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Abstract: This paper deals with a method for generating symmetrical trapezoidal acceleration profiles
for the motor of a vibrating system in rest-to-velocity motion. The aim was to significantly reduce
the acceleration time and residual load vibration of lightly damped systems. Under undamped
conditions, the analytical values of the jerk time are found to be in relation to the estimated natural
frequency and the minimum value of the acceleration time is provided, also taking into account
a limit value for motor acceleration. The analysis of the sensitive curves allows the designer to
understand the magnitude of the residual vibration generated by an incorrect estimate of the natural
frequency. Numerical simulations, with a closed-chain controlled motor and a zero or very small
structural damping coefficient of the oscillating system, confirm the validity of the proposed method.

Keywords: residual vibrations; trapezoidal acceleration profile; optimization; robust control; sensitive
curves

1. Introduction

Oscillating systems are often found in machines in which a motor is controlled by
means of a closed chain with co-located actuation and measurement and a load is con-
nected to the motor through an equivalent compliant shaft. The mechanical system can be
modelled with two modes: a rigid mode and a vibrating one.

Examples range from flexible robots to pick-and-place machines, cranes, microma-
chines, satellites, etc. Productivity demands require a reduction in the load motion time.
This means minimizing its settling time, evaluated from the start of the motor motion.

The rationale is to minimize the sum of the motion time of the motor reference and
the subsequent free vibrations of the load, which must be strongly attenuated or even
suppressed as a consequence of the motor motion profile.

In addition to solutions based on mechanical system modification or feedback control,
there is the command shaping [1], which is a profiling technique of the motor command
through adequate algorithms based on system dynamics. Compared with feedback control,
command shaping does not require sensors for measurements and acts preemptively,
without the delay caused by a closed chain. However, it includes a delay with respect to
the specified motion time. Obviously, the designer of the motion profile must have some
information about the natural frequency of the load oscillations, but often with a margin of
uncertainty. Furthermore, excepting the fact that it is much less than one, the dimensionless
structural damping coefficient of the load oscillations is more often than not unknown.
Therefore, one of the main problems of command shaping is that it must be robust with
respect to these uncertainties.

The technical literature in this regard is very extensive. A review of papers concerning
the dynamic analysis of flexible manipulators was presented by Dwivedy and Eberhard
in [2], and another concerning the command shaping technique by Singhose in [3]. Other
more recent papers presented the application of command shaping techniques to robots,
cranes, satellites, dielectric elastomer actuators, etc., optimizing them with artificial intelli-
gence, combining them with feedback control, applying them to multi-mode and non-linear
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systems, and taking into account initial and final conditions that are different from zero, etc.
Rashidifar et al. [4] used genetic algorithms to optimize a command shaping technique for
a single link of a flexible robot. Huang et al. [5] studied the dynamics of double-pendulum
cranes with distributed-mass beams, in which the system parameters have a large effect on
the second mode natural frequency, and applied robust command smoothing at the input
to suppress the payload oscillations. Kotake et al. [6] suppressed the residual vibrations
of a hoisting load by applying appropriate feed-forward acceleration to the trolley; the
solution works within a natural period with small swing angles, and within longer times
with large ones. Alghanim et al. [7] optimized the generation of discrete time-shaped
acceleration profiles that eliminate payload oscillations during simultaneous travel and
hoisting maneuvers and show robust performance. Mar et al. [8] considered a double
pendulum and applied a combined input shaping and feedback control, which allows fast
point-to-point motion and effective attenuation of the external disturbance effect, while
also being robust with respect to model uncertainties. Fujioka and Singhose [9] controlled
a non-linear double-pendulum by developing an optimized input-shaped model reference
control based on a single-pendulum. They used a Ljapunov control law referred to the
first mode and optimized the controller parameters to minimize the motion time in the
presence of different constraints. Maghsoudi et al. [10] considered a non-linear gantry
crane with a variable cable length and reduced vibrations by using a command shaper with
distributed delay. Ichikawa et al. [11] studied a command shaper applied to the control
of a quadrotor to reduce the oscillations of a suspended payload. Hou et al. [12] designed
a shaped reference angular acceleration to reduce residual vibration at the end of flexible
satellites maneuvers. Sharma [13] developed a command shaper to attenuate vibration of
an electro-statically driven dielectric elastomer actuator when it is subject to a multi-step
input signal. Newmann et al. [14] studied a neural network to predict the pose-dependent
natural frequency of a robot and used it in conjunction with a command shaping technique
to attenuate vibration. Alhazza et al. [15] modified a smooth waveform command shaper to
improve its behavior in a point-to-point motion with non-zero initial and final conditions.

Other papers modified the command input to attenuate undesired vibrations. Hosh-
yari et al. [16] investigated a method for retargeting artist-specified inputs on the motors
of physical flexible robot characters to minimize unwanted structural vibrations while
respecting the artist’s intention. Shah et al. [17] optimized the input voltage waveform of a
piezoelectric inkjet printhead by introducing, after a first pulse for jetting, a second pulse to
attenuate residual vibrations of the actuating membrane.

Other works are closer to the approach of the present paper. Ha et al. [18] minimized
the residual vibrations induced by different types of trapezoidal acceleration profiles by
applying a pole-zero cancellation technique that shows robustness against the modeling
errors. Yoon et al. [19] applied trapezoidal velocity profiles in a point-to-point motion,
whose acceleration and deceleration time must contain an integer number of natural
periods to suppress residual vibrations. Meckl and Arestides [20] applied a torque input
and optimized trapezoidal acceleration profiles to obtain the minimum motion time of the
load with an acceleration limit of the motor.

This paper deals with a rest-to-velocity motion, but it is also preparatory to another
paper concerning a point-to-point motion. It considers symmetrical trapezoidal acceleration
profiles (STAP) as input. Even today, STAPs are widely used in both rest-to-velocity and
point-to-point motions. Moreover, in many industrial control systems a STAP is the only
acceleration profile that the operator can implement. The STAPs have the advantage of
simplicity and offer the possibility of reducing load vibration in a system with an oscillating
dof. The acceleration time ta and the two jerk times tj, corresponding to the two oblique
sides of the trapezoid, must be chosen appropriately to achieve the minimum load settling
time, evaluated from the start of the motion.

As mentioned above, the settling time of the load is the sum of two parts: the ac-
celeration time ta of the motor reference and the subsequent time taken by the residual
vibrations of the load to abate. The proposed solution is sub-optimal, since the latter time
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is estimated on the base of the sensitivity curve (SC), i.e., of the amplitude of the residual
velocity oscillation without any damping, with respect to the steady-state value, when the
actual natural frequency is different from the estimated one. This SC of velocity is similar
to that of position described in [1,3].

This work draws inspiration from [20]; however, compared with it, the input is not
a torque command, but the motor acceleration. Moreover, the field of investigation is
enlarged to acceleration times ta that are greater than twice the minimum possible value
ta,min due to the acceleration limit

..
ϑMax of the motor, and thus to STAPs that cannot reach

this acceleration. The acceleration limit
..
ϑMax is also discussed, taking into account the

oscillations of motor torque and load acceleration. Furthermore, the dimensionless analysis
was performed with reference to the acceleration time ta and not to ta,min. This allows the
designer to have an analytical formula that expresses the jerk time as a function of the
natural frequency for the conditions of zero residual vibration of the load. In addition, the
limits set on the acceleration time ta by the natural frequency fn of the oscillating system
were investigated. Finally, the analysis of the SCs allows the designer to judge the machine
from the point of view of the residual vibration of the load velocity when the natural
frequency is different from the estimated one.

