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Autonomy is increasingly crucial in space missions due to several factors driving the exploration and utilization of 
space. In the meanwhile, Artificial Intelligence methods begin to play a crucial role in addressing the challenges 
associated with and enhancing autonomy in space missions. The proposed work develops a closed-loop simulator 
for proximity operations scenarios, particularly for the inspection of an unknown and uncooperative target object, 
with a fully AI-based image processing and GNC chain. This tool is based on four main blocks: image generation, 
image processing, navigation filter, and guidance and control blocks. All of them have been separately tested 
and tuned to ensure the correct interface and compatibility in the close-loop architecture. Afterwards, the overall 
architecture is deployed in an extensive Montecarlo testing campaign to verify and validate the performance of 
the proposed IP-GNC loop.
1. Introduction

Nowadays enhanced autonomy is the research driver of most of the 
leading space agencies, as spacecraft independence would allow for re-

liable, cost-effective, lower-risk services, and much more flexibility in 
mission planning. Moreover, in the fast-developing field of space explo-

ration and satellite deployment, the concept of IOS (In-Orbit Servicing) 
has emerged as one of the primary solutions to extend the lifespan of a 
mission, enhance the capabilities and ensure the sustainability of space-

craft, especially those orbiting around the Earth. IOS can include a wide 
selection of activities of great interest such as maintenance, refuelling, 
debris mitigation, upgrade, repair, assembly, relocation, orbit modifica-

tion and non-contact support [1,2]. Therefore, a high level of autonomy 
while carrying out these activities would lead to greater benefits. That 
is why, at the heart of this groundbreaking field lies a crucial aspect: the 
spacecraft’s GNC (guidance, navigation and control) system autonomy. 
Indeed, autonomy is a benchmark which ensures precise navigation, ren-

dezvous, docking, or the execution of maintenance operations, which 
require cutting-edge technologies, algorithms, and sensors that increase 
the capability of these vehicles to adapt, respond, and perform delicate 
operations with unparalleled precision in a challenging environment as 
the space one. Guidance and control play an integral role in this auton-
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omy level: the first requires the use of advanced algorithms to determine 
optimal trajectories in very different types of space scenarios exploiting 
the information coming from integrated systems made up of a multi-

tude of sensors, such as star trackers, GPS, and LiDAR, that enable pre-

cise positioning and orientation, facilitating safe proximity operations 
and challenging manoeuvres around other space bodies or objects. Con-

trol autonomy, instead, grants spacecraft the ability to make real-time 
decisions and adjustments, ensuring stability, collision avoidance, and 
successful execution of complex tasks. This autonomous control may be 
strongly empowered by AI-driven software, adaptive control algorithms, 
and fault-tolerant systems that enable spacecraft to respond promptly to 
unforeseen situations, guaranteeing mission success while minimizing 
possible risks. Subsequently, in the constant evolution of in-orbit servic-

ing, the focus on spacecraft guidance and control autonomy emerges as 
a fundamental aspect which strongly drives the success and efficiency 
of missions.

In recent decades, the increasing interest in artificial intelligence 
and machine learning has heavily influenced this growing hunger for 
spacecraft autonomy. Indeed, the number of works on machine learning 
techniques applied to space-related problems is continuously growing, 
especially in the context of guidance, navigation and control [3–5], af-

fecting almost all the most important aspects of the GNC in a great 
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variety of scenarios ranging from feasibility studies to on-board appli-

cations [6,7]. The potential of machine learning, mainly resulting from 
its adaptability and diversity, allows it to be tailored for every need, of-

fering different solutions (supervised, unsupervised and reinforcement 
learning) and declinations (i.e. linear, convolutional, recurrent neural 
networks, etc.).

The initial stage of an autonomous GNC system involves acquiring 
measurements, specifically the relative pose, which is predominantly 
derived from monocular images due to the advantages of monocular 
cameras over other sensors [8]. Consequently, in recent years, many 
vision-based algorithms utilizing monocular frames have been devel-

oped for various applications, including spacecraft relative navigation. 
The growing interest in vision-based solutions has been accompanied 
by advancements in image generation methodologies, characterized by 
higher accuracy and photorealism, supported by enhanced computa-

tional capabilities. Nonetheless, access to actual spaceborne images re-

mains limited, as does the availability of validated synthetic spaceborne 
image datasets. Furthermore, the existing datasets are typically designed 
for benchmarking pose initialization algorithms and do not provide the 
temporal sequences of frames required for testing complete navigation 
pipelines. Notably, the integration of autonomous guidance and con-

trol algorithms presents an additional challenge: the need to generate 
images that align with the relative dynamics of the system, which are 
influenced by guidance and control actions based on the state estimates 
obtained from processing the image generated in the previous iteration 
within a closed loop. Thus, an in-loop image generation algorithm is re-

quired to ensure the generated images are representative and consistent 
with the system’s actual dynamics.

Concerning the vision algorithms, the outcomes of ESA satellite 
pose estimation challenges held in 2019 (SPEC2019) [9] and 2021 
(SPEC2021) [10] demonstrated that relying on Convolutional Neural 
Networks (CNNs) to perform target detection and features regression 
from monocular images combined with Perspective-n-Point (PnP) prob-

lem solvers (such as EPnP [11]) is the most promising approach for 
autonomous relative pose (i.e., relative position and attitude) estimation 
when dealing with known uncooperative targets, over conventional ma-

chine vision-based approaches. Despite that, the top-performing archi-

tectures [9,10,12] that participated in SPEC2019 and SPEC2021 aimed 
at achieving high accuracy, disregarding the overall computational com-

plexity, relying on heavyweight CNNs [13] and domain discriminator 
modules [10], that may result in computational overheads not com-

patible with currently available space-grade on-board computers. The 
possibility of relying on lightweight CNNs developed for low inference 
time on mobile devices was initially addressed in [14] by proposing 
an architecture inspired by [15] where the target detection step and 
the line segment detection were entrusted to a YOLOv5 and a mod-

ified M-LSD [16], respectively. The architecture in [14] proved that 
top-level performances in relative pose estimation and high-level do-

main gap bridging capabilities can be achieved by relying on lightweight 
CNNs. Despite that, the need for processing a high amount of 2D-to-

3D matches stands as the main bottleneck for the architecture in [14], 
being the most time-consuming step of the overall pipeline and mak-

ing it suitable only for the initialisation and not for the tracking of 
the relative state. Leveraging the advancements in Human Pose Estima-

tion (HPE), which consists of retrieving the 2D locations of pre-selected 
landmarks corresponding to joints of the human skeleton, a novel archi-

tecture leveraging the YOLOv8-pose model as the only CNN within the 
pipeline to perform both target detection and keypoint regression in a 
single inference was introduced in [17]. This novel architecture lever-

ages a check on the actual need for a second inference (where the image 
cropped to the ROI extracted during the first inference is processed to 
retrieve the 2D landmarks) based on the outputs of the first inference, 
enhancing the efficiency of the overall pipeline. Further, relying on the 
confidence score associated with each keypoint, the optimal subset of 
2D-to-3D matches to be fed to the EPnP solver is adjusted for each im-
2

age processed, discarding the low-confidence keypoints and improving 
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the overall robustness and reliability. The YOLOv8-pose-based archi-

tecture was proven in [17] to achieve top-level performances both on 
synthetic SPEED images [18] and mock-up frames from SPEED+ [19]

(the benchmark datasets introduced during SPEC2019 and SPEC2021), 
thanks to the custom augmentation techniques used during the training 
phase [17], with maximum running time on CPU of ≈ 131 ms, featuring 
also demonstrated generalisation capabilities to complex targets such as 
Envisat.

At the same time, Deep Reinforcement Learning (DRL), as a sub-

discipline of machine learning, is gaining much interest, especially for 
autonomous guidance and control problems, thanks to its peculiarity 
of having agents capable of learning how solving tasks (like naviga-

tion or planning) within a potentially changing environment, ensuring 
the power of adapting the mathematical model to a practically endless 
number of space-related applications. Several scenarios have already 
been investigated: spacecraft hovering or orbiting around small bodies, 
planetary landing and close-proximity operations [20–23], which op-

pose similar results to more classical approaches [24–26]. According 
to [27], in the current state-of-the-art, DRL is a powerful tool when 
dealing with decision-making problems and its perfect compatibility 
with ANN as function approximators allows it to improve the gener-

alising capabilities of the resulting policy, and to solve more and more 
complex problems characterised by high-dimensionality and continuous 
state and action spaces [28].

