3. Concluding remarks are offered in Section 4. 93 

2. Materials and Methods 94 

The current study relies on a unique set of core-scale data associated with two-phase laboratory-scale 95 

flooding experiments (see Sec 2.1 for further details). Available data encompass: (i) the temporal history 96 

of core-scale pressure drop, i.e., ∆�̂�𝑡 (experimentally observed quantities are hereafter denoted with a hat 97 

symbol); and (ii) detailed three-dimensional spatial distributions of phase saturations monitored at various 98 

times, i.e., �̂�𝛼,𝑖,𝑡   (subscripts α, i, and t referring to fluid phase, a generic location across the core sample, 99 

and time, respectively). While measurements of ∆�̂�𝑡 are commonly available in flooding experiments to 100 

support characterization of rock sample attributes, observations about �̂�𝛼,𝑖,𝑡  are seldom available (e.g., 101 

[44]). These provide a unique source of information on transient two-phase flow dynamics. Such a rich 102 

base of information is here used to design a workflow conducive to improved characterization of the 103 

hydraulic properties of rock samples within a stochastic inverse modeling context. 104 



From a conceptual point of view, we interpret the transient two-phase flow dynamics at the continuum 105 

scale through a set of commonly used balance equations and constitutive relationships (see Sec. 2.2) which 106 

are then solved numerically. The selected mathematical formulation includes N model parameters 𝜃𝑗 (j = 1, 107 

..., N) collected in vector 𝜽. These embed salient features of processes relevant to the two-phase flood 108 

scenario (e.g., relative permeabilities and parameters of the associated formulations) and are here treated as 109 

random quantities. Thus, we aim at characterizing the probability density function (pdf) of 𝜽 by leveraging 110 

on the unique information content associated with the available experimental dataset. To accomplish this 111 

objective, we design an operational workflow merging (a) Stochastic Model Calibration (SMC) (see Sec. 112 

2.3) and (b) Global Sensitivity Analysis (GSA) (see Sec. 2.4), as detailed in the following. Relying on this 113 

strategy enables us to cope with the computational burden related to SMC. The latter might indeed become 114 

markedly high in the presence of a large set of parameters because of the computational cost associated 115 

with forward numerical simulations of the three-dimensional transient two-phase flow scenario we tackle. 116 

Fig. 1 provides a sketch of the workflow adopted in our study. We start by defining the support space 117 

of the random model parameters, i.e., 𝜞 =  𝛤𝜃1
× … × 𝛤𝜃𝑁

. At this stage, each parameter 𝜃𝑗 is treated as an 118 

independent random variable uniformly distributed within the support 𝛤𝜃𝑗
. The latter is assessed on the basis 119 

of available literature information and/or expert opinion. We then perform a preliminary model calibration 120 

upon estimating model parameters across 𝜞. This is aimed at providing: (i) a set of model parameters 121 

compatible (in terms of the value of the objective function defined in Sec. 2.3) with the available 122 

observations, and (ii) a reference value for the objective function that corresponds to a satisfactory degree 123 

of consistency with the experimental data. The results of this step enable us to define a behavioral parameter 124 

space, i.e., 𝜞𝑩. We then perform a GSA focused on ∆𝑃𝑡 and 𝑆𝛼,𝑖,𝑡 (i.e., the model-based counterparts of ∆�̂�𝑡 125 

and �̂�𝛼,𝑖,𝑡) across such space. In this second stage, we revise the parameter support ranges. This ensures that 126 

the collection of the numerical simulations upon which the GSA is grounded are consistent with the 127 

experimental observations, in the sense that the salient qualitative features of ∆�̂�𝑡 and �̂�𝛼,𝑖,𝑡 are reproduced 128 

with a satisfactory quantitative agreement between numerical results and their experimental counterparts. 129 



Thus, we tie the GSA results to the available experimental evidence and rely on the ensuing analysis to 130 

(eventually) identify model parameters that can be deemed as non-influential for ∆𝑃𝑡 and 𝑆𝛼,𝑖,𝑡. Doing so 131 

yields a secondary parameter support space (hereafter denoted as 𝜞′) that includes only model parameters 132 

that are identified as influential. Stochastic model calibration is then performed within 𝜞′. This allows 133 

identifying sample frequency distributions of influential model parameters conditional on the available data 134 

(non-influential parameters being set at the values obtained from the preliminary model calibration). Note 135 

that, as further detailed in Sec. 2.3, we leverage on the reference value of the objective function obtained in 136 

the preliminary model calibration to define a stopping criterion during the stochastic model calibration 137 

stage. 138 

2.1. Experimental set up  139 

Fig. 2a depicts a schematic representation of the experimental setup. Key elements include a core 140 

holder, an X-ray apparatus for in-situ detection of fluid saturation, and differential pressure transducers. 141 

The experiments are performed on a cylindrical core of Berea sandstone, whose key properties are listed in 142 

Table 1. Prior to starting the tests, the core sample is cleaned, washed, and scanned via X-ray CT (NSI X-143 

5000 tomograph; North Star Imaging) at dry and fully brine-saturated conditions (i.e., Sb = 1). All of the 144 

acquired scans are post-processed (we use a Lanczos filter to this end; see , e.g., [45]) to obtain a voxel 145 

resolution of 0.24 mm3. The latter is then lowered (through the application of a triangular re-sampling filter) 146 

to obtain a spatial resolution of 0.997 × 0.993 × 0.996 mm3. This enables estimating absolute permeability, 147 

K, and assessing the distribution of porosity, �̂�𝑖, (depicted in Fig. 2b), for each voxel 𝑖 according to which 148 

the system is discretized as: 149 

 �̂�𝑖 = 𝑐 ∙ (𝜏𝑏,𝑖 −  𝜏𝑎,𝑖 ) (1) 

where  𝜏𝑎,𝑖 and 𝜏𝑏,𝑖 are the i-th voxel linear attenuation coefficient at air- or brine-saturated conditions 150 

respectively. Fig. 2b depicts the spatial distribution of the porosity at the sub-sample scale. An inspection 151 

of the latter highlights the presence of 3D heterogeneous features across the sample, i.e., tilted planes 152 

characterized by higher values of porosity. A pore volume (PV) of 38.2 ml is estimated upon relying on 153 



saturation data collected during brine injection, considering the linear relationship between brine saturation 154 

and total injected volume (before brine breakthrough): 155 

 〈𝑆𝑏(𝑡)〉 − 〈𝑆𝑏(𝑡0)〉 = 𝑄𝑏
(𝑡−𝑡0)

𝑃𝑉
 (2) 

where 〈 〉 denotes arithmetic average over all sample voxels, 〈𝑆𝑏(𝑡)〉 and 〈𝑆𝑏(𝑡0)〉 represent the average 156 

brine saturations at time 𝑡 and 𝑡0 (i.e., the initial average brine saturation in the sample), respectively; and 157 

𝑄𝑏 is the brine volumetric flow rate. The ratio between the PV and the total core volume provides an 158 

estimate of the average core-scale porosity of the sample (here 〈�̂�〉 ≈ 0.17). Note that the value of c in Eq. 159 