Specifically, in this paper, Section 2.1 deals with the system model. Section 2.2 analyzes
the acceleration profile of the motor in relation to ta,min, while Section 2.3 investigates the
zero residual vibrations conditions of the load. Section 2.4 analyzes the SCs, which show
the maximum residual velocity oscillation when the natural frequency is different from
the estimated one. Section 3 discusses the results using various examples, and Section 4
provides guidelines for designing the STAP once the specifications are given. Finally,
Section 5 presents the conclusions.

2. Materials and Methods

This section is divided into four sub-sections. In the first, the model of the oscillating
system is presented and the corresponding equations are obtained in both the time and
Laplace domains. In the second, the general characteristics of a STAP for a rest-to-velocity
motion of the motor are studied, taking into account the acceleration limit of the motor.
In the third, the residual vibration suppression is achieved by equating the exciting term,
evaluated at the undamped natural frequency of the system, to zero. This allows the
designer to obtain analytical expressions of the jerk time as a function of the estimated
natural frequency. In the fourth, the SCs are considered, taking into account an inaccurate
estimate of the natural frequency and the dimensionless damping coefficient.

2.1. System Model

The oscillating system is shown in Figure 1. The motor, whose moment of inertia is
JM, moves the load, whose moment of inertia is JL, through a compliant shaft. The shaft
inertia is negligible, its torsional stiffness is k and its structural damping coefficient is c. The
equivalent viscous resistance inside the motor is neglected. The motor torque is Mm and its
absolute value has a maximum MM,max due to the electronic driver feeding the motor.

The motor velocity is controlled by a closed chain and its bandwidth and load distur-
bance attenuation are such that the motor is assumed to perfectly execute the reference
velocity profile. In general, the smaller the ratio JL/JM, the more acceptable these as-
sumptions are. Therefore, the designed acceleration profile

..
ϑ(t) becomes a kinematic

time-dependent constraint applied to the motor, with respect to which the load oscillates.
The undamped natural frequency is

Ωn =

√
k
JL

(1)
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while the corresponding frequency is

fn =
Ωn

2π
(2)

and the dimensionless structural damping coefficient is

ζ =
c

2
√

kJL
. (3)

The differential equation governing the position ϑl of the load with respect to the
motor is ..

ϑl
Ω2

n
+ 2ζ

.
ϑl

Ωn
+ ϑl = −

..
ϑ

Ω2
n

. (4)

The velocity of the load with respect to the motor is governed by the differential equation

...
ϑ l

Ω2
n
+ 2ζ

..
ϑl

Ωn
+

.
ϑl = −

1
Ω2

n

d
..
ϑ

dt
. (5)

_.
ϑ l is the relative velocity of the load made dimensionless by dividing

.
ϑl by the

maximum velocity
.
ϑmax of the motor, which is a specification, i.e.,

_.
ϑ l =

.
ϑl

.
ϑmax

, (6)

and, therefore, Equation (5) becomes

..
_.
ϑ l

Ω2
n
+ 2ζ

.
_.
ϑ

Ωn
+

_.
ϑ l = −

1
.
ϑmaxΩ2

n

d
..
ϑ

dt
. (7)

The corresponding Laplace transform is(
s2

Ω2
n
+ 2ζ

s
Ωn

+ 1
)_.

Θl(s) = −
s

.
ϑmaxΩ2

n

..
Θ(s). (8)
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2.2. Trapezoidal Acceleration Profile of the Motor for a Rest-to-Velocity Motion

The case of a rest-to-velocity motion with a STAP is now taken into consideration.
Apart from its specific importance, as mentioned above, this case is also preparatory to a
point-to-point motion.
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Figure 2 shows a STAP. The acceleration time is equal to ta, while the two jerk times
are equal to tj. The two jerk times allow for the reduction of the load oscillations. The

acceleration is constant and equal to its maximum value
..
ϑmax during time tc. Because of

the symmetry of the acceleration profile, the maximum value tj,max,1 that tj can assume is

tj,max,1 =
1
2

ta. (9)

Machines 2022, 10, 767 6 of 31 
 

 

1
1

=
−
a,v

j

c
t

.  (14)

Therefore, the expression of ϑmax  becomes 

ϑϑ =


 max
max a , v

a

c
t

.  (15)

 
Figure 2. Symmetrical trapezoidal acceleration profile. 

Figure 3 shows the profile of a,vc  versus 


jt . In the same figure, a generic STAP is 
drawn, together with two limit profiles in which, respectively: 

1. 


jt  is equal to zero. The acceleration profile is rectangular, i.e., the acceleration is con-
stant throughout the total acceleration time at  and assumes its minimum value, 
which is the average value ϑmax at . The constant acceleration time ct is equal to at
; 

2. 


jt  is equal to one half. The acceleration profile is triangular and the maximum accel-
eration ϑmax  is reached at time 1 2 at  and assumes its maximum possible value 
2 max atϑ , which is twice the average value ϑmax at . In this case, the constant acceler-
ation time ct  is equal to zero. 

 

Figure 3. Profile of a,vc  versus 


jt  and different dimensionless STAPs. 

The jerk is finite unless 
jt  is equal to zero. From Equations (11) and (12), the maxi-

mum value of the jerk is given by 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.00 0.20 0.40 0.60 0.80 1.00 1.20

θ

t

θmax
¨

tc
tj tj ta

¨

0.00

0.50

1.00

1.50

2.00

2.50

0.00 0.20 0.40 0.60 0.80 1.00 1.20

c a
,v

tj /ta

ca,v

Rectangular acceleration

Trapezoidal acceleration

Triangular acceleration

1/2

2

1
t/ta

1

Figure 2. Symmetrical trapezoidal acceleration profile.

The maximum velocity reached by the motor is
.
ϑmax and is equal to the area under

the acceleration profile. Therefore, its value is

.
ϑmax =

..
ϑmax

(
ta − tj

)
. (10)

Initially, the specifications are only ta and
.
ϑmax. Incidentally, in the end, ta must be

chosen so as to minimize the load settling time. Hence, from Equation (10), the maximum
acceleration

..
ϑmax is equal to

..
ϑmax =

.
ϑmax

ta − tj
. (11)

The expression of the dimensionless jerk time
_
t j with respect to ta is

_
t j =

tj

ta
. (12)

Therefore,
..
ϑmax assumes the expression

..
ϑmax =

.
ϑmax

ta

1(
1−

_
t j

) , (13)

in which
.
ϑmax/ta is the average acceleration. The dimensionless acceleration coefficient ca,v

for velocity is

ca,v =
1

1−
_
t j

. (14)

Therefore, the expression of
..
ϑmax becomes

..
ϑmax = ca , v

.
ϑmax

ta
. (15)

Figure 3 shows the profile of ca,v versus
_
t j. In the same figure, a generic STAP is

drawn, together with two limit profiles in which, respectively:
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1.
_
t j is equal to zero. The acceleration profile is rectangular, i.e., the acceleration is
constant throughout the total acceleration time ta and assumes its minimum value,
which is the average value