Being inspired by the growing trend of AI applications in space-

related problems, in this paper, we propose an innovative AI-based GNC 
architecture, combining an image-based navigation tool with an au-

tonomous DRL-based guidance and control (GC) agent in a simulation 
environment with rendering-in-the-loop to ensure that the effects of the 
adaptive control actions are correctly taken into account in AI-based im-

age processing (IP) at each iteration. The navigation block interfaces a 
pose estimation pipeline, based on the YOLOv8-pose-based architecture 
[17], and a relative navigation filter. The former estimates the chaser-

target relative pose for each processed frame that is then passed to the 
navigation filter which outputs the overall estimation of the chaser-

target relative state. Despite the high accuracy of the YOLOv8-based 
pose estimation, the inclusion of filtering algorithms within the naviga-

tion chain is expected to enhance both the accuracy and the robustness 
of the system, as highlighted in [29]. From a high level perspective, we 
propose a loosely-coupled architecture, in which the relative pose is com-

puted by a pose solver prior to the navigation filter. As pointed out in 
[30], a loosely coupled approach is preferable for uncooperative tum-

bling targets, because the fast relative dynamics could negatively affect 
feature tracking and return highly unreliable measurements to the fil-

ter. Similarly to [31], this work adopts two distinct filters: one for the 
relative rotation and one for the relative translation. The proposed nav-

igation architecture relies on a linear 𝐻∞ filter for the translational 
dynamics, and Invariant Extended Kalman Filter (IEKF) for the rota-

tional part. The output of the navigation block is a refined relative 
pose, which is then used by an autonomous guidance and control agent 
[32,33], trained via Deep Reinforcement Learning to plan the chaser’s 
relative trajectory around an uncooperative space object (i.e. the target) 
to optimise its inspection. Within this work, the following contributions 
want to be assessed:

• feasibility study of a closed-loop AI and vision-based GNC architec-

ture, also in sight of a future processor (PIL) or hardware-in-the-

loop (HIL) test campaign;

• assessment of real input data (i.e. IP and NAV block output) com-

patibility for the guidance and control autonomous agent;

• relaxation of some assumptions (e.g. attitude control) on the previ-

ously tested guidance and control agent.

In the following sections, the GNC architecture is described in detail, 
and its performance is investigated in a TANGO relative dynamics sce-
nario. Specifically, the dynamical models are briefly presented in Sec. 2; 
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Table 1

TANGO classical orbital elements.

𝑎 [km] 𝑒 [-] 𝑖 [deg] Ω [deg] 𝜔 [deg] 𝜃 [deg]

7133 0.0045 98.28 0 0 0

Sec. 3 describes the GNC algorithm architecture, defying all the used 
blocks, from the image generation tool to the navigation filter. The GC 
agent is defined and characterised in detail in Sec. 4. Afterwards, in 
Sec. 5, the performance results are presented and analysed in terms of 
image processing, filter errors, and guidance and control return.

2. Dynamical models

This section introduces the dynamical model employed to describe 
the motion of both the chaser and the target. The relative dynamics be-

tween the two objects is obtained from the differential absolute state of 
the two retrieved using a high-fidelity dynamical model for each object. 
The TANGO orbit is defined by the classical orbital elements reported 
in Table 1.

Considering the specifics of the region of space in which the sce-

nario takes place and the time window of the investigated case, the 
main perturbation added to the nominal two-body problem dynamics 
is the Earth’s oblateness effect 𝐽2 . The set of equations describing the 
absolute dynamics of the two spacecraft is reported in Eq. (1).

r̈ = −𝜇 r‖r‖ + p (1)

The perturbing acceleration component p in eq. (1), due to the 𝐽2 zonal 
harmonics effect, takes the explicit form in Eq. (2):

p = 3
2
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where 𝐽2 = 0.00108263, 𝜇 is the Earth’s geocentric gravitational con-

stant, and 𝑅 is the Earth’s radius.

Regarding the attitude of the two spacecraft, the standard Euler 
equations in Eq. (3) are used, and the orientation is expressed via quater-

nion representation, as in Eq. (4).
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q̇ = 1
2
Ωq (4)

In the equations above, 𝝎, �̇� are the angular velocity vector and its 
derivative, respectively; 𝐼𝑥𝑥, 𝐼𝑦𝑦, 𝐼𝑧𝑧 are the principal inertial compo-

nents, 𝑀 is the vector of external torque, q, q̇ are the quaternion vector 
and its derivative respectively, and Ω is the skew-symmetric matrix as-

sociated to 𝝎.

3. GNC architecture description

This paper proposes a fully AI and image-based GNC algorithm work-

ing in closed loop thanks to the image generation step performed at each 
iteration. The testing environment is based on the following five differ-

ent blocks:

• Dynamics. This block defines the chaser-target relative environ-

ment: the relative position and velocity are computed from the 
absolute position and velocity of both target and chaser integrated 
in the Earth-Centered Inertial (ECI) reference frame, relying on the 
3

J2-perturbed dynamics already defined in Eq. (1). Concerning the 
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relative attitude dynamics, the Euler equations are integrated start-

ing from the initial conditions for each satellite; then, the relative 
attitude is retrieved from the absolute orientation variables in the 
ECI reference frame.

• Image Generation. The image generation (IG) block generates a 
synthetic frame with a high level of photorealism, if compared to 
actual spaceborne images, for each GNC iteration, which is then fed 
to the IP block. The IG block comprises a synthetic image genera-

tion core based on POV-Ray [34] (i.e., a simplified version of the 
image generation tool described in [35]) and a high-fidelity noise 
generator developed in [17]. Namely, given the outputs of the Dy-

namics block, the rendering tool generates a noiseless image that is 
then processed through the noise generator (which entails the ac-

tual sensor characteristics and settings), obtaining the noised frame 
as output that serves as input to the IP step.

• Image Processing. The image processing (IP) block relies on the 
YOLOv8-pose-based architecture introduced in [17] to process each 
image generated by the IG block. The outputs of the IP block are 
the relative target position (r) and attitude (q) with respect to the 
chaser camera frame. Notice that, without any loss of generality, 
here it is assumed that the camera reference frame corresponds to 
the chaser body reference frame.

• Navigation. The navigation (NAV) block is based on a loosely cou-

pled architecture involving a relative translational filter and a rel-

ative rotational filter. The relative position and velocity estimation 
is entrusted to a H-∞ filter, which is a robust linear estimator. The 
filter exploits a linearized relative motion model The outputs of the 
H-∞ filter are the relative position and velocity in the chaser LVLH 
reference frame. Regarding the relative rotational filter, the Invari-

ant Extended Kalman Filter (IEKF) is exploited here. The input of 
the filter is the relative chaser-target angular velocity inferred from 
the chaser’s absolute navigation, the earth-based observation of the 
target’s rotational state, and the relative quaternion retrieved from 
the IP block. The output of the IEKF is a refined relative quater-

nion.

• Guidance and Control. The Guidance and Control (GC) is the last 
block of the pipeline and is based on [36]. It takes as input the 
relative chaser-target position and velocity in the target LVLH ref-

erence frame and the relative attitude of the target in the chaser 
camera frame. Although these quantities are not directly available 
from the navigation or the IP blocks, the outputs of these blocks 
can be manipulated to get the correct inputs for the GC block. The 
GC block outputs the control action of the chaser (shaped as an 
acceleration vector) that affects both the dynamics and navigation 
blocks.

Fig. 1 shows the architecture pipeline described above. The relative 
chaser-target position and velocity needed by the GC block always come 
from the H-∞ filter; on the contrary, the relative attitude may be derived 
directly from the real dynamic with the addition of Gaussian noise, from 
the IP block, or the rotational navigation filter. This choice is due to the 
fact that the guidance algorithm is sensitive to the input attitude. In this 
way, it is possible to test its robustness against a realistic input attitude 
(coming from the filter) with respect to a simpler input (real dynamics 
with white noise). In the TANGO case study definition investigated in 
the following sections, these different options will represent some of the 
steps performed to increase the complexity of the simulation during the 
testing analyses.

The environment simulation is Python-based, and all the blocks in-

volved need an initialization process that shapes them in the correct 
environmental conditions based on .yaml input files. Each of the blocks 
has its evaluation metrics. The following subsections detail the IG, IP, 
and NAV blocks of the pipeline proposed. The dynamics model has al-

ready been outlined in Sec. 2, while, due to its relevance, the GC block is 
thoroughly outlined in Sec. 4, mainly focusing on its evaluation metrics 

and parameters.
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Fig. 1. AI-based GNC pipeline architecture scheme.