(1) is assessed as 𝑐 = 〈𝜏𝑏,𝑖 −  𝜏𝑎,𝑖〉/〈�̂�〉. 160 

Two unsteady-state displacement tests have been performed on the core. The first experiment 161 

corresponds to an oil-displacement setting, in which a low-viscosity (LV) oil (soltrol 130) is displaced by 162 

injecting brine in the sample. Note that, to mimic a typical reservoir scenario, the oil initially in place in 163 

this experiment is the result of an injection in a preliminary brine-saturated pore space. The second 164 

experiment corresponds to a brine-displacement scenario. Here, a high viscosity (HV) oil (OBI 10) is 165 

injected into the initially fully brine-saturated sample. Note that the core was washed before each 166 

experiment. Density and viscosity of the fluids employed in the experiments are listed in Table 2. Brine 167 

composition is characterized by NaCl (84.36 g/L), CaCl2 (23.12 g/L), KCl (32.14 g/L), and NaI (54.09 g/L). 168 

The latter is used to enhance X-ray contrast between water and oil phase, to improve measurement accuracy. 169 

A constant temperature of 30 °C is maintained in both experiments. Fluid injection takes place from the 170 

bottom of the sample. Pressure difference between core inlet and outlet is continuously monitored. Ambient 171 

pressure is maintained at the outlet section. The temporally-varying spatial distribution of oil saturation is 172 

monitored periodically via X-Ray CT scans. As an example, Fig. 2 collects three-dimensional spatial 173 

distributions of oil saturation corresponding to three observation times during the oil- (Fig. 2c) and brine-174 

displacement (Fig. 2d) experiments. Visual inspection of the 3D maps of oil saturation reveals the presence 175 

of sub-sample heterogeneities. It can be seen that the displacement front appears to be quite dispersed during 176 

the oil-displacement (low viscosity contrast). Otherwise, the front transition is sharper during the brine-177 



displacement (high stabilizing viscosity contrast) while being clearly non-uniform along the transverse 178 

cross-section as a consequence of the spatially heterogeneous nature of the hydraulic properties of the 179 

sample. The X-Ray beam employed to infer oil saturation is generated by applying an electric potential of 180 

140 kV. A scan time of 15 min is used to collect high-quality images and is employed at the equilibrium or 181 

for slow changes in saturation distribution. Otherwise, in the transient regime we take scans every 1 min 182 

and 13 s, to enhance characterization of the rapidly-evolving fluid dynamics. As a consequence, we expect 183 

the acquisitions in the transient time frame to be more affected by experimental errors than their steady 184 

state counterparts. This issue has been considered in the definition of the objective function to be minimized 185 

in the model calibration process (see Sec. 2.3). 186 

2.2 Two-phase flow model 187 

Mass conservation for each (incompressible) fluid phase α reads 188 

 
𝜙

𝜕

𝜕𝑡
(𝑆𝛼) + ∇ ∙ (𝒒𝛼) = 0 

(3) 

where, 𝜙 [-] is the (spatially variable, see Sec. 2.1) porosity; 𝑆𝛼 [-] is saturation of fluid phase α; 𝒒𝛼 [LT-1] 189 

is the extended Darcy flux vector for fluid phase α, which can be expressed as 190 

 
𝒒𝛼 =  −

𝒌𝑘𝑟𝛼

𝜇𝛼

(∇𝑃𝛼 − 𝜌𝛼𝒈)   (4) 

where 𝒌 [L2] is the absolute permeability tensor; 𝑘𝑟𝛼 [-] is relative permeability for fluid phase α; 𝑃𝛼 [ML-191 

1T-2], 𝜇𝛼 [ML-1T-1], and 𝜌𝛼 [ML-3] are pressure, dynamic viscosity, and density of phase α, respectively; 192 

and 𝒈 [LT-2] is gravity. Note that we consider a two-phase system composed by brine (α = b) and oil (α = 193 

o). Saturation of the two phases must satisfy 194 

 𝑆𝑏 + 𝑆𝑜 = 1   (5) 

Solutions of Eqs. (3)-(5) require an additional constraint. The latter concerns the capillary pressure, 𝑃𝑐(𝑆𝑏) 195 

[ML-1T-2], (i.e., the pressure difference across the interface between the two-phases in the system), which 196 

can be expressed as a function of brine saturation. Preliminary tests of the calibration framework aimed at 197 



evaluating the potential ability of various Pc (Sb) formulations to grasp the main patterns associated with 198 

the experimental observations revealed that a numerical solution consistent with the available datasets could 199 

be obtained only by considering negligible capillary effects (details not shown). 200 

Absolute permeability is treated as isotropic and spatially heterogeneous, i.e., 𝒌(𝒙) = 𝑰𝑘(𝒙), where I 201 

is the identity matrix. We leverage on the knowledge about the spatial distribution of porosity across the 202 

core to (at least partially) capture the heterogeneous distribution of 𝑘 which can then be considered in the 203 

inverse modeling context. To this end, we employ the following widely used relationship [43]: 204 

 𝑙𝑜𝑔10(𝑘) =  𝑚𝜙 +  𝑤 (6) 

Note that k appearing in Eq. (6) is expressed in m2. We include m [-] in our probabilistic analysis workflow. 205 

Otherwise, we set w = -16 (which is equivalent to imposing a permeability of 0.1 mD for porosity values 206 

that tend to 0) based on a series of previous applications of Eq. (6) to interpret an extensive set of core-scale 207 

two-phase flow experiments performed on several Berea samples at the internal experimental facilities in 208 

ENI, Italy (not shown). These imbue us with prior knowledge to guide the modeling choice about w.  209 

With reference to relative permeability, we recall that a variety of empirical formulations are available 210 

to render the dependence of relative permeability on the degree of fluid saturation (e.g., [7,44,46–50]). 211 

Here, we rely on the Corey formulation [46] due to its simplicity and parsimony (in terms of the number of 212 

parameters that are to be estimated), i.e., 213 

 𝑘𝑟𝑏 = 𝑘𝑟𝑏
∗ (𝑆𝑏

∗)𝑁𝑏 (7) 

 𝑘𝑟𝑜 = 𝑘𝑟𝑜
∗ (1 − 𝑆𝑏

∗)𝑁0 (8) 