.
ϑmax/ta. The constant acceleration time tc is equal to ta;

2.
_
t j is equal to one half. The acceleration profile is triangular and the maximum acceler-

ation
..
ϑmax is reached at time 1/2 ta and assumes its maximum possible value 2

.
ϑmax/ta,

which is twice the average value
.
ϑmax/ta. In this case, the constant acceleration time

tc is equal to zero.
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The jerk is finite unless tj is equal to zero. From Equations (11) and (12), the maximum
value of the jerk is given by

...
ϑ max =

..
ϑmax

tj
=

.
ϑmax

tj
(
ta − tj

) =

.
ϑmax

t2
a

1
_
t j

(
1−

_
t j

) . (16)

Introducing the jerk coefficient cj,v for velocity, its expression is

cj,v =
1

_
t j

(
1−

_
t j

) , (17)

and the expression of
...
ϑ max becomes

...
ϑ max = cj,v

.
ϑmax

t2
a

. (18)

Figure 4 shows cj,v versus
_
t j and the corresponding jerk profiles for a generic STAP,

for a rectangular one, and for a triangular one.
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Now, in addition to ta and
.
ϑmax, there is another specification: the maximum value

..
ϑMax that the maximum acceleration

..
ϑmax can take. The value of

..
ϑMax is specified with a

margin of uncertainty. In fact, it can depend on the following:

- The maximum motor torque Mm,Max caused by the electronic driver feeding the motor.
Nevertheless, with respect to the value

..
ϑMax =

Mm,Max

JM + JL
, (19)

which is the corresponding acceleration of the nodal section, it is necessary to take into
account both the oscillations of the motor torque caused by load vibrations, resulting from
an incorrect estimate of the natural frequency, and those caused by the fact that the motor
cannot perfectly perform the reference velocity, even at no load;

- The transmission and load limits (the transmission is not represented in the model
in Figure 1); however, in this case once again, the load vibrations must be taken
into account.

In any case,
..
ϑMax is generalized to the motor. It is obvious that

..
ϑmax ≤

..
ϑMax. (20)

From
..
ϑMax it is possible to find the minimum value ta,min [20] that the specified

acceleration time ta can take, when the maximum velocity
.
ϑmax is reached with constant

acceleration
..
ϑMax:

ta,min =

.
ϑmax
..
ϑMax

. (21)

Thus, ta satisfies the inequality

ta ≥ ta,min. (22)

Achieving the acceleration limit acts to minimize the acceleration time ta, but it restricts
the family of STAPs capable of doing so. In fact, if

..
ϑMax is such that

.
ϑmax/ta ≤

..
ϑMax ≤ 2

.
ϑmax/ta, (23)

then .
ϑmax/

..
ϑMax ≤ ta ≤ 2

.
ϑmax/

..
ϑMax, (24)

i.e., keeping in mind Equation (21),

ta,min ≤ ta ≤ 2ta,min. (25)

Therefore, to achieve the velocity
.
ϑmax, the possibility of reaching the acceleration

limit
..
ϑMax is limited to STAPs whose acceleration time ta satisfies the inequalities in

Equation (25).

For a given ta, a maximum value
_
t j,max,2 of

_
t j derives from this new constraint. It can

be obtained from Equation (13), by isolating
_
t j and assuming that

..
ϑmax is equal to

..
ϑMax:

_
t j,max,2 = 1−

.
ϑmax

..
ϑMaxta

= 1− ta,min

ta
≤ 1

2
, (26)

or, in dimensional terms,
tj,max,2 = ta − ta,min ≤ ta,min. (27)
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If the inequalities in Equation (25) are met, both the inequalities in Equations (9) and (27)
must be satisfied and the global maximum value tj,max of tj is

tj,max = min
(
tj,max,1, tj,max,2

)
= tj,max,2. (28)

Its value reaches one half of ta in the limit condition

ta = 2ta,min. (29)

If the inequalities in Equation (25) are satisfied and the acceleration limit
..
ϑMax is

reached, the acceleration profile always shows its second vertex V at time ta,min, as is shown
in Figure 5 for a generic value of ta and for two limit cases, when ta is equal to ta,min and
2ta,min, respectively. It is then evident that, in general, the constant acceleration time tc
is less than ta,min, unless ta is equal to ta,min and thus tj is equal to zero. Furthermore, if
Equation (29) is met, the acceleration profile is triangular and tc is equal to zero.

Machines 2022, 10, 767 9 of 31 
 

 

a,mint  and 2 a,mint , respectively. It is then evident that, in general, the constant acceleration 

time ct  is less than a,mint , unless at  is equal to a,mint  and thus jt  is equal to zero. Fur-
thermore, if Equation (29) is met, the acceleration profile is triangular and ct  is equal to 
zero. 

 
Figure 5. Dimensionless trapezoidal acceleration profiles when the inequalities in Equation (25) 
are met. 

On the contrary, if 

2>a a,mint t ,  (30)

to achieve the maximum velocity ϑm ax , the acceleration limit ϑM ax  cannot be reached by 
a STAP. The STAP that reaches ϑM ax  with the maximum value of at  is the triangular 
example in Figure 5, when at  is equal to 2 a,mint . When at  satisfies the inequality in 
Equation (30), among all STAPs that allow for the same maximum velocity ϑm ax , the tri-

angular acceleration profile reaches the maximum possible acceleration ,ϑmax M  given by 

2ϑϑ =


 Max
max,M

a

a,min

t
t

,  
(31)

which is less than ϑM ax . 
In this case, the maximum value of jt  is 

1
2

=


j,maxt .  (32)

Figure 6 shows the profile of 


j,maxt  versus a a,mint t . 

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2

θ
/θ

M
ax

ta /ta,min

¨

1

1 2

V

¨

Figure 5. Dimensionless trapezoidal acceleration profiles when the inequalities in Equation (25)
are met.

On the contrary, if
ta > 2ta,min, (30)

to achieve the maximum velocity
.
ϑmax, the acceleration limit

..
ϑMax cannot be reached by a

STAP. The STAP that reaches
..
ϑMax with the maximum value of ta is the triangular example

in Figure 5, when ta is equal to 2ta,min. When ta satisfies the inequality in Equation (30),
among all STAPs that allow for the same maximum velocity

.
ϑmax, the triangular acceleration

profile reaches the maximum possible acceleration
..
ϑmax,M given by

..
ϑmax,M =

2
..
ϑMax

ta
ta,min

, (31)

which is less than
..
ϑMax.

In this case, the maximum value of tj is

_
t j,max =

1
2

. (32)

Figure 6 shows the profile of
_
t j,max versus ta/ta,min.
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Figure 6. Profile of
_
t j,max versus ta/ta,min.

It is evident that, within the range defined by the inequalities in Equation (25), there
are also other STAPs whose area is equal to

.
ϑmax, but whose maximum acceleration is less

than
..
ϑMax. Nevertheless, with the same value of tj, these profiles require a greater value

of ta than profiles that reach
..
ϑMax. An example is given by the rectangular acceleration

profiles (tj is equal to zero), whose maximum acceleration
..
ϑmax,m is

..
ϑmax,m =

..
ϑMax

ta
ta,min

. (33)

With a given ta, this is the minimum possible maximum acceleration that satisfies the
inequalities in Equation (25) (the violet curve in Figure 7). A rectangular acceleration profile
with a given value of ta that satisfies the inequality in Equation (30) is still characterized by
the minimum possible maximum acceleration

..
ϑmax,m, given by Equation (33).
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Figure 7. Profiles of
..
ϑmax,M/

..
ϑMax (continuous blue curve) and

..
ϑmax,m/

..
ϑMax (dashed blue curve)

versus ta/ta,min; dimensionless triangular and rectangular acceleration profiles.