Fig. 2. Samples of TANGO rendered images taken from a testing simulation of the GNC pipeline.
3.1. Image generation

The image generation tool adopted within this work is based on 
POV-Ray [34], an open-source software already successfully adopted 
to render spaceborne scenes comprising both natural and artificial tar-

gets [37–39,35]. The POV-ray-based tool for spaceborne image gener-

ation originally developed in [35] and adopted for the generation of 
the dataset named MINIMA [40] has been adapted to generate a sin-

gle image per iteration, instead of a full dataset, and included within 
the pipeline outlined in Fig. 1. Namely, the pipelines that define the 
input file fed to the rendering engine have been optimized without af-

fecting the image generation process. Consequently, the validations of 
the POV-Ray-based tool, the simplified TANGO model, and the gener-

ated synthetic images outlined in [35] are still valid and not reported 
here for brevity. Fig. 2 shows some examples of the rendered TANGO 
images taken in different moments of one of the testing simulations. 
Although the rendering tool is already capable of handling the case of 
celestial bodies in the background (e.g., the Earth) [35], and despite the 
performances of the IP step leveraged within this work pointed out an 
extremely low sensitivity to this disturbance [14], all the images are ren-

dered with a perfectly black background (simulating the deep space and 
disregarding any background celestial bodies) to avoid long rendering 
times that entails a heavy increment of the overall simulation time. Fur-

ther, the guidance reward function does not include terms related to the 
Earth or its effects on the quality of the images acquired. Please refer to 
[35] for a detailed description of the image generation process and the 
modeling assumptions used within the image generation tool adopted 
within this work.

Each rendered noiseless image is further processed to include the 
characteristic noise levels of the assumed camera model before being 
fed to the IP block. The adopted noise generator is the high-fidelity VIS 
4

sensor model introduced in [17]. Namely, the VIS sensor model includes 
the main noise sources that characterize CCD and CMOS sensors, lever-

aging the distributions and models introduced in [41,42]. Notably, the 
VIS sensor model also retains the fixed pattern noises (e.g., the pixel re-

sponse non-uniformity and the dark signal non-uniformity), modeling 
them as prescribed by the EMVA1288 standard [43]. The noise genera-

tor estimates the average photons received by the detector by applying 
the quantum efficiency and the ADC gain of the selected camera to the 
noiseless images. Once the average photons per pixel are available, the 
noise sources are applied consistently with the camera model charac-

teristics and the EMVA1288 standard before returning the noised image 
already expressed in digital numbers. The high-fidelity noise genera-

tor has been compared in [44] against frames acquired with an actual 
CMOS sensor (i.e., the Teledyne FLIR CM3-U3-13Y3C), proving the high 
level of representativeness of each noise component and the final noised 
images given as output. Namely, the comparison between synthetic and 
actual noises has been performed by assessing qualitatively through vi-

sual inspection the fidelity of the dark and bias frames, using histogram 
comparison, and numerically by evaluating the mean value and the stan-

dard deviation of the frames, achieving an average variation of about 
+4% between the actual and synthetic mean noise value [44]. A de-

tailed discussion of the VIS sensor noise generator adopted within this 
work and its comparison against actual images can be retrieved in [44]. 
Please notice that the FLIR CM3-U3-13Y3C CMOS camera is the one 
available in the PoliMi-DAER facility for simulating proximity opera-

tions [45], hence it has been selected as the default camera model for 
the image generation block, forecasting future testing activities of the 
proposed pipeline with hardware-in-the-loop. The interested reader is 
referred to [17] for more details on the high-fidelity VIS sensor model 
and its comparison against actual frames. Once that the noised image 
is retrieved, it is fed to the IP block. Table 2 summarises the inputs and 
the outputs of the IG block. Notice that all the inputs and the interme-
diate results of this block (including the ground truth relative pose) are 
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Table 2

Input/Output of IG block.

Input Chaser and target position in ECI reference frame, chaser and target body orientation in ECI reference frame, Sun position 
in ECI reference frame, camera parameters.

Output Noised image of the target as seen from the chaser, compliant with the selected camera model and the actual dynamics.
saved in a dedicated file for the post-processing of the performances 
registered.

3.2. AI-based space object pose estimation

The IP block consists of an AI-aided keypoint-based pose estima-

tion algorithm that leverages a single, multi-tasking, and efficient CNN 
that performs both target detection and keypoint regression in a sin-

gle inference. Namely, the pipeline leverages the YOLOv8s-pose2 model 
due to its efficiency and top-level performances on benchmark datasets 
for human pose estimation tasks. The relative pose estimation pipeline 
leveraging the YOLOv8-pose has been introduced in [17]. The analy-

ses in [17] point out that the architecture is capable of handling the 
relative pose estimation tasks for several target geometries (TANGO in-

cluded) by providing accurate estimates thanks to the outlier rejection 
scheme based on the confidence scores associated with the retrieved 
landmarks. Namely, in line with [46], a minimal subset of keypoints is 
defined by selecting a constant number of keypoints, 𝑁𝑘𝑝 , with the high-

est confidence scores. Subsequently, all remaining detected keypoints 
with an associated confidence score higher than the threshold 𝜏𝑘𝑝,𝑐𝑜𝑛𝑓
are appended to this minimal subset. It is worth noting that this outlier 
rejection scheme helps prevent the inclusion of low-confidence key-

points (e.g., those corresponding to components outside the field of view 
or keypoints erroneously detected by the CNN) in the 2D-to-3D matches 
fed to the EPnP solver, thereby reducing errors in the relative pose esti-

mated by the EPnP solver. Before optimizing the EPnP output using the 
Levenberg-Marquardt (LM) minimization scheme, the relative position 
estimated by EPnP, 𝑡𝐸𝑃𝑛𝑃 , is compared with a coarse estimate, 𝑡𝑐𝑜𝑎𝑟𝑠𝑒, 
derived by combining the region of interest (ROI) and keypoints, to de-

tect potential outliers, as suggested in [46]. If an outlier is detected and 
the ROI sides do not partially overlap with the image borders (indicating 
that the target may be partially out of the field of view), the coarse rela-

tive position, 𝑡𝑐𝑜𝑎𝑟𝑠𝑒, is used as the initial estimate for LM optimization, 
in conjunction with the relative attitude provided by EPnP. Otherwise, 
the LM optimization takes the relative pose provided by EPnP as its in-

put. The result of the LM optimization provides the final relative pose 
estimate delivered by the IP architecture. Also, the pipeline can partially 
bridge the domain gap between synthetic and mock-up frames due to 
the custom augmentations included in the training phase. Further, the 
check on the need for two inferences (based on the ratio between the 
ROI and the image diagonals that shall be lower than a threshold value 
𝑘𝑑𝑖𝑎𝑔 to trigger the second inference) improves the efficiency, making 
it possible to retrieve a pose estimate after an overall mean computa-

tional time on CPU of about 60 ms and 131 ms for the case of a single 
and a double inference, respectively. The interested reader is referred 
to [17] for a detailed discussion of the YOLOv8-pose-based pose esti-

mation algorithm and the assessment of its performances on benchmark 
datasets.

To tailor the architecture to the case of TANGO adopted for the anal-

yses here presented, the YOLOv8s-pose has been trained on the MINIMA 
dataset [35], using the available ROI annotations [47] and labeling the 
2D landmarks for each image from the 3D wireframe model and the al-

ready available relative pose annotations [40]. Please notice that the 
visibility score associated with each keypoint for each frame has been 
defined by using the Möller–Trumbore ray-triangle intersection algo-

rithm [48] as in [49]. The 3D keypoints selected for TANGO are those 
5

2 https://github .com /ultralytics /ultralytics.
already exploited in [46], corresponding to the tip of the three main ap-

pendages, the four corners of the upper solar array, and the four corners 
of the lower plate of the main body. MINIMA has been split into 27000 
training images, 3000 validation images, and 3000 testing images. The 
training images have been augmented during the training phase by us-

ing the default augmentations of the YOLOv8 and the high-fidelity VIS 
sensor noise augmentation due to its proven capability of enhancing 
the performances of the YOLOv8s-pose also on synthetic images [17]. 
The training has been performed using a NVIDIA RTX™ A6000 GPU us-

ing the stochastic gradient descent method with a learning rate of 0.01 
linearly decaying to 0.0001, a momentum of 0.937, weight decay of 
5 × 10−4, and a minibatch size of 64 images, using the default losses of 
the YOLOv8-pose with relative gain set to 7.5 and 18 for the object and 
keypoint losses, respectively. The training lasts 900 epochs since no im-

provements have been noticed in training longer. The criteria adopted 
to evaluate the performances of the YOLOv8s-pose are the Intersection-

over-Union (IoU) and the average precision (AP) for the object detection 
performances, while the Object Keypoint Similarity Index (OKS) and 
the keypoint AP are considered as the keypoint detection performance 
metrics. The details and definitions of these standard metrics are not 
discussed here for brevity, but the interested reader can find a detailed 
discussion in [50]. The trained model scored a mean 𝐴𝑃 95