Here, 𝑘𝑟𝑏
∗  [-] and 𝑘𝑟𝑜

∗  [-] are the end-point relative permeabilities for brine and oil, respectively; 𝑁𝑏 [-] 214 

and 𝑁0[-] are exponents; and 𝑆𝑏
∗ is the normalized brine saturation, i.e., 215 

 
𝑆𝑏

∗ =
𝑆𝑏 − 𝑆𝑏

𝑖𝑟𝑟

1 − 𝑆𝑏
𝑖𝑟𝑟 − 𝑆𝑜𝑟

 (9) 



where 𝑆𝑏
𝑖𝑟𝑟 [-] and 𝑆𝑜𝑟 [-] are the irreducible brine and residual oil saturations, respectively. Note that we 216 

treat 𝑆𝑏
𝑖𝑟𝑟 as a spatially heterogeneous quantity, by viewing it as a fraction (i.e., through a proportionality 217 

factor, 𝐹𝑟) of (i) the initial brine saturation in the oil-displacement scenario; or (ii) the steady-state brine 218 

saturation, for the brine-displacement experiment. The heterogeneous distribution of 𝑆𝑜𝑟 is assessed 219 

according to the formulation of Spiteri (2008) [51], i.e., 220 

 𝑆𝑜𝑟 = 𝜉(𝛾)𝑆𝑜𝑖𝑛 − 𝛽(𝛾)𝑆𝑜𝑖𝑛
2  (10) 

where the coefficients 𝜉(𝛾) [-] and 𝛽(𝛾) [-] are functions of the contact angle, i.e., 𝛾[-] ([52]; see Fig. 10), 221 

and 𝑆𝑜𝑖𝑛 is the initial oil saturation. 222 

In summary, the two-phase flow model detailed in Eqs. (3)-(10) embeds a total of N = 7 parameters, 223 

i.e., 𝜽 = (𝑚, 𝑘𝑟𝑏
∗ , 𝑘𝑟𝑜

∗ , 𝑁𝑏 , 𝑁0, 𝐹𝑟, 𝛾). These are then subject to estimation through stochastic model 224 

calibration (see Sec. 2.3). 225 

Various open-source numerical codes are available to cope with transient two-phase flow settings (e.g. 226 

[20,53]). Similar to Manasipov et al. (2020) [54], we solve the transient two-phase flow scenario associated 227 

with Eqs. (3)-(10) upon relying on the well known and widely tested open-source Matlab Reservoir 228 

Simulation Toolbox (MRST, see [55]) environment in light of its straightforward adaptability to our 229 

context. We employ the finite volume discretization method with a two-point flux-approximation scheme, 230 

as embedded in MRST. Consistent with the previously noted spatial heterogeneity of the sub-sample 231 

hydraulic properties that, in turns, impacts the dynamics of the displacing front (see Sec. 2.1 and Fig. 2), 232 

we employ a three-dimensional (structured Cartesian) grid. The latter comprises  𝑁𝑣 = 720 elements of 233 

size 6.88 mm3. We test the robustness of the employed discretization upon considering several synthetic 234 

scenarios (characterized by various combinations of the model parameters) designed considering the same 235 

geometry of the Berea sample and the same initial conditions in terms of phase saturations employed in the 236 

experiments. We obtain satisfactory stochastic calibrations at an affordable computational burden for all of 237 

the scenarios analyzed, thus imbuing us with confidence about the selected discretization (see [56]). Note 238 

that we transfer the (spatially variable) experimental values of porosity and phase saturations obtained at 239 



the original spatial resolution (see Sec. 2.1) to the one associated with the adopted computational grid to 240 

ensure consistency between observations and numerical results. For simplicity, we do so upon relying on a 241 

straightforward arithmetic and weighted (by the porosity) averaging approach for the porosity and the phase 242 

saturations, respectively. 243 

2.3. Stochastic Model Calibration 244 

Model calibration is grounded on the minimization of the following objective function 245 

 

𝐽(𝜽) = 𝑊𝑆

∑  
𝑁𝑡𝑠
𝑡 ∑  

𝑁𝑣
𝑖 (�̂�𝑜,𝑖,𝑡 − 𝑆𝑜,𝑖,𝑡(𝜽))

2

𝑁𝑡𝑠𝑁𝑣  
+ 𝑊𝑃

∑  
𝑁𝑡𝑝

𝑡 (
∆�̂�𝑡 − Δ𝑃𝑡(𝜽)

Δ�̂�𝑚𝑎𝑥 
)

2

𝑁𝑡𝑝

+ 𝑊𝑆𝑠𝑠

∑  
𝑁𝑣
𝑖 (�̂�𝑜,𝑖,𝑠𝑠 − 𝑆𝑜,𝑖,𝑠𝑠(𝜽))

2
 

𝑁𝑣  
 

(11) 

Δ𝑃𝑡(𝜽) and 𝑆𝑜,𝑖,𝑡(𝜽) corresponding to model outputs at the 𝑁𝑡𝑠 and 𝑁𝑡𝑝 experimental observation times 246 

for the phase saturations and core-scale pressure drop, respectively; 𝑆𝑜,𝑖,𝑠𝑠(𝜽) is the oil saturation under 247 

steady-state condition; Δ�̂�𝑚𝑎𝑥  is the maximum value of the measured pressure drop; and 𝑊𝑠,𝑊𝑃, and 𝑊𝑆𝑠𝑠
 248 

are the weights of the terms appearing in the objective function. These typically depend on the experimental 249 

error affecting �̂�𝑜,𝑖,𝑡, ∆�̂�𝑡, and �̂�𝑜,𝑖,𝑠𝑠, respectively. We recall here that a common working assumption relies 250 

on considering a Gaussian probability distribution to characterize measurement errors (e.g., [39]). At the 251 

same time, we also note that the exact values of the standard deviation of the latter are rarely known. Thus, 252 

various combinations of the values of the weights in Eq. (11) are typically tested to determine their optimal 253 

values (see e.g., [38]). Distinct triplets of the weights - i.e., (𝑊𝑠 = 𝑊𝑆𝑠𝑠
=  𝑊𝑃 = 1), (𝑊𝑠 = 𝑊𝑆𝑠𝑠

=254 

1; 𝑊𝑃 = 10) and (𝑊𝑠 = 1; 𝑊𝑆𝑠𝑠
=  𝑊𝑃 = 10) - have been analyzed in a preliminary study. The analysis 255 

revealed that (a) the magnitude of the errors associated with transient and steady-state saturations (i.e., 𝑆𝑜,𝑖,𝑡 256 

and 𝑆𝑜,𝑖,𝑠𝑠) does not vary significantly across the set of triplets (𝑊𝑠, 𝑊𝑃 , 𝑊𝑠𝑠𝑠
); (b) the residual associated 257 

with Δ𝑃𝑡 decreases as 𝑊𝑠𝑠𝑠
 and 𝑊𝑃 increase.  The latter finding is consistent with the higher degree of 258 

reliability associated with the experimental values of ∆�̂�𝑡 and �̂�𝑜,𝑖,𝑠𝑠 relative to those of �̂�𝑜,𝑖,𝑡. 259 



In this context, minimization of Eq. (11) with respect to 𝜽 is performed through a Differential Evolution 260 

(DE) algorithm (e.g., [57]). The latter is a direct-search method in which one starts upon introducing a 261 

population, S, of candidate solutions composed by NS members (where each member, si, is a vector of 262 

dimension Nm). In the present context, a member of the population represents a possible model parameter 263 

combination, 𝜽. Hence, Nm = N = 7. We implement the algorithm according to [57] and set NS = 10×N = 264 

70. The initial population of candidate solutions, i.e., 𝑺𝟎 = [𝒔1
0, … , 𝒔𝑁𝑠

0 ], is defined by randomly selecting 265 

the j-th element of the i-th member, 𝑠𝑖,𝑗
0  (for j = 1, …, N and i = 1, …, NS), from the support 𝛤𝜃𝑗

 of the model 266 

parameter 𝜃𝑗. This enables the DE algorithm to be initialized through a uniform coverage of the parameter 267 

space. At a subsequent k-th step, the members of the population are updated to obtain 𝑺𝑘 = [𝒔1
𝑘 , … , 𝒔𝑁𝑠