Figure 7 shows the aforementioned profiles using dimensionless quantities. It can
be noted that the right vertex of a rectangular acceleration profile is also the vertex of the
triangular profile with a double value of ta.

The dark green triangle is the acceleration limit profile with ta equal to 2ta,min, the light
green curve is a triangular acceleration profile with ta greater than 2ta,min, the red rectangle
is the acceleration profile with ta equal to ta,min, and the pink rectangle has an acceleration
time that is half that of the light green one. The violet rectangle is characterized by a value
of ta less than 2ta,min and therefore does not reach

..
ϑMax.

2.3. Suppression of the Residual Oscillations of the Load

The natural frequency fn and the dimensionless damping coefficient ζ are assumed
not to be known with any accuracy, even though ζ is much smaller than one. In the design
of the STAP, ζ is assumed to be equal to zero, while fn,e is an estimated value of fn.
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With the STAP, the Laplace transform of the differential Equation (7) becomes(
s2

Ω2
n
+ 2ζ

s
Ωn

+ 1
)_.

Θl(s) = −
s

..
ϑmax

.
ϑmaxta

_
t js2Ω2

n

[
1− e−sta

_
t j − e−sta(1−

_
t j) + e−sta

]
, (34)

and, keeping in mind Equations (13) and (17), the result is(
s2

Ω2
n
+ 2ζ

s
Ωn

+ 1
)_.

Θl(s) = −
tacj,v

staΩ2
nt2

a

[
1− e−sta

_
t j − e−sta(1−

_
t j) + e−sta

]
. (35)

If a harmonic analysis is carried out, substituting s for its imaginary part iΩ, the
result is(

1− Ω2

Ω2
n
+ i2ζ

Ω

Ωn

)_.
Θl(iΩ) = i

tacj,v

ΩtaΩ2
nt2

a

[
1− e−iΩta

_
t j − e−iΩta(1−

_
t j) + e−iΩta

]
. (36)

The exciting term E, on the right-hand side, is equal to

E = i
tacj,v

ΩtaΩ2
nt2

a

[
1− e−iΩta

_
t j − e−iΩta(1−

_
t j) + e−iΩta

]
. (37)

If the system has no damping, ζ is equal to zero and Equation (36) becomes(
1− Ω2

Ω2
n

)_.
Θl(iΩ) = i

tacj,v

ΩtaΩ2
nt2

a

[
1− e−iΩta

_
t j − e−iΩta(1−

_
t j) + e−iΩta

]
. (38)

Under these conditions (ζ is equal to zero), in order to make the residual vibrations
zero, the system is considered in resonance conditions, i.e., Ω is equal to Ωn. The necessary
consequences are drawn for the exciting term E, whose absolute value must be zero in order
to avoid the introduction of excitation energy into the system at the undamped natural
frequency Ωn [20].

Keeping in mind Equation (2), the exciting term E becomes

E = i
tacj,v

(2π)3 f 3
n t3

a

[
1− e−i2π( fnta)

_
t j − e−i2π( fnta)(1−

_
t j) + e−i2π( fnta)

]
. (39)

The dimensionless term
rn,a = fnta (40)

is the number of undamped free oscillations of the system during time ta. It is not necessar-
ily an integer number and increases with fn and ta.

In Equation (39), E is proportional to ta and depends on fnta and
_
t j in a complex

way. It also depends on
_
t j through cj,v (Equation (17)). If u denotes the term in brackets in

Equation (39), i.e.,

u = 1− e−i2π( fnta)
_
t j − e−i2π( fnta)(1−

_
t j) + e−i2π( fnta), (41)

the exciting term E can also be written as

E = i
tacj,v

(2π)3( fnta)
3 u. (42)

As said above, in order to avoid residual vibrations the absolute value of the exciting
term E must be equal to zero at the undamped natural frequency Ωn. The analysis of
Equation (42) shows that what must be equal to zero is just u, which depends on rn,a and
_
t j, except for the particular case in which

_
t j is equal to zero and cj,v tends to infinity.
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For a given value of rn,a, the absolute value of u can be represented as a function of
_
t j, while for given values of rn,a and ta, the absolute value of E can be represented as a

function of
_
t j.

Figure 8a,b show an example of the absolute values of E and u versus
_
t j with rn,a

equal to 6.7 and ta equal to 0.2 s. The maximum abscissa is obviously equal to 0.5. If ta is

less than 2ta,min, only the part of the curves whose abscissa is not greater than
_
t j,max must

be considered. This means that, in this case, for a given ta, it is advisable to draw a vertical

line whose abscissa
_
t j,max is smaller than one half, and to only consider the part of the

curves that is not to the right of this line.
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_
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The diagrams of |E| and |u| show the same zeros, regularly spaced, apart from the

abscissa
_
t j equal to zero, where |u| is always equal to zero, whereas |E| can assume a

positive value. To avoid residual vibrations of the load,
_
t j should assume the values

_
t j,0

corresponding to the zeros of |E|.

The abscissas
_
t j,0 of these zeros respect the following rules: The positive real number

rn,a can be represented as the sum of its integer part int(rn,a) and its decimal part dec(rn,a):

rn,a = int(rn,a) + dec(rn,a) (43)

For example, for rn,a equal to 6.7, int(rn,a) is equal to 6.0 and dec(rn,a) is equal to 0.7.

The abscissas
_
t j,0 of the zeros correspond to the expression

_
t j,0 =

[
k j + δ · dec(rn,a)

] 1
rn,a

, (44)

where kj is a progressive integer number and δ alternately takes the values one and zero
(see Appendix A). Table 1 shows the progressive values of the couples

(
k j, δ

)
.

The couple
(
k j, δ

)
cannot assume the value (0, 0), i.e., kj and δ cannot be simultane-

ously null. Nevertheless,
_
t j,0 can assume the value zero, and this happens when kj is equal

to zero, but δ is equal to one and dec(rn,a) is equal to zero. In this case, rn,a is an integer

number, and the couple
(
k j, δ

)
equal to (0, 1) gives

_
t j,0 equal to zero, which means that

the acceleration profile is rectangular.
Figure 9 shows the values of kj and δ versus the abscissa rn,a. The diagrams in Figure 9

must be read according to the following rule: once the vertical line corresponding to the

actual value of
_
t j,maxrn,a is drawn, all the couples of kj and δ that are not to the right of this

vertical must be taken into consideration.
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Table 1. Progressive values of the couples
(

kj, δ
)

.

n kj δ

1 0 1

2 1 0

3 1 1

4 2 0

5 2 1

6 3 0

7 3 1

8 . . . . . .
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To prevent
_
t j,0 from taking a value greater than

_
t j,max:

1. The integer kj assumes a maximum value k j,max given by

k j,max = int
[_

t j,max · int(rn,a)
]
; (45)