50 of 97.4% and 
a mean IoU of 96.11% for the object detection task, while for the key-

point regression task, it achieved a mean 𝐴𝑃 95
50 of 99.1% and a mean 

OKS of 97.99% on MINIMA images. The architecture hyperparameters 
(i.e., those related to the check for the need for the second inference and 
to the keypoint outlier rejection scheme) have been optimized through 
the 3D grid search using the MINIMA test set, following the same pro-

cedure outlined in [17] for the case of SPEED images, resulting in a 
diagonal ratio threshold of 𝑘𝑑𝑖𝑎𝑔 = 0.45, a keypoints minimum set of 
𝑁𝑘𝑝 = 4, and a minimum confidence threshold value for keypoints to be 
added to the minimum set of 𝜏𝑘𝑝,𝑐𝑜𝑛𝑓 = 0.80. Fig. 3 provides examples 
of detected ROI and keypoints extracted from sample images using the 
trained YOLOv8s-pose model. Notably, the extracted ROI is highly ac-

curate and does not crop out any portion of the target. Concerning the 
keypoints and the related accuracy mapped in the colormap in Fig. 3, 
both the 2D locations and the confidences are high for landmarks within 
the camera FOV while, for keypoints out of the FOV, the 2D location is 
wrong and, notably, the associated confidence is extremely low and well 
split from the confidence of keypoints that are within the FOV, allow-

ing to detect these outliers and discard them from the subset fed to the 
EPnP as detailed above, resulting in highly accurate pose estimates even 
in that case (provided that enough keypoint are within the FOV). Table 3

resumes the inputs and the outputs of the IP block. Similarly to the case 
of the IG block, all the outputs of the IP block are saved in a dedicated 
file for the post-processing.

3.3. Navigation filter

The loosely coupled architecture for the relative navigation block 
relies on two distinct filters, i.e., one for the relative rotational dynamics 
and another for translational dynamics, to refine the IP relative pose 
estimates and to make the whole GNC chain more robust to outliers or 
faulty relative state measurements. The inputs/outputs of the block are 
summed up in Table 4.

3.3.1. Relative translation

The standard Kalman filter (KF) is an optimal estimator for linear 

systems with zero-mean Gaussian process and measurement noise [51]. 

https://github.com/ultralytics/ultralytics


Aerospace Science and Technology 155 (2024) 109700A. Brandonisio, M. Bechini, G.L. Civardi et al.

Fig. 3. Detected ROI, keypoints, and confidence score using the trained YOLOv8s-pose model on sample images. (For interpretation of the colours in the figure(s), 
the reader is referred to the web version of this article.)

Table 3

Input/Output of IP block.

Input Noised image of the target as seen from the chaser, compliant with the selected camera model and the actual dynamics.

Output Relative chaser-target position and target orientation in camera reference frame.
However, when dealing with the outputs of an image processing chain 
that may contain nonlinearities and outliers, the assumptions of the 
Kalman filter may not be met. A robust counterpart of the KF is the H-∞
filter, which minimizes the ∞-norm of the estimation error without rely-

ing on restrictive assumptions regarding the statistics of the process and 
measurement noise. This approach was already proven to be success-

ful in a similar scenario in [52]. Let’s consider a linear time-invariant 
system:

𝒙𝑘+1 = 𝐹𝒙𝑘 +𝐺𝒘𝑘

𝒚𝑘 = 𝐻𝒙𝑘 + 𝒗𝑘

(5)

with 𝒙𝑘 being the state vector, 𝒘𝑘 and 𝒗𝑘 the process and measurement 
noise respectively with associated covariance matrices 𝑄 and 𝑅. The 
peculiarity of the H-∞ filter is the computation of the gain matrix 𝐾𝑘 , 
which is chosen such that ‖𝒙 − �̂�‖∞ <

1
𝛾
, where 𝒙 and �̂� represent the 

true and predicted state, respectively and 𝛾 is the tuning parameter. The 
complete formulation of the H-∞ filter is reported in Algorithm 1.

Algorithm 1 𝐻∞ filter.

Initialization:

�̂�(𝑡0) = 𝐱(𝑡0)
𝑃 (𝑡0) = 𝑃0

Propagation:

�̂�−
𝑘
= 𝐹𝑘−1�̂�+𝑘−1 +𝐺𝑘−1𝐮𝑘−1

𝑃 −
𝑘
= 𝐹𝑘−1𝑃

+
𝑘−1𝐹

𝑇
𝑘−1 +𝑄𝑘−1

Filtering:

𝐾𝑘 = 𝑃 −
𝑘
[𝐼 − 𝛾𝑃𝑘 +𝐻𝑇

𝑘
𝑅−1

𝑘
𝐻𝑘𝑃𝑘]−1𝐻𝑇

𝑘
𝑅−1

𝑘

�̂�+
𝑘
= �̂�−

𝑘
+𝐾𝑘(𝐲𝑘 −𝐻𝑘�̂�−𝑘 )

𝑃 +
𝑘
= (𝐼 −𝐾𝑘𝐻𝑘)𝑃 −

𝑘
(𝐼 −𝐾𝑘𝐻𝑘)𝑇

Notice that the H-∞ filter adopted here exploits the first-order J2 linear 
model formulated in [53]. The relative state vector is defined as:

𝜚 =
[
𝑥 𝑦 𝑧 �̇� �̇� �̇�

]𝑇
(6)

The linearized dynamical model can be written as:

⎡⎢⎢⎣
�̈�

�̈�

�̈�

⎤⎥⎥⎦ =𝐴(𝑡)
⎡⎢⎢⎣
�̇�

�̇�

�̇�

⎤⎥⎥⎦+𝐵(𝑡)
⎡⎢⎢⎣
𝑥

𝑦

𝑧

⎤⎥⎥⎦ (7)

where the matrices 𝐴(𝑡) and 𝐵(𝑡) are defined as in Eq. (8) and Eq. (9), 
6

respectively.
𝐴 =
⎡⎢⎢⎢⎣

0 2ℎ2∕𝑟2 0
− 2ℎ2

𝑟2
0 − 2𝑘𝐽2𝑠2𝑖𝑠𝜃

𝑟3ℎ

0 2𝑘𝐽2𝑠2𝑖𝑠𝜃
𝑟3ℎ

0

⎤⎥⎥⎥⎦
(8)

𝐵 =
⎡⎢⎢⎢⎣

2𝜇
𝑟3
+ ℎ2

𝑟4
+ 4𝑘𝐽2(1−3𝑠2𝑖 𝑠

2
𝜃
)

𝑟5
− 2�̇�ℎ

𝑟3
+ 3𝑘𝐽2𝑠2𝜃 𝑠2𝑖

𝑟5

5𝑘𝑗2𝑠2𝑖𝑠𝜃
𝑟5

2�̇�ℎ
𝑟3

+ 5𝑘𝐽2𝑠2𝜃 𝑠2𝑖
𝑟5

− 2𝜇
𝑟3
+ ℎ2

𝑟4
− 𝑘𝐽2(1+2𝑠2𝑖 −7𝑠2

𝑖
𝑠2
𝜃
)

𝑟5
3𝑘𝐽2 �̇�𝑠2𝑖𝑐𝜃

𝑟5

5𝑘𝐽2𝑠2𝑖𝑠𝜃
𝑟5

3𝑘𝐽2 �̇�𝑠2𝑖𝑠𝜃
ℎ𝑟4

− 𝜇

𝑟3
− 𝑘𝐽2(3−2𝑠2𝑖 −5𝑠

2
𝑖
𝑠2
𝜃
)

𝑟5

⎤⎥⎥⎥⎦
(9)

State Noise Compensation (SNC) is adopted to compensate for unmod-

eled accelerations, following the analytical approach presented in [54], 
in which the process noise covariance is evaluated in the RTN frame. 
This approach is used to mitigate the effect of having such a simple 
linear model, as opposed to the nonlinear dynamics characterising the 
relative motion between the chaser and the target spacecraft. Please no-

tice that the filter relies on the knowledge of the chaser’s absolute state 
vector, which is a reasonable assumption if considering missions with 
at least one GPS receiver. In this way it is possible to transform the rel-

ative position vector given as output by the IP block from the chaser 
camera reference frame to the chaser LVLH reference frame required 
by the filter. A fluctuation of the chaser true anomaly can indeed affect 
the overall estimation accuracy. For this reason, the true anomaly of the 
chaser spacecraft is corrupted by means of an additive white gaussian 
noise. Specifically, the noise level is described by a Gaussian distribution 
with standard deviation of 𝜎𝑝𝑜𝑠 = 10−2𝑘𝑚 and 𝜎𝑣𝑒𝑙 = 10−4𝑘𝑚∕𝑠, respec-

tively.