𝑘 ] by 268 

selecting the i-th member 𝒔𝑖
𝑘 between (i) a trial member �̃�𝑖

𝑘 and (ii) the i-th population member at the 269 

previous step, 𝒔𝑖
𝑘−1, according to 270 

 
𝒔𝑖

𝑘 = {
�̃�𝑖

𝑘 , 𝐽(�̃�𝑖
𝑘) < 𝐽(𝒔𝑖

𝑘−1)

 𝒔𝑖
𝑘−1, 𝐽(�̃�𝑖

𝑘) ≥ 𝐽(𝒔𝑖
𝑘−1)

 (12) 

We recall that the trial member �̃�𝑖
𝑘 is determined as a mutation of 𝒔𝑖

𝑘−1. The algorithm randomly 271 

determines which of the N elements of 𝒔𝑖
𝑘−1 undergoes a mutation according to the following: (i) a random 272 

sample 𝒓~𝑈(0,1)𝑁 is drawn; (ii) mutations take place only for the elements of 𝒔𝑖
𝑘−1 for which the 273 

corresponding elements of r are smaller than a given crossover value, CR, the mutating elements of 𝒔𝑖
𝑘−1 274 

being collected in the indexing vector 𝑗;̅ (iii) the values of the mutating elements of 𝒔𝑖
𝑘−1 are determined 275 

according to 276 

 �̃�(𝑗)̅𝑖
𝑘 =  𝒔(𝑗)̅𝑖

𝑘−1 + 𝐹 ∙ (𝒔(𝑗)̅𝑎
𝑘−1 − 𝒔(𝑗)̅𝑏

𝑘−1) (13) 

where F is a DE algorithm parameter called differential weight and  𝒔(𝑗)̅𝑎
𝑘−1 and 𝒔(𝑗)̅𝑏

𝑘−1 (with a, b ≠ i) 277 

correspond to two random members of the population. Considering the results obtained on the synthetic 278 

scenarios (discussed above), we set CR = 0.3 and F = 0.4. 279 

The DE algorithm is employed in the preliminary model calibration step as well as in the final stochastic 280 

model calibration (see Fig. 1). In our implementation of the preliminary calibration, we terminate the 281 



algorithm when the value of the objective function in Eq. (11) does not vary over 50 consecutive iterations. 282 

We do so for simplicity and considering that only a single parameter combination is required in this phase. 283 

Otherwise, when tackling the final stochastic model calibration phase, we end the progress of the DE 284 

algorithm when the objective function attains a value which is 5% larger than the reference value obtained 285 

from the preliminary calibration. We recall that our ultimate purpose is to obtain a distribution of 286 

(influential) model parameter values conditional on available information through the imposed convergence 287 

criterion. As such the strategy we consider enables one to avoid many model iterations within a region of 288 

the parameter space where the objective function does not change significantly, while still maintaining a 289 

satisfactory consistency between model results and experimental data. We remark that in this context our 290 

results can be interpreted in terms of a frequency distribution of a collection of model parameter estimates. 291 

These can then be employed to propagate residual (i.e., after calibration on available data) parameter 292 

uncertainty onto target model outputs. 293 

2.4 Global Sensitivity Analysis 294 

The computational burden required to estimate empirical frequency distributions of uncertain model 295 

parameters can be alleviated by reducing the dimensionality of the parameter space. This can be 296 

accomplished through a rigorous sensitivity analysis. The latter is aimed at diagnosing the model behavior 297 

in the presence of uncertain parameters and enables us to discriminate between (i) non-influential and (ii) 298 

influential sets of parameters (with respect to the simulated state variables of interest, i.e., ∆𝑃𝑡 , 𝑆𝑜,𝑖,𝑡). 299 

We note that during the identification of non-influential parameters one cannot disregard the 300 

experimental evidence about the two-phase flow dynamics taking place in the particular core-sample under 301 

investigation. Thus, one needs to guarantee that the set of model simulations upon which the sensitivity 302 

analysis is grounded are behavioral (see e.g., [58–60]), in the sense that the set of ensuing model outputs 303 

must be consistent with their experimental counterparts. We ensure this aspect by demarcating a behavioral 304 

parameters space (also referred as active subspace), 𝜞𝑩 = 𝛤𝜃1

𝐵 × … × 𝛤𝜃𝑁

𝐵 , where 𝛤𝜃𝑖

𝐵 is the behavioral 305 

support (or range of values) of the i-th parameter. This behavioral parameter space is only employed to 306 



perform the sensitivity analysis. We design it through a simple trial-and-error procedure. We select 307 

candidate upper and lower bounds of 𝜞𝑩 by acknowledging (i) the results of the preliminary model 308 

calibration and (ii) the corresponding model outputs. We then ensure that the whole set of model simulations 309 

upon which the sensitivity analysis is grounded are indeed behavioral. Due to the limited number of model 310 

simulations required by the selected sensitivity analysis (see below), we ensure the latter requirement by 311 

the simple inspection of the juxtaposition of the set of model results and their experimental counterparts. In 312 

the event that some simulations lead to unacceptable results (e.g., very distinct trends associated with the 313 

time evolution of the core scale pressure drop), we proceed to manually adjusting the extent of 𝜞𝑩 to ensure 314 

that all of the sampled parameter combinations lead to behavioral responses. Moreover, the ranges of the 315 

behavioral space are also controlled after the stochastic calibration step, i.e., we check that for each i-th 316 

parameter the probability associated with values outside the support range 𝛤𝜃𝑖

𝐵 tend to be lowest (ideally 317 

null). While more complex and automated approaches are available in the literature for the definition of 𝜞𝑩 318 

(e.g., [61] and references therein), we note that the associated computational burden is typically higher and 319 

can possibly reduced through the introduction of a surrogate model. Thus, here we prefer to rely on a simple 320 

trial-and-error approach with an affordable computational cost. 321 

Considering a model output of interest, 𝑦(𝜽), it is possible to evaluate the so-called elementary effect 322 

associated with the j-th uncertain model parameter 𝜃𝑗 as 323 

 
𝐸𝐸𝜃𝑗

=
𝑦(𝜃1, … , 𝜃𝑗 + Δ𝜃𝑗, … , 𝜃𝑁) − 𝑦(𝜃1, … , 𝜃𝑗, … , 𝜃𝑁)

Δ𝜃𝑗
 (14) 

The value of 𝐸𝐸𝜃𝑗
 is a local (in the parameter space) measure of the sensitivity of 𝑦 with respect to 𝜃𝑗, that 324 

is quantified in terms of the variation in the value of the former due to a variation of the latter. A global 325 

measure of sensitivity is obtained upon evaluating the elementary effect (𝐸𝐸𝜃𝑗
) for a variety of model 326 

parameter combinations. To this end we rely on the radial-sampling strategy detailed in [62]. Key summary 327 

statistics of the ensuing distribution of 𝐸𝐸𝜃𝑗
 are then evaluated, such as [34] and [62]: 328 



 