2. δ assumes a final value δ f given by the integer (zero or one) closest to
_
t j,maxrn,a − k j,max,

a function that is expressed by round:

δ f = round
(_

t j,maxrn,a − k j,max

)
. (46)

For example, with rn,a equal to 6.7 and
_
t j,max equal to 0.5, k j,max is equal to 3 and δ f is

equal to 0. These results can be compared with the zeros in Figure 8.
The value

_
t j,0,1 =

1
rn,a

(47)

is here called the fundamental value.
The values

_
t j,0,k =

k j

rn,a
with k j= 1, 2, . . . , k j,max, (48)

are multiples of the fundamental value and they correspond to progressively increasing

values of
_
t j. The remaining values k+dec(rn,a)

rn,a
with k j equal to 0, 1, . . . , k j,max, are left
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side-band values of
_
t j,0,k. Only the value dec(rn,a)

rn,a
corresponds to a value of

_
t j that is less

than the fundamental value.
The important thing is that, from Equation (44), the dimensional values of tj corre-

sponding to the zeros of the exciting term only depend on the natural frequency fn, and not
on the acceleration time ta (apart from the values of k j,max and δ f if ta is less than 2ta,min):

tj,0 =
[
k j + δ · dec(rn,a)

] 1
fn

. (49)

The fundamental value of tj,0 is

tj,0,1 =
1
fn

. (50)

In general, the number rn,j of undamped free oscillations during time tj is

rn,j = fntj. (51)

Hence, the number rn,j,0 of undamped free oscillations during time tj,0 is

rn,j,0 = fntj,0 = k j + δ · dec(rn,a). (52)

When δ is equal to zero, the result is

rn,j,0 = 1, 2, . . . , k j,max. (53)

This is an important result because it means that there is an integer number of un-
damped free oscillations within the jerk times tj,0,k that corresponds to those zeros of the
exciting term, whose abscissa is a multiple of the fundamental value.

2.4. Sensitive Curves

To design the acceleration profile, a value fn,e of the natural frequency fn must be
estimated. Even though at frequency fn,e the amplitude of the residual oscillations is null,
when fn is different from fn,e, i.e., fn/ fn,e is different from one, load acceleration oscillations
generally occur during time tc and the amplitude of the residual oscillations is different
from zero and can be too large. It is therefore necessary that there is a sufficiently large
range of frequencies around fn,e, both for values greater and less than fn,e, in which the
amplitude of the residual oscillations is sufficiently small. The SC shows the maximum
absolute value

∣∣∣ .
ϑl,r

∣∣∣ of the residual oscillations of the load velocity, made dimensionless

with respect to the maximum value
.
ϑmax of the motor velocity (which is also the steady-state

velocity of the load), versus fn/ fne.
It is interesting to note that with a given value of k j and δ equal to zero, the SCs do not

change if fn and ta change, while maintaining their product fnta constant. In this case,

fnta = fn
(
tc + 2tj

)
= fn

(
tc + 2

k j

fn

)
= fntc + 2k j. (54)

Hence, fntc is also constant, i.e., ta, tc, and tj are inversely proportional to fn. In
general, for a given value of fnta, equal to rn,a, and of k j, ta is equal to rn,a/ fn, tj is equal to
k j/ fn and tc is equal to

(
rn,a − 2k j

)
/ fn. The latter value implies that

rn,a ≥ 2k j. (55)

Furthermore, this result is independent of
.
ϑmax and

..
ϑmax, whose ratio is inversely

proportional to fn (Equation (11)). Figure 10 shows the above. With k j equal to one, the red
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and blue acceleration profiles refer to a given value of fn and ta, but with values of
.
ϑmax

and
..
ϑmax being twice as large for the blue profile as for the red profile. The green and the

violet acceleration profiles refer to the frequency fn/2 and the acceleration time 2ta, with
the same values of

.
ϑmax as the red and blue profile, respectively. The green and the violet

profiles have a value of
..
ϑmax that is half that of the red and blue profiles, respectively. All

these profiles have the same fnta and k j, and generate the same SC.
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This means that the SCs depend only on the product fnta (and k j). This property
reduces the number of possible SCs to be studied. If the system is damped, the SCs also
depend on ζ.

In this regard, it should be remembered that the load is elastically connected to
the motor, which has a complex closed velocity chain, and therefore has some damping.
Consequently, even if the structural damping coefficient c is zero, the load oscillations are
damped, with a damping that depends on the ratio JL/JM, k, the architecture of the control
chain, and the tuning of its parameters. In any case, this dimensionless damping is almost
negligible, but it makes the SCs smoother and, except around the zeros of the theoretical
curves, lower than these.

In the particular case in which ta is less than or equal to 2ta,min and the acceleration
limit

..
ϑMax is reached,

fnta = fn
(
ta,min + tj

)
= fn

(
ta,min +

k j

fn

)
= fnta,min + k j, (56)

and there is a single frequency fn corresponding to the given fnta.
Figures 11–13 show the SCs for k j equal to one and for different values of fnta. These

values are integers only for the sake of simplicity. It is evident that, for a given fn, the SCs
improve, from all points of view, as ta increases. With a given value of k j and with δ equal
to zero, the SCs show a horizontal tangent at the abscissa one, implying that there is a
non-small range around one where the residual velocity oscillation is very small. These
SCs were found by assuming that the motor performs the STAP perfectly and neglecting
the damping of the motor’s closed velocity chain. Therefore, these curves are a bit higher
than the real ones. The theoretical expressions of the SCs, when ζ is equal to zero and fn,eta
and k j are assigned, can be found in Appendix B.
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3. Results

Figures 14a, 15a and 16a show the motor and load acceleration in the case in which
..
ϑMax is equal to 1000.0 rad/s2,

.
ϑmax to 150.0 rad/s, fn to 40 Hz, when δ is equal to zero,

and kj is equal to one, two, and three, respectively. In all these cases, ta is less than ta,min.
As mentioned before, in the ramp-up time tj,0,k, there are kj complete oscillations of the
load: an important result is that during the next time tc at constant acceleration (for the
motor), the load acceleration does not show any oscillation either, but is equal to the motor
acceleration. Then, during the ramp-down time tj,0,k, there are still kj oscillations of the
load, and after time ta, the load does not show any residual oscillation.
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Figure 14. (a) Motor and load acceleration when tj = 1/ fn,e and fn = fn,e; (b) sensitivity curve when
tj = 1/ fn,e.
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Figure 15. (a) Motor and load acceleration when tj = 2/ fn,e and fn = fn,e; (b) sensitivity curve when
tj = 2/ fn,e.
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Figure 16. (a) Motor and load acceleration when tj = 3/ fn,e and fn = fn,e; (b) sensitivity curve when
tj = 3/ fn,e.

Figures 14b, 15b and 16b also show the SCs under the previous conditions when δ
is equal to zero and kj is equal to one, two, and three, respectively. They are obtained by
numerical simulations, when the dimensionless structural damping coefficient ζ is equal to
0.00, 0.05 and 0.10. These figures show the following:

1. Neglecting small values of ζ in the design of the acceleration profiles does not worsen
the SCs; on the contrary, it improves them, even though at the estimated frequency
fn,e, there is a small residual oscillation. This behavior is general for values of fnta
greater than or equal to two;

2. If tj is a multiple k j/ fne of the fundamental value, with kj equal to 1, 2, . . . , k j,max
(Equation (49)), the corresponding SCs are satisfactory, but a light improvement can
be noticed by increasing kj. In any case, the fundamental value 1/ fne of tj is the
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minimum and thus gives the minimum value of ta, and often the corresponding SC
is satisfactory.