3.3.2. Relative rotation

The attitude of a rigid body naturally evolves on the Special Orthog-

onal Group SO(3), i.e., the set of 3 × 3 orthonormal matrices. The Lie 
algebra of SO(3) is represented by the set of 3 ×3 skew-symmetric matri-

ces, and it is generally denoted as so(3). The relative attitude kinematics 
between two rigid bodies can be written as:

�̇� =𝑅(𝝎)×, 𝑅(0) =𝑅0 (10)

where 𝑅(𝑡) ∈ SO(3) is the relative rotation matrix which represents the 
attitude of the target object with respect to the chaser spacecraft ex-

pressed in the chaser body frame, and 𝝎 is the relative angular velocity 
expressed in the chaser frame.

The relative attitude filter within the NAV relies on the recently 
proposed Invariant Extended Kalman Filter (IEKF), which is a gener-

alization of the classical Multiplicative Extended Kalman Filter (MEKF). 

The overall formulation of the IEKF is reported in Algorithm 2.
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Table 4

Input/Output of NAV block.

Input Relative chaser-target position in chaser LVLH reference frame, relative chaser-target attitude in chaser body frame and relative angular velocity.

Output Relative chaser-target position and velocity in chaser LVLH reference frame and relative chaser-target attitude in chaser body frame.
Algorithm 2 IEKF filter.

Initialization:

�̂�(𝑡0) =𝑅(𝑡0)

𝑃 (𝑡0) = 𝑃0

Propagation:

�̂�−
𝑘
= �̂�+

𝑘−1𝑒𝑥𝑝((𝜔𝑘−1)×Δ𝑡)

𝑃 −
𝑘
= 𝑃 +

𝑘−1 +𝑀𝑐Δ𝑡

where:

𝑀𝑐 = �̂�𝑘Σ𝑢�̂�
𝑇
𝑘

Filtering:

𝐻 =
[
(𝐴(𝒒)�̄�1)×, (𝐴(𝒒)�̄�2)×

]𝑇
𝐾𝑘 = 𝑃 −

𝑘
𝐻𝑇 (𝐻𝑘𝑃

−
𝑘
𝐻𝑇

𝑘
+ �̂�𝑘Σ𝑦�̂�

𝑇
𝑘
)−1

�̂� =
[
�̂�−

𝑘
�̄�1, �̂�−

𝑘
�̄�2

]𝑇
𝒚 =

[
𝐴(𝒒)�̄�1, 𝐴(𝒒)�̄�2

]𝑇
𝑅+

𝑘
= 𝑒𝑥𝑝((�̂� − 𝒚)×)𝑅−

𝑘

𝑃 +
𝑘
= (𝐼 −𝐾𝑘𝐻𝑘)𝑃 −

𝑘
(𝐼 −𝐾𝑘𝐻𝑘)𝑇

In which 𝐴(𝒒) is the attitude matrix extracted from the IP estimate, 
while �̄�1 and �̄�2 are two mutually orthogonal reference directions. The 
matrices Σ𝑢 and Σ𝑦 represent the process noise and the measurement 
noise covariance, respectively. It is important to remark that the rela-

tive angular velocity is directly computed from the reference dynamics, 
adding a white Gaussian noise with 𝜎 equal to 5% of its magnitude be-

fore feeding it to the filter.

4. AI-based guidance and control

The Guidance and Control block is based on the work developed in 
[55], and further investigated in [33,32]. In this aforementioned frame-

work, an autonomous guidance and control agent is proposed to plan 
trajectories around uncooperative and unknown space objects to recon-

struct the overall shape of the object itself. The autonomous problem is 
formulated as an active SLAM (Simultaneous Localization and Mapping) 
problem, which is phrased as a Partially Observable Markov Decision 
Process (POMDP) and solved by the use of Deep Reinforcement Learn-

ing (DRL). The PPO (Proximal Policy Optimization) algorithm is used, 
as developed in [56], to optimize the autonomous agent. In this DRL 
broad domain, three main models need to be defined: state and action 
spaces, and reward function. The state space defines the input state of 
the GC block, and, therefore, as already mentioned it is composed of 
the relative chaser-target pose in terms of position, velocity, and atti-

tude. The action space, instead, defines the output of the GC block, i.e. 
the action the autonomous agent decides to select at each time step of 
the simulation. In this paper, the action space is defined as a discrete 
space, which includes a pre-defined and limited set of actions, as intro-

duced in [55]. The action is directly formulated as a vector in the chaser 
LVLH reference frame and afterwards fed to the dynamics and navi-

gation block to close the simulation and GNC loop. Lastly, the reward 
function drives the agent policy optimization, aiming at maximizing it 
through positive and negative scores, which should incentivize a specific 
agent’s behaviour. This reward is based on three main scores: distance, 
time and map. The distance score defines the region of space in which the 
spacecraft must remain around the object to avoid escaping or collision; 
the time score, instead, limits the time window by when the spacecraft 
should collect all the images to reconstruct the shape, whose quality 
7

and completeness is established by the map score. The map is retrieved 
Table 5

Policy (Actor) and Value (Critic) Networks Architecture definition.

Policy Network Value Network

Layer Type Elements Activation Elements Activation

Input Linear 12 - 12 -

Hidden - 1 (h1) LSTM 24 - 24 -

Hidden - 2 (h2) LSTM 24 - 24 -

Hidden - 3 (h3) Linear 100 tanh 100 ReLU

Hidden - 4 (h4) Linear 100 tanh 100 ReLU

Output Linear 7 softmax 1 linear

by the photo that the spacecraft is assumed to take each 20 s, whose 
quality is computed based on the incidence angles between the Sun and 
camera, and the faces of the object’s mesh. To conclude the definition 
of all the elements needed by PPO to optimize the autonomous guid-

ance problem, it is necessary to mention the neural network architecture 
used to approximate PPO policy and value functions. Different options 
have been extensively studied in [55,32]: in this paper, an LSTM-based 
(Long-Short Term Memory) recurrent network is selected for both pol-

icy and value networks, as defined in Table 5. This general framework 
has been designed to be flexible to scenarios characterised by distinct 
target objects, space environments (even if specifically based on relative 
dynamics) and illumination conditions.

Nevertheless, a preliminary training and testing phase is essential to 
tune the Guidance and Control agent to suit at best in this new GNC 
architecture. At first, the training is constructed to teach the agent to be 
compatible with the new and unknown environment; in particular, three 
main new characteristics have been updated starting from the baseline 
case scenario described in [32]:

• Target object: the case study that will be treated in Sec. 5 is char-

acterized by the TANGO object (from PRISMA mission), on which 
the image generation tool is based; TANGO is shaped with the mesh 
defined in Fig. 4.

• Camera model: is based on the Chameleon 3 CM3-U3-13Y3C, al-

ready exploited in [45], on which the IG model is developed. The 
Chameleon 3 is characterized by a field-of-view of 44.54◦x44.54◦, 
a size of 1024 x 1024 pixels, and a focal length of 6 mm.

• Trajectory range: is limited by a minimum of 1.5 m and a max-

imum of 35 m. This constraint is driven by the IP block perfor-

mance, whose estimation drastically decreases when overcoming 
about 35 m of relative distance between the Chameleon 3 and 
TANGO.

The PPO algorithm hyper-parameters setting is summarized in Ta-

ble 6.

The agent’s training process and testing activity are evaluated based 
on different metrics, such as episode score, map level and time. In Fig. 5

the resulting trends for the training simulation are depicted. It can be 
observed that the agent can achieve a high level both in terms of reward 
scoring and map level, almost reaching 90%, in line with the training 
behaviour in the baseline case [33,32].

It is important to underline that the training process from which the 
agent that will be used for the GNC pipeline is generated, is built on two 
strong assumptions:

• Perfect input state: the state space defined for the training pro-

cess is not affected by any noise or uncertainty, meaning that 

the input state for the policy and value networks is equal to the 
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Fig. 4. TANGO (from PRISMA mission) mesh: symmetrical and cubical shape with a maximum length of 1 m, 174 nodes, 344 faces.
Table 6

Set of PPO algorithm’s hyper-parameters used for training and testing 
the TANGO case study agent.