µ𝜃𝑗

∗ =
1

𝑀
∑  

𝑀

𝑘=1

|𝐸𝐸𝜃𝑗

𝑘 | (15) 

 

𝜎𝜃𝑗
= √

1

𝑀
∑  

𝑀

𝑘=1

(𝐸𝐸𝜃𝑗

𝑘 − µ𝜃𝑗

∗ )
2
 

(16) 

where M is the number of values of 𝐸𝐸𝜃𝑗
 associated with 𝜃𝑗. The quantities µ𝜃𝑗

∗  (15) and 𝜎𝜃𝑗
 (16) are 329 

estimates of the mean and standard deviation of the distribution of 𝐸𝐸𝜃𝑗
. Note that the absolute value is 330 

introduced for the evaluation of µ𝜃𝑗

∗  to avoid compensation between positive and negative valued 𝐸𝐸𝜃𝑗
. 331 

Non-influential parameters are then characterized by low values of µ𝜃𝑗

∗  (i.e., variations of 𝜃𝑗 do not 332 

correspond to significant variations in 𝑦). A high value of 𝜎𝜃𝑗
 indicates that 𝜃𝑗 influences 𝑦 in a non-linear 333 

fashion or through interactions with other model parameters. Thus, inspection of the Morris’ indices (15)-334 

(16) enables us to identify non-influential model parameters at an affordable computational cost (see also 335 

[63] and references therein). We follow the sampling strategy proposed by [64] for each experimental 336 

scenario. We then find that 80 parameters combinations within 𝜞𝑩 are sufficient to yield robust evaluations 337 

of the Morris’ indices. We then set the identified non-influential parameters to the value associated with 338 

their counterparts obtained during the preliminary calibration. We perform the final stochastic model 339 

calibration upon considering the parameter space of reduced dimensionality, i.e., 𝜞′. The extent of the 340 

support of the influential parameters within 𝜞′ coincides with its counterpart in 𝜞, while the non-influential 341 

parameters are set at the values obtained from the preliminary model calibration (we recall here that the 342 

numerosity of the population in the DE algorithm scales with N, i.e., the dimensionality of the space within 343 

which solutions are searched, see Sec. 2.3). 344 

3. Results 345 

In this Section we detail our results for the (i) oil-displacement and (ii) brine-displacement experiments. 346 

3.1. Oil-displacement scenario 347 



As detailed in Section 2.1, available observations comprise three-dimensional distributions of: (i) 348 

porosity across the core sample; and oil saturation (ii) at the beginning of the experiment, and during the 349 

(iii) transient (for a total of six observation windows) and (iv) the stationary regime. We complement this 350 

information with temporal histories of the core-scale pressure drop. During the experiment brine is injected 351 

at a constant flow rate of 15 ml/h. 352 

As a first step in the workflow (see Fig. 1), we perform a preliminary model calibration upon relying 353 

on the parameter space 𝜞 (see Table 3) and leveraging on the DE algorithm (see Sec. 2.3). Considering the 354 

stopping criterion stated in Sec. 2.3 yields a total of 183 model iterations (attaining a final value of the 355 

objective function J = 0.0096). The resulting combination of parameter values is listed in Table 3. The 356 

corresponding model results are depicted in Fig. 3. The latter includes (a) core-scale pressure drop versus 357 

time (blue and red curves corresponding to experimental data, ∆�̂�𝑡, and numerical results ∆𝑃𝑡, respectively); 358 

(b) scatter plots of simulated (𝑆𝑜,𝑖,𝑡) versus measured (�̂�𝑜,𝑖,𝑡) oil saturations at each voxel of the simulation 359 

grid and for the available acquisition times. Inspection of Figs. 3a-3b denotes an overall satisfactory 360 

agreement between experimental and numerical results that imbues us with confidence on the 361 

appropriateness of this preliminary model calibration step. At the same time, we note that our model tends 362 

to underestimate the steady state oil distribution. This might be due to some restriction in the former to rend 363 

the full dynamics of the oil-displacement experiment.  364 

We then evaluate the Morris’ indexes (see Sec. 2.4) by considering the behavioral parameter space 𝚪𝐁 365 

(see Table 3). Fig. 4 depicts the values of µ𝜃𝑗

∗  and 𝜎𝜃𝑗
 associated with temporal dynamics of (a) section-366 

averaged oil saturations (which are here considered for ease of representation, as opposed to their three-367 

dimensional counterparts) and (b) pressure drop. Inspection of Fig. 4 reveals that (i) [𝑘𝑟𝑜
∗ , 𝑚, 𝛾 ] and (ii) 368 

[𝑘𝑟𝑜
∗ , 𝛾 ] are characterized by small values of both µ𝜃𝑗

∗ and 𝜎𝜃𝑗
. Hence, we regard these sets of parameters as 369 

non-influential with respect to the spatial distribution of saturation (Fig. 4a) and pressure drop (Fig. 4b), 370 

respectively. We interpret these results by recalling that: (i) parameter m has a marked influence on the 371 

distribution of the absolute permeability and thus on the corresponding pressure drop required to sustain 372 



water flow through the sample; (ii) variations of 𝛾 across 𝛤𝛾
𝐵 do not lead to significant variations of 𝜉 and 373 

𝛽 (see also [39]) and therefore do not impact markedly on the investigated system state variables; (iii) 374 

according with Corey’s formulation (Eq. (8)) 𝑘𝑟𝑜 depends linearly on 𝑘𝑟𝑜
∗  (consistent with the small values 375 

of 𝜎𝑘𝑟𝑜
∗  depicted in Fig. 4a). Moreover, the low oil saturations recorded (see Figs. 2c and 3b) during the oil-376 

displacement experiment is associated with a low relative permeability of this phase, i.e., 𝑘𝑟𝑜 ≈ 0. Thus, 377 

variations in 𝑘𝑟𝑜
∗  within 𝛤𝑘𝑟𝑜

∗  
𝐵  have a limited effect on 𝑘𝑟𝑜 and, consequently, on the simulated state variables 378 

(as indicated by the small values of µ𝑘𝑟𝑜
∗

∗  in Fig. 4a). Eqs. (8)-(9) highlight that the exponent 𝑁𝑜 controls the 379 

(nonlinear) variation of 𝑘𝑟𝑜 with the normalized oil saturation, 𝑆𝑜
∗ = 1 −  𝑆𝑏

∗. This observation in consistent 380 

with the high values of 𝜎𝑁𝑜
 for 𝑆𝑜,𝑖,𝑡 in Fig. 4a.  381 

This set of results leads us to consider 𝑘𝑟𝑜
∗  and 𝛾 as non-influential. In the stochastic model calibration 382 

stage, we set 𝑘𝑟𝑜
∗ = 0.01 and 𝛾 = 146.76 (as obtained from the preliminary model calibration) and focus on 383 

(𝑚, 𝑘𝑟𝑏
∗ , 𝑁𝑏 , 𝑁𝑜, 𝐹𝑟) to minimize the objective function in Eq. (11) within the support 𝜞′ (see Table 3). 384 