It should be noted that, when comparing the results of two acceleration profiles with
different slopes but with the same time ta, which is that of the greater kj (meaning that
the acceleration profile with the smaller kj has a lower maximum acceleration), the SC
generated by the profile with the greater kj seems slightly better.

Normally, a value of
∣∣∣ .
ϑl,r

∣∣∣/ .
ϑmax of a few hundredths is admissible in velocity control.

In any case, it is interesting to note that the three SCs with ζ equal to zero in
Figures 14b, 15b and 16b are almost overlapping in the abscissa range [0.835, 1.165].

On the contrary, if δ is equal to one, particular conditions must be satisfied as is explained
in Appendix C, and the SCs are not as satisfactory. For example, if fnta,min is an integer
number, ta satisfies the inequalities in Equation (25) and tj is less than 1/ fn,e, Figure 17a shows
the motor and load acceleration for the same case of Figures 14a, 15a and 16a, but with δ
equal to one, kj equal to zero, and ta equal to 0.165 s.
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Figure 17. (a) Motor and load acceleration when tj = dec( fn,eta)/ fn,e; (b) sensitivity curve when
tj = dec( fn,eta)/ fn,e.

When δ is equal to one, the number of free oscillations during time tj is not an integer,
and the load acceleration is symmetrical with respect to the vertical line whose abscissa is
ta/2, so that after the acceleration time ta, there is no residual vibration.

Nevertheless, significant oscillations of the load acceleration occur during the constant
acceleration time tc of the motor. Even if the amplitude of the residual velocity vibration is
zero, when fn is equal to fn,e and ζ is equal to zero, the corresponding SCs are unsatisfactory
overall (Figure 17b). These observations can be extended to all the couples

(
k j, δ

)
with

δ equal to one. Hence, in the following, tj is assumed to be equal to a multiple kj of its
fundamental value 1/ fn,e.

As explained above,
..
ϑMax is a specification that can generate some difficulties due to

the acceleration oscillations of the load during time tc in which the motor is at constant
acceleration, and to those of the motor torque, which are mainly consequent to the former.

Assuming that the motor performs the STAP perfectly, ζ is equal to zero and the
constant acceleration time tc is large enough to allow the load acceleration to reach its peak
within tc; thus, the oscillations of the load acceleration during this time have an amplitude∣∣∣ ..
ϑl,c

∣∣∣ that is given by the dimensionless expression

∣∣∣ ..
ϑl,c

∣∣∣
..
ϑmax

=

√
2
√

1− cos
(

2π
fn
fne

k j

)
2π

fn
fne

k j
. (57)

Figure 18 shows
∣∣∣ ..
ϑl,c

∣∣∣/ ..
ϑmax versus fn/ fne when k j is equal to one and two. Generally,

a greater value of k j results in smaller values of the ordinate. The two curves almost overlap
in a small range around one.
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Figure 18.
∣∣∣ ..ϑl,c

∣∣∣/ ..
ϑmax versus fn/ fn,e when the load acceleration reaches its peak within tc, with kj

equal to one and two.

If Mm,max denotes the quantity,

Mm,max = (JM + JL)
..
ϑmax, (58)

the oscillations of the motor torque during time tc have an amplitude |Mm,c| that is given
by the dimensionless expression

|Mm,c|
Mm,max

=

JL
JM

1 + JL
JM

∣∣∣ ..
ϑl,c

∣∣∣
..
ϑmax

. (59)

Figure 19 shows the coefficient (JL/JM)/(1 + JL/JM) versus JL/JM. Normally, JL/JM

should assume values less than one, so as to limit the effect of
∣∣∣ ..
ϑl,c

∣∣∣/ ..
ϑmax on |Mm,c|/Mm,max.
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Table 2. Characteristics of the motor in consideration. 

Resistance Inductance Torque Constant  Moment of Inertia Torque Limit 
Ra La KT = KE JM Mm,Max 

0.9 Ω  0.015 H 0.8 Nm/A 0.005 kgm2 10 Nm 
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Figure 19. (JL/JM)/(1 + JL/JM) versus JL/JM.

In any case, if ta is greater than 2ta,min, then
..
ϑmax is less than

..
ϑMax and the effects of

the oscillations of load acceleration and motor torque are less constraining.
The curves obtained from Equations (57) and (59) are theoretical and neglect the effects

of the closed motor velocity chain. Therefore, it is necessary to be precautious.
The results of numerical simulations on models with zero structural damping coeffi-

cient are shown here. A practical example is that discussed in Section 6 of [19], in which
particular values of the system parameters are considered. Hereafter the motor is always
the same and is controlled in a closed velocity chain, with an internal closed current chain.
An essential control block diagram is shown in Figure 20. The motor characteristics are
shown in Table 2. The maximum velocity

.
ϑmax is equal to 150 rad/s. Two different loads

are considered: the first with JL equal to JM, the second with JL equal to one fourth of JM.
In both cases, fn,e is equal to 8 Hz (k changes consequently) and two frequency conditions
are considered, i.e., fn/ fn,e equal to one and nine tenths. In any case, tj is equal 0.1250 s
(k j is equal to one). The acceleration limit is initially the maximum of the nodal section
(Equation (19)) and is different for the two loads. With the second load, ta,min is equal
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to 0.0938 s, the maximum acceleration is given by Equation (31), and it is not necessary
to lower the acceleration limit. With the first load, ta,min is initially equal to 0.15 s, and
the acceleration limit can be reached. Nevertheless, as can be seen from the diagrams in
Figures 18 and 19, |Mm,c| is nearly equal to 0.055 Mm,max, so that the acceleration limit must
be lowered to 0.94 times the maximum of the nodal section to avoid exceeding Mm,Max.
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Figure 20. Control block diagram.

Table 2. Characteristics of the motor in consideration.

Resistance Inductance Torque Constant Moment of Inertia Torque Limit

Ra La KT = KE JM Mm,Max

0.9Ω 0.015 H 0.8 Nm/A 0.005 kgm2 10 Nm

The following considerations can be made:

1. In each case (Figure 21a,b), the motor acceleration follows the reference acceleration,
i.e., the designed STAP, closely;
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Figure 21. Motor acceleration versus time: (a) JL/JM = 1.00; (b) JL/JM = 0.25.

2. In each case (Figure 22a,b), when fn is equal to fn,e, the residual oscillations of the
load velocity are extremely small;
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Figure 22. Load velocity versus time: (a) JL/JM = 1.00; (b) JL/JM = 0.25.

3. In each case (Figure 22a,b), when fn is equal to nine tenths of fn,e, the residual oscilla-
tions of the load velocity are small but tangible; they can be obtained approximately
from the corresponding SCs;



Machines 2022, 10, 767 20 of 27

4. With JL equal to JM (Figure 23a), the differences in the motor torque at the two
frequencies are tangible; furthermore, if fn is equal to fn,e, the residual oscillations of
the motor torque are small, while if fn is equal to nine tenths of fn,e, they are larger;
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Figure 23. Motor torque versus time: (a) JL/JM = 1.00; (b) JL/JM = 0.25.