PPO Hyperparameters

Reward Discount Factor 𝛾 0.99

Terminal Reward Discount Factor 𝜆 0.95

Clipping Factor 𝜖 0.1

Entropy Factor 𝑠2 0.02

Optimizer ADAM

Optimization Step each 10 episodes

Optimization Batch 32

Epochs 5

Simulation length 18000 episodes (training)

Policy Network

Initialization -

Learning Rate 1e-4

Final Activation Function Sigmoid

Output Distribution Categorical

Output Action Sampling (training) argmax (testing)

Value Network

Initialization -

Learning Rate 1e-4

Fig. 5. TANGO case study training of the GC agent: metrics (reward score, map 
level, episode time) evolution along the simulation. The thick red line represents 
the average metrics values during the simulation.

real relative pose and attitude coming out from the dynamics of 
the environment. This approximation may influence negatively the 
8

performance of the agent when interfaced with the navigation 
Table 7

Average testing results for TANGO agent.

Average Score Average Map Average Time Average Thrusting

406.4 86.6% 6.6 h 22.6%

Fig. 6. TANGO case study agent’s performance in testing simulation: ending 
conditions statistics.

chain of the GNC algorithm which intrinsically is affected by er-

rors.

• Fixed camera direction: this particular approximation fixes the 
camera direction towards the target object. It is done to simplify the 
dynamic model of the environment and, consequently, the training 
process to uncouple the orbital and attitude manoeuvres.

Once the training phase is concluded, the outcoming policy network 
has been tested to understand the effective performance in nominal 
conditions: same random initial conditions, acceleration size, trajectory 
limit range and perfectly known input state; the results are summarized 
in Table 7. In particular, the average termination conditions have been 
analysed to define the expectation of the agent in the GNC pipeline; the 
results are shown in Fig. 6 for a 1200-episode simulation’s length.

Before analysing the performance of the GNC algorithm, wide sen-

sitivity analyses were performed on the trained network to assess the 
robustness of the agent and to foresee some of the needs that GC will 
incur in the interaction with a different environment, which will not al-

ways be coherent with the characteristics on which it has been trained. 
In particular, the sensitivity is investigated for random initial conditions 
with higher discretization ranges, different acceleration (action) sizes, 
different integration steps, and noisy input based on the error level of 
the IP algorithm.

5. TANGO fly-around case study

This section describes the testing campaign done to analyse the 
performance of the AI and image-based GNC pipeline. The algorithm 
schematic and architecture have already been presented in Fig. 1. The 

baseline simulation is based on some main assumptions that must be 
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considered in the overall pipeline due to the input constraints of the 
different blocks:

• The initial conditions are the same random initial conditions on 
which the GC agent has been trained.

• The Earth is never in the background of the image for two main 
reasons: the guidance reward model was not built considering Earth 
illumination and the IG block would have been excessively slow in 
rendering the images to maintain a feasible simulation time.

• The guidance and control agent inserted in the GNC pipeline is 
trained on a fixed target pointing scenario, which does not re-

quire any attitude controller at first.

• The trajectory is limited to remain between 1.5-35 m from the 
target to avoid collisions or over-reducing the target size in pixels, 
leading to unfeasible target detection and relative pose estimation 
steps within the IP block.

It is worth mentioning that the analyses in [17] related to the robustness 
of the IP step pointed out that the presence of backgrounds has negligi-

ble effects on the estimated relative pose accuracy. These assumptions 
lead to the definition of some tests on the GNC pipeline, focusing on the 
different blocks. The first concerns the input of the chaser-target rela-

tive orientation, which could have been derived in three different ways: 
the first way derives it from the real quaternion value (computed by the 
dynamics block) with the addition of a proper level of noise, the second 
is based on the IP estimation, and the third exploits a rotational naviga-

tion filter to deal with this information. The second aspect is related to 
attitude control, which has been added as the last step of the plan, re-

moving the assumption of fixed target pointing. Therefore, starting from 
these different features of each of the blocks involved in the algorithm, 
a testing workflow has been followed to increase the complexity of the 
simulations step by step, without rushing directly to the most general 
case. The adopted procedure is summed up in Table 8. A new level of 
complexity has been added at each new simulation (in bold in Table 8): 
change of the attitude input information for the guidance and control 
block, the increment of the noise within the IG block, and the addition 
of the attitude control for target pointing.

Each of the tests listed in Table 8 run on 5 episodes simulation length 
due to heavy computational time, with the same stopping conditions 
defined for the GC agent’s training: exceeding of the trajectory limits 
(range between 1.5-35 m) or the time window (set to maximum 4 hours 
of trajectory length), and the achievement of map coverage (if reaches 
100%). In the table all the testing process’ steps are presented, even if in 
the following blocks’ analysis only the results on the worst case scenario 
conditions (step ID:4 to ID:7) are treated and commented.

GC attitude input As just introduced, the attitude information needed 
by the GC agent can be derived directly by the dynamics, the IP block 
or by the rotational filter. In the first case, the estimation is less real-

istic because only noise (added following the model used in [57]) on 
the real quaternion is being considered. In the second and third cases, 
the input is more proper since it comes from the IP or NAV estimation. 
Nevertheless, for the IP-based formulation, another assumption must be 
considered: indeed the IP block outputs the chaser-target relative orien-

tation in the chaser camera reference frame, while the GC agent needs 
it in the LVLH one. Therefore, to rotate the quaternion from the body to 
LVLH frame, the knowledge of the absolute position of the target object 
must be assumed, which can be still computed knowing the estimation 
of the relative position and the chaser absolute one.

Chaser attitude control Once the fixed target pointing assumption has 
been removed, a PD control has been activated in the dynamics block, 
computing the target pointing with the quaternion estimator algorithm 
(QUEST) [58]. In this way, it is also possible to introduce the chaser 
attitude estimation error within the navigation chain and to assess its 
9

influence on the relative pose estimation. The proportional and deriva-
Aerospace Science and Technology 155 (2024) 109700

Table 8

Planning of the testing simulation to assess the feasibility of the AI 
and Image-based GNC pipeline. In bold the new features that are 
added at each simulation step to increase the complexity of the sys-

tem.

ID Initial Cond. Traj. Range GC input IG noise

1 GC 1.5-35 m
rv: NAV

3 dB
q: DYN

2 GC 1.5-35 m
rv: NAV

3 dB
q: DYN + noise

3 GC 1.5-35 m
rv: NAV

6 dB
q: DYN + noise

4 GC 1.5-35 m
rv: NAV

12 dB
q: DYN + noise

5 GC 1.5-35 m
rv: NAV

12 dB
q: IP + noise

6 GC + att. cont. 1.5-35 m
rv: NAV

12 dB
q: IP + noise

7 GC + att. cont. 1.5-35 m
rv: NAV

12 dB
q: NAV

tive gains are not fine-tuned on the chaser to leave a small level of 
uncertainty on the attitude control to analyse the robustness of the GC. 
Moreover, the coupling between the trajectory and attitude control is 
not taken into account: on the one hand to not increase too much the 
complexity, on the other because the GC agent is not trained for this 
kind of scenario. Nevertheless, even if this test explores a lot of states 
never experienced by the agent, it will be able to act properly.

5.1. IP analysis

By taking the simulations outline in Table 8, it can be noticed that 
the IP block is mainly tested by increasing the noise added to the input 
images processed to retrieve the relative pose. Namely, the synthetic 
images are noised by applying the VIS sensor noise [17] (including also 
the fixed pattern noises), using the parameters of the Chameleon 3 sen-

sor. Keeping constant the sensor characteristics, the noise level can be 
adjusted by tuning the AGC Gain. Namely, the noise has been increased 
by raising the ADC Gain from 3 dB to 12 dB, i.e., reducing the estimated 
Signal to Noise Ratio (SNR) from about 37 dB (3 dB gain) to about 33 dB 
(12 dB gain). The maximum noise level of 12 dB of ADC Gain has been 
selected since it is one of the highest noise levels that allows retrieving 
reliable outputs from the IP step without leading to high errors within 
the training distance range, as assessed in [17]. In the following, the 
analyses will be detailed only for the worst cases (i.e., the highest noise 
level) for brevity. It is pointed out that the noise levels simulated are 
specific for the camera model adopted and that the IP pipeline shall be 
re-evaluated and, if needed, re-tuned to be compliant with other cam-

era models leveraging the sensor parameters and settings defined for 
the specific mission to generate a representative noise through the noise 
generator adopted within this work, due to the high variability of the 
VIS sensor noise and SNR as a function of the sensor itself, its settings, 
and the imaging conditions.