Following the DE algorithm convergence criterion (Sec. 2.3), Fig. 5 depicts the empirical frequency 385 

distributions for (𝑚, 𝑘𝑟𝑏
∗ , 𝑁𝑏 , 𝑁𝑜, 𝐹𝑟) obtained on the basis of 100 inverse modeling solutions (vertical red 386 

lines demarcate the bounds of 𝜞𝑩). Inspection of Fig. 5 suggests that: (i) most of the instances of the 387 

frequency distribution of each parameter are confined within the bounds of 𝜞𝑩, supporting the selected 388 

ranges for the GSA; (ii) the frequency distributions for m and 𝑘𝑟𝑏
∗  display well defined peaks, in agreement 389 

with the high sensitivity of Δ𝑃𝑡 to these parameters (see Fig. 4b) and with the weight associated with 390 

pressure data in the objective function in Eq. (11); and (iii) the wide range of values spanned by the 391 

frequency distribution of No seems to be consistent with the low impact of this parameter on Δ𝑃𝑡 (see Fig. 392 

4b) as well as with the high value of 𝜎𝑁𝑜
 (Fig. 4a). The latter element suggests the presence of a non-linear 393 

contribution to the impact of No on 𝑆𝑜,𝑖,𝑡, or the effect of interactions between No and other model 394 

parameters. As such, it is possible that the combination of these two factors could lead to a higher 395 

uncertainty for No than for the other parameters. We further note that Fr is characterized by a similar 396 

behavior to that observed for 𝑁𝑜. Finally, the presence of a sharp peak in the empirical frequency 397 



distribution of 𝑁𝑏 does not seem to correlate with a high sensitivity of Δ𝑃𝑡 and/or 𝑆𝑜,𝑖,𝑡 (see Fig. 4) with 398 

respect to this parameter (note that Δ𝑃𝑡 is still sensitive to 𝑁𝑏, sensitivity being a necessary while otherwise 399 

not a sufficient condition for parameter identifiability, see e.g., [65], [66]). For completeness, in Appendix 400 

A we investigate the cross correlation for the estimated parameters that are relevant for the oil-displacement 401 

experiment.  402 

3.2. Brine-displacement experiment 403 

The brine-displacement experiment is designed upon setting a lower injection rate (i.e., 2 ml/h) of the 404 

invading phase than in the oil-displacement scenario. This enables us to collect (i) 14 snapshots of three-405 

dimensional spatial distributions of oil saturation during the transient regime and (ii) one image under 406 

stationary conditions, in addition to continuously recorded core-scale pressure drop. 407 

Following our workflow, we obtain a first set of model parameters compatible with the experimental 408 

observations through a preliminary model calibration relying on the parameter space 𝜞 (see Table 4). 409 

Achievement of convergence of the DE algorithm (according to the criterion outlined in Sec. 2.3) require a 410 

total of 118 iterations (attaining J = 0.020). Note that the high density and viscosity of the oil injected in 411 

the brine-displacement experiment leads to a reduced degree of control on the experimental value of the 412 

flow rate, some mild fluctuations being observed during the course of the experiment. This might hinder 413 

the quality of the match between ∆𝑃𝑡 and ∆�̂�𝑡 (see Fig. 6a), as also suggested by the increased value of J 414 

documented here as compared against its counterpart for the oil-displacement scenario. 415 

The resulting parameter combination is listed in Table 4. The corresponding inverse modeling results 416 

are collected in Figs. 6a, 6b. The former depicts core-scale pressure drop versus time (blue and red curves 417 

corresponding to experimental data and numerical results, respectively). The latter shows a scatter plot of 418 

simulated versus observed oil saturations at each voxel and for all acquisition times (i.e., 𝑆𝑜,𝑖,𝑡 versus �̂�𝑜,𝑖,𝑡). 419 

Inspection of Fig. 6 suggests an overall satisfactory agreement between experimental and numerical results 420 

stemming from the preliminary model calibration. Moreover, we note that the strong viscosity contrast 421 

leads to a sharp interface between the invading oil and the displaced brine phase. The latter behavior is 422 



visible from the experimental results collected in Fig. 2d. It is also clearly documented in Fig. 6b, where it 423 

is possible to recognize a set of voxels characterized by (i) high or (ii) low oil saturation (i.e., upstream and 424 

downstream region of the advancing front), jointly with (iii) a decreased amount of voxels characterized by 425 

intermediate values of saturation (i.e., at locations corresponding to the front region) as compared to the 426 

oil-displacement experiment. It is observed that the numerical results tend to overestimate the degree of oil 427 

saturation, especially during the initial period of the experiment (i.e., until approximately 7080 s) when 428 

high values of oil saturation are observed. This observation suggests that during the early stages the 429 

numerical model tends to render the advancement of the oil front at a rate that is faster than its 430 

experimentally observed counterpart. Nevertheless, there is a markedly high consistency between model 431 

results and experimental oil phase saturation values at steady state. 432 

We then evaluate the Morris’ indices by considering the behavioral parameter space 𝜞𝑩 (see Table 4). 433 

Fig. 7 depicts the values of µ𝜃𝑗

∗  and 𝜎𝜃𝑗
 for (a) (section-averaged) oil saturation (as a function of time and 434 

depth along the core) and (b) pressure drop across the core. Inspection of Figs. 7a-7b reveals that 𝑁𝑜 and 𝛾 435 

exhibit a very limited influence on both state variables. In contrast with what observed for the oil-436 

displacement experiment, we obtain low values also for 𝜎𝑁𝑜
. We interpret this result by considering that, 437 

due to the higher viscosity contrast, the advancing front is considerably sharper in the brine-displacement 438 

than in the oil-displacement scenario (see Figs. 2c and 2d). As a consequence, there is a lower portion of 439 

voxels that is characterized by intermediate values of 𝑆𝑜,𝑖,𝑡. Thus, variations in No (i.e., in the relative 440 

permeability curve far from the endpoints) are not associated with marked variations of the system 441 

dynamics. Another difference with respect to the oil-displacement experiment is that 𝑆𝑜,𝑖,𝑡 increases 442 

progressively in time and assumes values in the whole range [0, 1]. For these reasons (i) the quantity 𝑆𝑜𝑟 is 443 

not relevant in the description of this experiment, consistent with the low impact of 𝛾 (see Eq. (10)) and (ii) 444 

the oil phase is characterized by a non-negligible relative permeability (𝑘𝑟𝑜 ≫ 0) . This makes 𝑘𝑟𝑜
∗  an 445 

influential parameter, in particular for the pressure drop (see Fig. 7b). 446 



We then complete the stochastic model calibration stage by focusing on the reduced parameter space 447 

(𝑁𝑏 , 𝑘𝑟𝑏
∗ , 𝑘𝑟𝑜

∗ , 𝑚, 𝐹𝑟). We minimize the objective function Eq. (11) within the support 𝜞′ (see Table 4) while 448 

setting 𝑁𝑜 and 𝛾 to the values obtained in the preliminary model calibration step. Fig. 8 depicts the empirical 449 

frequency distributions (grounded on 100 inverse modeling solutions) for (𝑁𝑏 , 𝑘𝑟𝑏
∗ , 𝑘𝑟𝑜