5. With JL equal to one fourth of JM (Figure 23b), the differences in the motor torque
at the two frequencies are very small; furthermore, if fn is equal to fn,e, the residual
oscillations of the motor torque are negligible, while if fn is equal to nine tenths of
fn,e, they are very small.

Other numerical simulations with a positive and very small value of ζ provide simi-
lar results.

All these numerical simulations confirm the validity of the proposed approach for the
design of a STAP.

4. Discussion

Now, under the assumption that tj is a multiple kj of the fundamental value 1/ fn,e,

if the maximum possible acceleration
..
ϑmax,M (Equation (31)) is reached, two cases can be

distinguished:

1. The jerk time is less than or equal to ta,min, i.e.,

k j/ fn ≤ ta,min. (60)

In this case, the acceleration limit
..
ϑMax is reached and

ta = ta,min +
k j

fn
. (61)

In dimensionless form, Equation (61) can be written as

ta

ta,min
= 1 +

k j

fnta,min
with 1 <

ta

ta,min
≤ 2. (62)

Obviously, the values of k j for which this is possible are given by

k j ≤ int( fnta,min). (63)

Furthermore,
_
t j,max is given by

_
t j,max =

k j

k j + fnta,min
. (64)

2. The jerk time is greater than or equal to ta,min, i.e.,

k j/ fn ≥ ta,min. (65)
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In this case, the maximum possible acceleration
..
ϑmax,M is reached with a triangular

acceleration profile, such that

ta =
2k j

fn
. (66)

As a result, the ratio ta/ta,min assumes the value

ta

ta,min
=

2k j

fnta,min
with

ta

ta,min
≥ 2. (67)

Obviously, in this case, fnta is the integer number 2k j.
The set of two Equations (62) and (67) can be written as a single equation:

ta

ta,min
= g

(
fnta,min; k j

)
. (68)

Figure 24 shows the curves of ta/ta,min as functions of fnta,min, with kj as a parameter.
These curves can also be interpreted as lower limits, because, for a given abscissa fnta,min,
they give the minimum possible value of ta/ta,min and thus of ta when tj is equal to a
multiple of its fundamental value. Obviously, it is possible to choose a greater value of
ta/ta,min. In this case, the acceleration time is greater and the maximum acceleration is less.
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Figure 24. Curves showing the minimum value of ta/ta,min versus fnta,min when tj is equal to kj/ fn.

The minimum value of ta depends on the natural frequency fn. The curves are
monotonously decreasing. The analysis of what happens if fn changes for a given ta,min
shows that if fn is high enough, a smaller value of ta/ta,min, i.e., a shorter acceleration time,
can be adopted. On the contrary, for low values of fn, the acceleration time must be high
enough and the acceleration limit

..
ϑMax cannot be reached.

The inequality
ta

ta,min
≥ g

(
fnta,min; k j

)
(69)

can also be read as

fnta,min ≥
∼
g
(

ta

ta,min
; k j

)
, (70)
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where
∼
g is the inverse function of g. This means that, for each value of ta and ta,min, there

exists a minimum value of fn, such that, with a given acceleration time ta, a STAP allows
the load to have zero residual oscillations and a sufficiently satisfactory SC.

For the sake of completeness, it should be noted that, irrespective of the acceleration
limit

..
ϑMax and thus of ta,min, there is no STAP capable of reaching velocity

.
ϑmax with zero

residual vibration of the load velocity if

fnta < 1, (71)

i.e., in each case, the acceleration time ta must satisfy

ta ≥
1
fn

. (72)

In order to represent this inequality in Figure 23 (the brown curve), the two terms are
made dimensionless with reference to ta,min, i.e.,

ta

ta,min
≥ 1

fnta,min
. (73)

To minimize the settling time of the load velocity, the normal procedure is to assume
the jerk time equal to one, or at most two, estimated periods of the undamped free oscilla-
tions and the acceleration time depending on whether ta is less or greater than 2ta,min, and
to evaluate the corresponding SC. Therefore, it is convenient to start from the fundamental
value tj,0,1, and, in brief:

1. If

fn,eta,min ≥ 1, (74)

it is possible to adopt a STAP that reaches the acceleration limit
..
ϑMax, at least with the

fundamental value tj,0,1. This allows ta to assume its minimum value and, simultaneously,
there is no residual velocity oscillation if fn is equal to its estimated value. Furthermore,
the corresponding SC is satisfactory, especially if fn,eta is sufficiently high.

Furthermore, if
fn,eta,min � 1, (75)

it is possible to adopt a multiple value of the fundamental value tj,0,1, with a small increase
in ta, but with a qualitative improvement of the corresponding SC, if this improvement is
worthy of consideration.

2. Otherwise, if

fn,eta,min < 1, (76)

it is not possible to adopt a STAP that reaches the acceleration limit
..
ϑMax. Instead, it is

possible to go from a triangular profile, in which ta assumes its minimum value equal
to 2/ fn,e, to STAPs with greater values of ta to have a better SC. Since the inequality in
Equation (76) is often verified at low values of fn,e, the increase in ta in the transition from
the fundamental value tj,0,1 to the next can be significant.

Figure 25 shows the flowchart of the design procedure of the motor STAP. For simplic-
ity,

..
ϑMax is assigned as a specification from the beginning and no longer changed.



Machines 2022, 10, 767 23 of 27Machines 2022, 10, 767 26 of 31 
 

 

 
Figure 25. Flowchart of the procedure to design the STAP of the motor. 

5. Conclusions 
The present paper concerns a rest-to-velocity motion. It considers trapezoidal accel-

eration profiles, which are widely used in applications involving oscillating systems, with 
the aim of designing them so as to have the motor motion in a minimum acceleration time 
and limited residual load vibrations. 

This paper draws inspiration from [20], in comparison to which, however, it 
1. Makes the time dimensionless with respect to the acceleration time. This implies that 

it is possible to have simple analytical expressions of the jerk time that prevent the 
load from having residual oscillations; 

2. Broadens the analysis to acceleration times much greater than twice the minimum 
value imposed by the motor’s acceleration limit. This broadening is necessary to al-
low the designer to deal with natural frequencies that would otherwise be excluded 
from the analysis; 

3. Sets the limits of the acceleration time imposed by the natural frequency, indicating 
the minimum value that this time can reach in each application; 

Figure 25. Flowchart of the procedure to design the STAP of the motor.

5. Conclusions

The present paper concerns a rest-to-velocity motion. It considers trapezoidal acceler-
ation profiles, which are widely used in applications involving oscillating systems, with
the aim of designing them so as to have the motor motion in a minimum acceleration time
and limited residual load vibrations.

This paper draws inspiration from [20], in comparison to which, however, it

1. Makes the time dimensionless with respect to the acceleration time. This implies that
it is possible to have simple analytical expressions of the jerk time that prevent the
load from having residual oscillations;

2. Broadens the analysis to acceleration times much greater than twice the minimum
value imposed by the motor’s acceleration limit. This broadening is necessary to allow
the designer to deal with natural frequencies that would otherwise be excluded from
the analysis;

3. Sets the limits of the acceleration time imposed by the natural frequency, indicating
the minimum value that this time can reach in each application;

4. Highlights the characteristics of the load acceleration profile at the estimated fre-
quency fn,e;
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5. Analyzes the sensitivity curves of velocity, and thus the range of natural frequen-
cies, around the estimated one, in which the residual vibrations of the load can be
considered sufficiently small;

6. Compares the different solutions corresponding to multiples of the fundamental value
of the jerk time;

7. Shows a procedure, explained in a flowchart, with which to design a trapezoidal
acceleration profile for a rest-to-velocity motion.