The assessment of the robustness of the IP step has been performed 
by collecting the outputs for all the episodes simulated, resulting in 
about 100000 samples retrieved for both the constrained target point-

ing (ID 4 – 5 in Table 8) and controlled pointing (ID 6 – 7 in Table 8) 
conditions. It is worth remarking that the images are randomised be-

tween each episode due to the adaptive guidance involved in the sim-

ulation loop, resulting in an ideal scenario to prove the robustness and 
reliability of the YOLOv8s-pose-based pose estimation algorithm. The 
performances have been evaluated by retrieving for each frame the nor-

malized relative distance error 𝑒𝑡 and the relative quaternion error 𝑒𝑞 as 

in Eq. (11) and Eq. (12), respectively, as defined in [15].
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Fig. 7. YOLOv8s-pose-based IP robustness analysis in target-pointing scenario.

Fig. 8. YOLOv8s-pose-based IP robustness analysis in non-target-pointing scenario.
𝑒𝑡 =
𝐸𝑡||t𝐶 || =

||t𝐶 − t̂𝐶 ||||t𝐶 || (11)

𝑒𝑞 = 2 ⋅ arccos |q ⋅ q̂| (12)

Where t𝐶 and q are the ground truth pose vectors, while ̂t𝐶 and q̂ are the 
estimated ones. Figs. 7 – 8 show the evaluation metrics (in logarithmic 
scale) and their range of variability as a function of the relative ground 
truth distance. Namely, the samples have been organized in batches by 
discretizing the ground truth distance in steps of 1 m. The mean value 
of each error metric is computed for each batch. The vertical lines in 
Figs. 7 – 8 give the range of values within the 1𝜎 range (i.e., the values 
within the 16-84 percentiles), being the central trend of the distribution, 
and the range between the minimum and maximum error within each 
batch, to provide the full range of variability of the error measured.

Regarding the errors in the non-target-pointing scenario shown in 
Fig. 8 (ID 6 – 7 in Table 8), it can be noticed that there are four peaks 
of maximum error between 10 m and 16 m of relative distance for both 
the normalized position and the quaternion error. By looking at the gen-

erated images, it has been noticed that those peaks are due to a weak 
attitude control action that makes the target exit the FOV. The high er-

rors correspond to the transition from inside to outside of the FOV and 
vice versa. During these transitions, there are images for which only 
a minimal portion of the target (e.g., from 1 to 3 keypoints) is within 
the FOV and, in those images, the accuracy of the keypoint regression 
became poor, and the errors in the retrieved relative pose increase. No-

tably, these high errors can be classified as outliers since they do not 
affect the central trend of the distributions. Overall, the normalized rel-

ative position error is below 5% (both the mean value and the 16-84 
percentiles) for both the scenarios, except for distances higher than 33 m 
10

in the target pointing scenario (Fig. 7), where the error slightly increases 
(still limited to a maximum of less than 6%) due to images captured in 
low illumination conditions. The relative attitude error mean value and 
the upper bound of the 16-84 percentiles are below 10 degrees up to a 
maximum relative distance of 31 m. For ground truth relative distances 
higher than 31 m, the maximum error mean and upper bound value of 
the 1𝜎 range is 11 degrees. Notably, the angular error is below 5 degrees 
up to 25 m of relative distance for both the scenarios. By comparing the 
plots in Figs. 7 – 8, it can be noticed that they are similar (except for the 
previously mentioned outliers due to the target exiting the FOV), prov-

ing that the IP architecture is robust with respect to those cases in which 
the target is within the FOV but not centered in the image. In conclusion, 
the analysis proved the robustness of the YOLOv8s-pose architecture, 
providing the error ranges analyzed over a wide range of images and 
scenarios using a medium-high level of noise in the processed images. It 
is worth mentioning that the cases analysed are the worst cases in terms 
of image noise, hence, the performances are expected to be even better 
in case the noise level in the input frames is lower (e.g., for the test cases 
referred as ID 1 – 3 in Table 8). For the sake of completeness, the com-

parison between the ground truth and estimated trajectory of the target 
with respect to the camera in a non-target-pointing condition for a sin-

gle episode has been reported in Fig. 9 together with the normalized 
relative position error for each component. As expected from the anal-

yses in [17], the errors along the camera boresight axis (i.e., the z-axis) 
are about one order of magnitude higher than those along the other two 
components. This behaviour is well-known and has already been noticed 
in other relative pose estimation algorithms that rely on keypoints (e.g., 
[46,12]), and it originates since errors in the estimation of the keypoints 
coordinate mostly affect the z-coordinates, causing a sort of “zoom-in” 
and “zoom-out” effect [17]. The x and y coordinates are less affected by 

the errors in the keypoints coordinates since, to have a relevant effect 
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Fig. 9. Comparison of ground truth and estimated relative target trajectory with respect to the camera.
along these directions, all the errors in the keypoint coordinates should 
be in the same direction, which is highly not probable.

5.2. NAV analysis

The output of the NAV functional block is tightly related to the IP 
one, and the specific estimation error values depend on the episode 
configuration. This section reports some representative results, to anal-

yse the behaviour of the filters and to discuss their role within the 
whole GNC chain. The performances have been evaluated as described 
in Eq. (13) and Eq. (14) for the relative position and attitude, respec-

tively.

𝑒𝜌 =
√

(𝑥𝑖 − �̂�𝑖)2 + (𝑦𝑖 − �̂�𝑖)2 + (𝑧𝑖 − �̂�𝑖)2 (13)

𝑒𝑅 = 𝑎𝑟𝑐𝑐𝑜𝑠

(
1 − 𝑡𝑟(𝐼 −𝑅𝑇 �̂�)

2

)
(14)

where 𝑅 and �̂� are the ground-truth and the estimated relative rotation 
matrices. To cope with a time changing relative inter-satellite distance, 
the measurement covariance matrix of the filter has been made adaptive 
by means of the following relation:

𝑅 = 𝑟𝑦|�̂�| (15)

with 𝑟𝑦 = 1 ×10−2 being a fixed parameter. In this way, the measurement 
covariance matrix is scaled according to the estimated relative distance, 
without requiring further tuning during the inspection phase. With ref-

erence to 2, the two gains have been set to Σ𝑢 = 4 ×10−5 and Σ𝑦 = 10−1. 
It is important to underline that these tuning settings are not the best 
possible settings, but they were found to offer reasonable performances 
is a wide operational scenario. It is also essential to remark that these 
settings were kept constant throughout all the simulations performed 
for these analyses. The results reported in Fig. 10 are related to a simu-

lation showing nominal IP performances. It is possible to notice that the 
percentage of image-based outlier measurements is extremely low, and 
there are no failures within the IP block. It can be noticed that the filter 
is beneficial in both cases, since it reduces the estimation error of the 
IP functional block. It can also be noticed that the presence of the filter 
11

is effective in mitigating the error peaks that occur during the episode. 
The overall position and attitude estimation decrease by 30% and 7%, 
respectively. Even if the position error reduction is higher in percentage, 
it is important to stress the fact that its magnitude is always extremely 
low, always below 5% of the relative inter-satellite range.

However, to better understand the importance of the filter within 
the GNC chain, it is necessary to consider a test case in which the IP 
block fails to provide meaningful measurements, for instance when the 
target is no longer in the FOV. Such example is reported in Fig. 11, 
in which it is possible to notice that the IP stops working for 200 𝑠
towards the end of the simulation. This failure is due to the fact that 
the target is outside the camera’s field of view, making the IP step to 
provide no measurements to the NAV block. Nevertheless, the filter is 
able to mitigate this shortcoming. It is important to stress the fact that 
the sudden increase in the attitude estimation error is partially due to 
the lack of measurements and partially due to the fact that the attitude 
controller is enforcing a high angular rate to the chaser spacecraft, thus 
enhancing the error propagation within the kinematics model embedded 
in the filter.

5.3. Testing analysis: GC

In this section, the results obtained in the test campaign described in 
Table 8 are analysed focusing on the performance of the guidance and 
control agent. Considering the trained agent studied in Sec. 4 and its 
relative performances summed up in Table 7, it is reasonable to expect 
that at least 4 on 5 episodes would succeed in reaching the 100% of map 
or, at least, remaining inside the trajectory limit ranges. As explained in 
Sec. 3 and Sec. 4, the action output of the guidance and control agent 
is shaped as an acceleration vector; in particular this vector has a fixed 
module of 0.001 m/s2. Therefore, considering the average simulation 
episode time and the percentage of thrust used, the Δ𝑉 budget can be 
easily computed by integrating the acceleration module. In general, con-

sidering a worst-case scenario in which for all the 4 h time of inspection 
the control action is not null, the maximum Δ𝑉 would be equal to 14.4 
m/s.