∗ , 𝑚, 𝐹𝑟) (vertical red 450 

lines correspond to the bounds of 𝜞𝑩). Most of the frequency distributions obtained are contained within 451 

the limits of 𝜞𝑩, some exceptions being noted for 𝑘𝑟𝑜
∗  and m. This observation suggests that, for these 452 

parameters, the actual behavioral ranges could be wider than those considered in the GSA. Furthermore, 453 

the frequency distributions for the influential parameters tend to be more broadly distributed than their 454 

counterparts obtained in the oil-displacement experiment. This result can be attributed to the generally 455 

lower degree of sensitivity of Δ𝑃𝑡 and 𝑆𝑜,𝑖,𝑡 with respect to the influential parameters, as quantified by the 456 

values of µ𝜃𝑗

∗  and 𝜎𝜃𝑗
 (Fig. 7) when compared to those resulting for the oil-displacement experiment (Fig. 457 

4). This, in turn, prevents the identification of a clear peak in the resulting frequency distributions of the 458 

parameters. Considering the constraint associated with Eqs. (8) and (9), the parameter sets obtained lead to 459 

a sustained increase in oil relative permeability with oil saturation, i.e., relative oil permeability is 460 

significantly higher than the water relative permeability for intermediate and high oil saturations. For 461 

completeness, in Appendix A we investigate the cross correlation for the estimated parameters that are 462 

relevant for the brine-displacement experiment.  463 

4. Conclusions 464 

We propose a novel stochastic inverse modeling framework to assist interpretation laboratory-scale 465 

two-phase fluid displacement experiments. Our methodology is conducive to frequency distributions of 466 

model parameters and combines the Differential Evolution optimization algorithm and the use of Morris’ 467 

indices for global sensitivity analysis (GSA). Including GSA in the workflow enables us to mitigate the 468 

challenges related to large computational costs typically associated with the application of population-based 469 

optimization algorithms in stochastic inverse settings. 470 



The methodology is applied to interpret uniquely rich datasets. These include detailed temporal series 471 

of (i) three-dimensional spatial distributions of phase saturations and (ii) core-scale pressure drops. To cover 472 

a wide variety of scenarios, two sets of experiments are analyzed. These encompass an oil-displacement 473 

and a brine-displacement scenario, characterized by different density and viscosity contrasts between brine 474 

and oil. Our work leads to the following major conclusions. 475 

1. The results of our analyses clearly show that assisting stochastic inverse modeling through Global 476 

Sensitivity Analysis can considerably contribute to (a) clarification and quantification of the role 477 

of uncertain model parameters in driving the two-phase system dynamics and (b) reduction of the 478 

dimensionality of the uncertain model parameter space. The latter is a critical element to be 479 

considered in the context of a computationally intensive forward modeling scenario of the kind we 480 

consider. 481 

2. Amongst the uncertain model parameters embedded in the formulation considered, only 5 have 482 

been recognized as key sources of uncertainties significantly affecting the prediction of model 483 

outputs (i.e., temporal histories of detailed three-dimensional distribution of fluid saturations and 484 

pressure drop across the sample). These relevant parameters include, for both the experiments, the 485 

coefficient 𝑚 in the porosity/permeability relationship (Eq. (6)); 𝑘𝑟𝑏
∗  and 𝑁𝑏, controlling brine 486 

relative permeability curve (Eq. (7)); and 𝐹𝑟, associated with the irreducible brine saturation (Eq. 487 

(9)). Moreover, 𝑁𝑜 appeared to be relevant only in the oil-displacement scenario, while 𝑘𝑟𝑜
∗  affected 488 

appreciably the model outputs only in the brine-displacement experiment. 489 

3. The amount of information employed in the stochastic model calibration is very detailed and 490 

consistent with modern experimental capabilities. Our study fully takes advantage of these 491 

experimental evidences and provides a comprehensive analysis of the dynamics of two-phase flow 492 

in fractured/porous media. In all cases investigated, the stochastic approach is documented to be 493 

effective to identify frequency distributions of model parameters rendering a satisfactory agreement 494 

between experimental and numerical results (in a probabilistic sense). It forms a robust basis to 495 



effectively assist (a) interpretation of data associated with coreflooding practices, (b) further design 496 

of laboratory coreflooding experiments. 497 

From a practical perspective, the proposed workflow is structured across various steps (spanning from 498 

a preliminary model calibration to a stochastic calibration) to readily assist the efficient assessment of 499 

probability distributions of model parameters upon leveraging on the information content of the available 500 

experimental observations. We recall here that the workflow is fully compatible with the use of alternative 501 

specific techniques to complement those we selected in our application. For example, one can embed (i) 502 

other models for relative permeability curves (e.g., the LET model of [67]); (ii) different GSA approaches 503 

(e.g., the moment-based sensitivity indices of [27]) for parameter screening; or (iii) other stochastic 504 

calibration strategies (e.g., Monte Carlo Markov Chain as in [35,36]). The layout selected for the current 505 

applications is inspired by our expertise and knowledge and aims at attaining a balance among a variety of 506 

factors including, e.g., the representativeness of the numerical modeling approach, its accuracy and the 507 

associated computational burden. The latter might be reduced through the introduction of a surrogate model 508 

(e.g., [27,35,36,68]). Otherwise, it is remarked that the efficient assessment of a surrogate model for time-509 

dependent quantities, such as three-dimensional fluid phase distributions, is a non-trivial task. Thus, we 510 

opted to rely on the numerical model detailed in Sec. 2.2 across the various steps of the proposed workflow 511 

for the current application while deferring to future studies the detailed analysis of the effects of introducing 512 

a surrogate model. 513 
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Appendix A. Estimated parameters cross correlations 528 

Figure A1 depicts the scatter plots between the sets of calibrated parameters for (a) the oil- and (b) the 529 

brine-displacement scenario, respectively. Inspection of Fig. A1a does not reveal any clear degree of 530 

correlation between the pairwise sets of estimated parameters, with the sole exception of 𝑁𝑜 and 𝐹𝑟 that 531 

appear to display a mild positive correlation. The emergence of such pattern is imprinted/driven by the 532 

information content provided by the available data. It suggests that oil displacement in case of an increased 533 

brine saturation (corresponding to an increase of 𝑁𝑜) tends to be harder when the fraction of irreducible 534 

brine increases (i.e., 𝐹𝑟 increases). Otherwise, inspection of Fig. A1b suggests a negative correlation 535 

between 𝑁𝑏 and 𝐹𝑟. This reflects a tendency towards a facilitated displacement of brine (i.e., a decrease of 536 

𝑁𝑏) as the irreducible water content increases (i.e., 𝐹𝑟 increases). Stochastic model calibration on the 537 

available data also suggests that the coefficient m is (i) negatively correlated with 𝑘𝑟𝑏
∗ , 𝑘𝑟𝑜

∗  and (ii) positively 538 

correlated with 𝑁𝑏. These results denote a tendency to balance between those parameters that control the 539 

overall resistance to flow of the fluid phases through the sample, i.e., the absolute values of the 540 

permeabilities (an increase in m leads to a reduced flow resistance) and the values attained by 𝑘𝑟𝑏
∗  (higher 541 

values lead to less flow resistance) and 𝑁𝑏 (lower values correspond to less flow resistance) for the brine 542 

and the values of 𝑘𝑟𝑜
∗  (higher values lead to less flow resistance) for the oil phase. The same type of 543 

conceptual picture could be associated with the positive correlation that is noted between 𝑘𝑟𝑏
∗  and 𝑘𝑟𝑜