Ultimately, this work provides a comprehensive overview of the design of a STAP by
relating all the most significant parameters:

.
ϑmax,

..
ϑMax, ta, ta,min, tj, fn,e, and JL/JM.

To optimize the settling time of the load velocity, the jerk time is normally chosen to
be equal to one, or at most two, estimated periods of the undamped free oscillations and
the acceleration time according to two different rules, depending on whether ta is less or
greater that 2ta,min, and to the evaluation of the corresponding sensitive curve.

Numerical simulations on a complete system, with the motor controlled in a closed
chain and a zero or very small structural damping coefficient, confirm that the proposed
acceleration profiles allow the motor to have a minimum acceleration time and the load a
satisfactory settling time.

A future paper, of which the present one is preparatory, will deal with the optimization
of the load settling time in a point-to-point motion.
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Appendix A

This Appendix shows that the abscissas of the zeros of the exciting term E (Equation (39))
correspond to Equation (44), rewritten here as

_
t j,0 =

[
k j + δ · dec(rn,a)

] 1
rn,a

, (A1)

where kj is a progressive integer number and δ alternately assumes the values one and zero.

In fact, by applying this solution, the term e−i2π( fnta)
_
t j,0 assumes the expression

e−i2π( fnta)
_
t j,0 = e−i2π( fntj,0) = e−i2π[kj+δdec( fnta)] = e−i2πkj e−i2πδdec( fnta) = e−i2πδdec( fnta) (A2)

and the term e−i2π( fnta) assumes the expression

e−i2π( fnta) = e−i2π[int( fnta)+dec( fnta)] = e−i2π int( fnta)e−i2π dec( fnta) = e−i2π dec( fnta). (A3)

The result is that u is equal to zero. In fact,

u = 1− e−i2π( fnta)
_
t j,0 − e−i2π( fnta)(1−

_
t j,0) + e−i2π( fnta)

= 1− e−i2πδdec( fnta) − e−i2π dec( fnta)e+i2πδdec( fnta) + e−i2π dec( fnta)

= 1− e−i2πδdec( fnta) − e−i2π dec( fnta)e+i2πδdec( fnta) + e−i2π dec( fnta) = 0

(A4)

for δ equal both to zero and one.
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Appendix B

This Appendix provides the theoretical expressions of the SCs as functions of fn/ fn,e,
when δ is equal to zero and fn,eta, and k j are assigned parameters.

By defining the following trigonometric expressions:

sj = sin
(

2π
fn

fn,e
k j

)
, (A5)

cj = cos
(

2π
fn

fn,e
k j

)
, (A6)

sa = sin
[

2π
fn

fn,e

(
fn,eta − 2k j

)]
, (A7)

ca = cos
[

2π
fn

fn,e

(
fn,eta − 2k j

)]
, (A8)

and the following dimensionless quantities:

D =
1

(2π)2
(

fn
fn,e

)2
fn,etak j

(
1− kj

fn,eta

) , (A9)

a =
[
sjca −

(
1− cj

)
sa
]
cj −

[
1 + sjsa +

(
1− cj

)
ca
]
sj, (A10)

b = 1−
[
sjca −

(
1− cj

)
sa
]
sj −

[
1 + sjsa +

(
1− cj

)
ca
]
cj, (A11)

the SC curve is given by ∣∣∣∣∣
_.
ϑ l,r

∣∣∣∣∣ = D
√

a2 + b2. (A12)

Appendix C

The only zero of the exciting term E (Equation (39)) whose abscissa
_
t j,0 is less than

the fundamental value is considered here. Its abscissa is

_
t j,0 =

dec( fnta)

fnta
. (A13)

Furthermore, if ta is less than or equal to 2ta,min and the acceleration limit
..
ϑMax is

reached, then the acceleration time is

ta = ta,min +
dec( fnta)

fn
. (A14)

Different cases can be taken into consideration. If fnta is an integer number, dec( fnta)
is equal to zero and, from Equation (A14),

ta = ta,min. (A15)

Therefore, fnta,min is an integer number. The acceleration profile is rectangular and,
after time ta,min, there is no residual oscillation, even though the corresponding SC is
not satisfactory.

Nevertheless, Equation (A14) can be valid in the mentioned hypotheses, even if fnta is
not an integer number. Multiplying Equation (A14) by fn, it becomes

fnta = fnta,min + dec( fnta), (A16)
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and, from Equation (43), the result is

int( fnta) +�����dec( fnta) = fnta,min +�����dec( fnta), (A17)

And, therefore,
int( fnta) = fnta,min. (A18)

This requires that fnta,min is again an integer number. It is possible to write

int( fnta) = int
(

fnta,min
ta

ta,min

)
= fnta,min. (A19)

This is possible if

ta

ta,min
<

fnta,min + 1
fnta,min

= 1 +
1

fnta,min
, (A20)

which obviously requires that

ta,min ≤ ta < ta,min +
1
fn

. (A21)

This means that the use of Equation (A13) is possible if fnta,min is an integer number
and ta meets the inequalities in Equation (A21).

If these hypotheses are satisfied, the residual oscillations are null if fn is equal to
its estimated value fn,e. Nevertheless, the SC shows a very small interval around fn,e,
where the residual oscillations are limited enough (Figure 17b), unless dec( fnta), although
less than one, is very close to one. It is obvious that in this case, it is better to adopt the
corresponding acceleration profile with δ equal to zero and kj equal to one. Furthermore,
Figure 17a shows that significant oscillations in the load acceleration can occur during the
constant acceleration time tc.

If fnta,min is not an integer number, it is possible to look for a time ta,1 just greater than
ta,min, such that fnta,1 is an integer number and

ta = ta,1 +
dec( fnta)

fn
. (A22)

Therefore, multiplying Equation (A22) by fn, it becomes

int( fnta) +�����dec( fnta) = fnta,1 +�����dec( fnta), (A23)

i.e.,
int( fnta) = fnta,1. (A24)

Hence, fnta,1 assumes the value

fnta,1 = int( fnta,min) + 1, (A25)

and

ta,1 =
int( fnta,min) + 1

fn
. (A26)

Furthermore, to reach velocity
.
ϑmax with a constant acceleration

..
ϑmax, ta,1 must be

equal to

ta,1 =

.
ϑmax
..
ϑmax

with
..
ϑmax <

..
ϑMax. (A27)
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Keeping in mind Equations (21) and (A26), this gives

..
ϑmax =

..
ϑMax

ta,min

ta,1
=

..
ϑMax

fnta,min

int( fnta,min) + 1
. (A28)

From Equation (A22), as dec( fnta) increases, starting from zero, the maximum acceler-
ation is constant and equal to

..
ϑmax given by Equation (A28), the residual oscillations are

always equal to zero, but the SC is not satisfactory unless dec( fnta), although less than one,
is very close to one (i.e., ta is less than, but very close to [int( fnta,min) + 2]/ fn).
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