The results are reported in Table 9 and show that the agent perfor-

mance remains more or less constant during all the tests, proving the 

great robustness of the trained model. Even if the sample of episodes 
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Fig. 10. Relative translation (left) and rotation (right) filter estimation errors in non-target-pointing scenario, nominal IP behaviour.

Fig. 11. Relative translation (left) and rotation (right) filter estimation errors in non-target-pointing scenario, off-nominal IP behaviour.
Table 9

GNC pipeline results.

ID Scr. Map Time Thr. Ending Conditions

DMAX DMIN MAP TIME

1 372.2 81.7% 2.7 h 48.3% 1 - 2 2

2 341.2 81.3% 2.6 h 40.7% 1 - 3 1

3 437.6 86.8% 3.6 h 33.1% 1 - 1 3

4 414.4 93.7% 3.1 h 34.5% 1 - 3 1

5 378.2 89.5% 2.7 h 28.6% 1 - 3 1

6 505.8 84.3% 3.2 h 29.4% 2 - - 3

7 574.2 96.5% 4.0 h 53.2% - - - 5

is short, just up to 5 for each simulation, the fact that the metrics lev-

els are almost the same in all the tests supports the findings. Moreover, 
the fact that in some simulations the average metric is lower or higher 
with respect to the others is then connected to the single episode and 
not to the average performance. Indeed, it is easy to notice how, on av-

erage, the evaluation metrics respect the standards of the nominal ones. 
Considering the ending conditions, it is interesting to notice that, differ-

ently from the previous ones, only the ID:6 never gets the maximum map 
level. This may be caused by the additional attitude control aspect in the 
environment, which, not guaranteeing anymore a fixed target pointing, 
may slightly lower the agent’s performance.

It is important to notice also the behaviour in ID:7, when the attitude 
information needed by the GC is retrieved by the rotational navigation 
filter. In particular, all episodes end exceeding the time constraint of 4 h, 
even if achieving a very high mapping level. This result shows that the 
agent benefits from the rotational filter which, indeed, reduces the av-

erage level of the pointing information input, as summed up in Table 10

and depicted in Fig. 12. It can be noticed that the output coming from 
the rotational navigation filter almost halves the pointing error associ-

ated to the chaser-target relative attitude, increasing then the reliability 
12

of the guidance and control block. Indeed, this behaviour is reflected in 
Table 10

Average pointing error in GC input throughout the different 
step of the GNC pipeline tests.

Pointing technique DYN+noise IP+noise NAV

Average Pointing Error 10-20◦ 10-20◦ 5-10◦

the simulation metrics as showed in Table 9 for ID:7, in which the score 
and map level reach the maximum results among the simulation inves-

tigated. This increased robustness, anyway, favours the survival of the 
spacecraft around the object instead of the final acquisition of the map, 
nevertheless it is, in average, higher than all other cases.

Two examples of results acquired throughout the test analysis are 
shown in the next pages. In Fig. 14, one episode of ID:5 test simulation 
is outlined; in Fig. 15, instead, one episode of ID:6 test. In both figures, 
the relative chaser-target position and velocity (highlighting when the 
agent takes active control on the chaser), the simulation metrics (score, 
map level and thrust percentage), and the trajectory around the object 
are plotted. From the graphs, it is easy to notice how the agent tries to 
keep the spacecraft at an average relative position and velocity value, 
actively controlling it only these two parameters start to drift away from 
this value.

One last analysis, shown in Fig. 13 has been carried out on the com-

parison of the agent behaviour when acting in the GNC environment or 
in the training environment defined in Sec. 4, considering fixed target 
pointing. In blue is depicted the relative position and velocity when the 
agent acts in the GNC algorithm, thus exploiting the input of the IP and 
NAV blocks. On the contrary, in orange, is the trajectory’s variable fol-

lowed by the chaser starting from the same initial conditions, but taking 
as input the real values as happening during the training phase. It can 
be noticed that, even if they clearly fly-around the target with two dif-

ferent trajectories, they still accomplish the same objective. This means 

that for the agent knowing exactly its current state is not strictly impor-
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Fig. 12. Error between real and estimated camera pointing: comparison between IP and rotational NAV filter performances.

Fig. 13. Comparison of the trajectory generated by the GC agent within the GNC algorithm framework and the training environment defined in Sec. 4.
tant as long as the input represents a reasonable state condition. This 
very powerful feature is a direct consequence of the exploitation of a 
guidance and control policy approximator trained through deep rein-

forcement learning. For sake of clarity, the yellow line in Fig. 13 depicts 
the free-dynamics state, demonstrating again how an uncontrolled tra-

jectory is totally unable to even approach an intermediate result. In the 
end, considering the overall results, the DRL trained GC agent seems to 
be perfectly capable of interacting with realistic IP and NAV blocks in a 
GNC closed-loop pipeline.

6. Final remarks

This paper proposes an innovative GNC algorithm architecture which 
13

has been presented in all of its components in the previous sections. 
The performance of the algorithm is investigated analysing the results 
with respect to the different blocks: image processing, navigation fil-

ter, and guidance and control. In particular, the guidance and control 
block is treated in depth starting from the analysis of the training prob-

lem shaped for the TANGO environment, up to the extensive testing and 
sensitivity analysis campaign. Once the agent’s level of robustness and 
flexibility has been assessed, the developed block was inserted and in-

terfaced into the image-based navigation tool. As shown in the previous 
pages, the trained agent exhibits a stable and unaltered level of perfor-

mance throughout all the steps of the testing simulations summed up in 
Table 8, although some assumptions were quite distant with respect to 
the environmental model in which the GC agent has been trained, i.e. 
controlled chaser’s attitude dynamics. The policy learned is robust to 

all the uncertainties and model differences introduced in the new GNC 
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Fig. 14. Example of Chaser-Target trajectory and evaluation metrics in the fixed target pointing case.
framework: this is demonstrated by the trajectory path that the agent 
follows - or at least tries to follow - at each simulated episode. More-

over, the intrinsic estimation errors generated by the image processing 
and navigation filter do not affect the performances even if they are 
greater or comparable to more classical navigation techniques. After-

wards, both image processing and navigation filter performances have 
been analysed. The YOLOv8s-pose-based relative pose estimation algo-

rithm included in the IP block provided highly accurate measures to 
the GNC scheme. The assessment of the performances of the IP step has 
been performed by evaluating the pose estimation scores measured over 
a wide range of scenarios (i.e., about 100000 images). The outcomes 
confirmed the strong robustness of the proposed approach, with a mean 
14

relative angular error below 5 degrees up to 25 m of relative distance 
(reaching a maximum error of about 11 degrees) and normalized mean 
relative position errors below 5% up to 33 m of relative distance (for 
the simulated VIS sensor). Notably, the error trends are similar for the 
perfect target pointing conditions and controlled attitude cases, proving 
that the pose estimation pipeline is not affected by the position of the 
target within the FOV. The navigation filters downstream the IP func-

tional block enhance the robustness of the GNC chain. It has been shown 
that the beneficial effect of the filters is twofold: first of all they improve 
the accuracy of the pose estimate which is fed to the GC block, and fur-

ther they enable operations even in case of faulty IP measurements, for 
example when the target exits the camera FOV. Lastly, the outcome of 
the tests highlights the fact that the output of the navigation filters is less 

oscillatory than the one of the IP block, which in turns lead to improved 



Aerospace Science and Technology 155 (2024) 109700A. Brandonisio, M. Bechini, G.L. Civardi et al.

Fig. 15. Example of Chaser-Target trajectory and evaluation metrics in the controlled target pointing case.
mapping performances. In conclusion, even if some points still remain 
open, e.g. coupling compatibility between trajectory and attitude con-

trol, absolute attitude knowledge assumption, etc., the main objective 
of this analysis, as defined in Sec. 1, may be considered achieved with 
good success. Of course, these results have strengthened the awareness 
of having a powerful tool, that, at this point, feels the need of being 
tested also in a realistic or hardware-in-the-loop environment. This may 
be a complex path, which may also require specific facilities but, at the 
same time, may be greatly useful in understanding the real applicabil-

ity of such algorithms. The activity may be subdivided into two parallel 
analyses: one aimed to study and optimize the bread-boarding of the im-
15

age processing, navigation, guidance and control algorithms, the other 
more related to the development of a testing facility equipped with a 
target object mock-up, an illumination system and a VIS/TIR camera 
device which may simulate the chaser behaviour if placed on a control-

lable robotic arm. Thanks to this twofold research, it would be possible 
to concretely evaluate the performance of a realistic image and AI-based 
GNC system.
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