∗ . 544 

Overall, these sets of results highlight that parameters associated with an equifinality (in particular with 545 

respect to the core-scale pressure drop) are harder to be identified for our two scenarios, especially for the 546 



brine-displacement scenario (note that parameters displaying correlation with some others tend to be 547 

characterized by broad frequency distributions; see Fig. A1).  548 
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Figures 761 

 762 

Fig. 1. Sketch of the proposed workflow: (i) collection of experimental datasets; (ii) preliminary model 763 
calibration to assess a plausible combination of parameters (see Sec. 2.3); (iii) Global Sensitivity Analysis 764 
(see Sec. 2.4) across a behavioral parameter space to identify influential parameters; (iv) Stochastic model 765 
calibration to assess frequency distributions of influential model parameters (see Sec. 2.4). 766 



 767 

Fig. 2. Sketch of the experimental set-up (a); three-dimensional distributions of sample porosity, �̂�𝑖 (b); 768 

three-dimensional distributions of oil saturation, �̂�𝑜,𝑖,𝑡, at various acquisition times for the oil- (c) and brine- 769 

(d) displacement experiments. Spatial resolution associated with experimental data is 0.997 × 0.993 × 0.996 770 
mm3. 771 

 772 

 773 



 774 

Fig. 3. Application of the proposed workflow to the oil-displacement scenario. Preliminary model 775 

calibration results: (a) experimental (∆�̂�𝑡, blue curve) and numerical (∆𝑃𝑡, red curve) temporal pattern of 776 

core-scale pressure drop; (b) scatter plots of experimental oil saturations (�̂�𝑜,𝑖,𝑡) versus their numerical 777 

counterparts (𝑆𝑜,𝑖,𝑡, symbols) at available observation times. 778 

 779 



 780 

Fig. 4. Application of the proposed workflow for the oil-displacement scenario. Global Sensitivity Analysis 781 

results: Morris’ sensitivity indices (i.e., µ𝜃𝑗

∗  (15) and σ𝜃𝑗
 (16)) for (a) (section-averaged) oil saturation and 782 

(b) core-scale pressure drop. 783 



 784 

Fig. 5. Application of the proposed workflow for the oil-displacement scenario. Stochastic model 785 
calibration results: empirical frequency distributions for the set influential parameters (see Table 3). Red 786 
lines indicate the boundaries of the corresponding behavioral range; the green line correspond to the 787 
parameter values obtained through the preliminary model calibration stage. 788 

 789 



 790 

Fig. 6. Application of the proposed workflow for the brine-displacement scenario. Preliminary model 791 

calibration results: (a) experimental (∆�̂�𝑡, blue curve) and numerical (∆𝑃𝑡, red curve) temporal pattern of 792 

core-scale pressure drop; (b) scatter plots of experimental oil saturations (�̂�𝑜,𝑖,𝑡) versus their numerical 793 

counterparts (𝑆𝑜,𝑖,𝑡, symbols) at available observation times. 794 



 795 

Fig. 7. Application of the proposed workflow for the brine-displacement scenario. Global Sensitivity 796 

Analysis results: Morris’ sensitivity indices (i.e., µ𝜃𝑗

∗  (15) and σ𝜃𝑗
 (16)) for (a) (section-averaged) oil 797 

saturation and (b) core-scale pressure drop. 798 



 799 

Fig. 8. Application of the proposed workflow for the brine-displacement scenario. Stochastic model 800 
calibration results: empirical frequency distributions for the set influential parameters (see Table 4). Red 801 
lines indicate the boundaries of the corresponding behavioral range; the green line correspond to the 802 
parameter values obtained through the preliminary model calibration stage. 803 

  804 



 805 
Figure A1. Scatter plot matrix for pairwise sets of parameter values stemming from stochastic model 806 

calibration considering the (a) oil and (b) brine displacement scenarios. Color gradation is indicative of the 807 

underlying bivariate probability function. 808 



Tables 809 

PROPERTY SYMBOL VALUE 

LENGTH (cm) 𝑙 20.1 

DIAMETER (cm) 𝐷 3.8 

PORE VOLUME (ml) PV 38.2 

POROSITY (%) 〈�̂�〉 16.7 

ABSOLUTE PERMEABILITY (mD) 

AT BRINE SATURATION SB = 1 

K 31.0 

Table 1. Key properties of the Berea sandstone core sample.  810 

 811 

PROPERTY SYMBOL OIL-DISPLACEMENT 

EXP 

BRINE-DISPLACEMENT 

EXP 

OIL DENSITY (g/ml)   𝜌𝒐 0.76  0.86  

OIL VISCOSITY (cp) 𝜇𝑜 1.41 93.2  

BRINE DENSITY (g/ml) 𝜌𝑏 1.13 1.13 

BRINE VISCOSITY (cp) 𝜇𝑏 1.11 1.11 

Table 2. Key properties of the fluids employed in the oil-displacement and brine-displacement experiments. 812 
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 PRELIMINARY MODEL 

CALIBRATION RESULTS 

PARAMETER RANGE 

FOR SUPPORTS 𝜞 AND 𝜞′ 

PARAMETER 

RANGE FOR 

 𝜞𝑩 

𝑵𝒃 1.00 [0-10] [0-2.5] 

𝑵𝒐 4.73 [0-10] [3.5-5.5] 

𝒌𝒓𝒃
∗  0.09 [0-1] [0-0.3] 

𝒌𝒓𝒐
∗  0.01 [0-1] [0-0.2] 

𝒎 19.61 [10-22] [15-22] 

𝑭𝒓 0.78 [0-1] [0.7-0.9] 

𝜸 146.76 [0-180] [120-160] 

Table 3. Results of the preliminary model calibration stage and ranges of model parameter values 815 

associated with the preliminary model calibration (𝜞), reduced (𝜞′, only bold ranges) and behavioral (𝜞𝑩) 816 
parameter spaces. Oil-displacement experiment. 817 
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 PRELIMINARY MODEL 

CALIBRATION RESULTS 

PARAMETER RANGE 

FOR SUPPORTS 𝜞 AND 𝜞′ 

PARAMETER 

RANGE FOR 

 𝜞𝑩 

𝑵𝒃 2.02 [0-10] [1-3] 

𝑵𝒐 4.15 [0-10] [3-5] 

𝒌𝒓𝒃
∗  0.15 [0-1] [0.1-0.2] 

𝒌𝒓𝒐
∗  0.85 [0-1] [0.7-0.95] 

𝒎 14.01 [10-22] [13.5-15] 

𝑭𝒓 0.97 [0-1] [0.8-1] 

𝜸 95.89 [0-180] [80-100] 

Table 4. Results of the preliminary model calibration stage and ranges of model parameter values 820 

associated with the preliminary model calibration (𝜞), reduced (𝜞′, only bold ranges) and behavioral (𝜞𝑩) 821 
parameter spaces. Brine-displacement experiment. 822 
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