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Abstract—The air-cored resonant induction machine removes 

the magnetic core so the fields produced by the windings are 

truly 3-D in nature. The end-windings normally regarded as a 

non-active and leakage source in conventional iron-cored 

machines now become an active part and contribute to the torque 

production. Therefore, the electromagnetic modeling can no 

longer be reduced to a 2-D analysis and the 3-D inductance 

calculation becomes a key problem. The 3-D Finite Element 

Analysis (FEA) can solve the 3-D magnetic field but, firstly, the 

validity of its solution depends on the precision in geometry 

modeling. In particular, representing the end-winding region 

avoiding conductor clashing can be very complicated. Secondly, 

3-D FEA solutions are computationally-slow and therefore

inefficient as an “internal routine” of an optimization procedure.

This paper proposes a fast analytic 3-D winding inductance

estimation method for air-cored resonant induction machines.

The approach breaks down the real coils into straight conductors

and represents them by single filaments located at their centers,

then uses closed-form expressions derived from Neumann

integrals to calculate the coil self and coil-to-coil mutual

inductances which are then collected into winding phase self and

mutual inductances. All the independent coil-pair contributions

are isolated so as to eliminate redundant calculations. Good

accuracy of the calculated results is confirmed by validation

against both 3-D FEA and experimental results, including

winding inductance breakdown and overall machine tested

performance.

Index Terms—Air-cored windings, closed-form expressions, 

collection routine, experimental validation, inductance 

calculation, resonance.  

I. INTRODUCTION

EMOVING the ferromagnetic core from conventional

induction machines (IMs) significantly reduces the 

weight, eliminates iron losses and magnetic saturation. 

However, it also reduces the air-gap flux density. In order to 

maintain the power rating, capacitors are added to cancel out 

the machine inductive reactance and achieve resonance at a 

certain slip so that the electric loading is boosted for a given 
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voltage. This is the main idea behind air-cored resonant 

induction machines (ACRIMs) [1]. The concept was firstly 

proposed in [2]. The performance analysis, including torque 

and efficiency calculations, can be carried out using the 

standard per-phase equivalent circuit, where the key 

parameters are the inductance and capacitance values. Several 

tuning criteria for the capacitors have been discussed and 

compared in [3] and [4], but the calculation of air-cored IM 

inductances has not been studied thoroughly in previous 

works. Analytic expressions for the inductances of ACRIMs 

can be found in [5] and [6], but they are derived under the 

assumption of two-dimensional (2-D) current sheet 

distributions or using the 2-D field solution of wires with 

round cross-sections, none of them is based on three-

dimensional (3-D) models, and therefore are not accurate for 

an air-cored machines. The Finite Element Analysis (FEA) 

method is used in [7] and [8] to extract ACRIM inductance 

values but it is still based on a 2-D model, so does not capture 

the important 3-D effects.  

The inductance estimation for ACRIMs is inherently a 3-D 

magnetic problem: similar problems can be found in end-

winding leakage reactance calculation, ironless permanent 

magnet (PM) machine design, air-cored compulsator design, 

etc. Various methods have been proposed in the literature. To 

calculate the end-winding reactance of induction machines, 3-

D FEA models are built in [9] and [10]. However, solving 

these 3-D FEA models is quite time-consuming. In order to 

reduce the computation time, a method using partial 3-D FEA 

models and a corrected 2-D FEA model is proposed in [11]. 

This method achieves very close accuracy to a full 3-D FEA 

with reduced computational solution times, but when the 

machine parameters change, the winding geometry needs to be 

adjusted accordingly to avoid coils clashing and the boundary 

conditions also need to be reassigned. 3-D FEA is also 

incorporated to calculate the machine inductance and back-

emf in the design optimization for an axial-flux PM generator 

with an ironless stator in [12]. However, the results show that 

running a parametric sweep takes about 92 hours on a high-

performance workstation. In summary, although 3-D FE 

modelling can be a way to numerically calculate the 

inductances, the complexity of the coil arrangements in the 

end-regions and the high computational cost makes it very 

inefficient for optimization design procedures.  

Compared to 3-D-FEA numerical methods, analytical 

methods and hybrid numerical-analytical methods can reduce 

the computational burden and achieve good accuracy [13] – 

[16]. Neumann integrals are implemented in [17] to calculate 

A Fast 3-D Winding Inductance Estimation Method 

for Air-Cored Resonant Induction Machines 
Zhao Jin, Matteo F. Iacchetti, Senior Member, IEEE, Alexander C. Smith, Senior Member, IEEE, 

Rajesh P. Deodhar, Senior Member, IEEE, Yoshiyuki Komi, Member, IEEE, Ahmad Anad Abduallah, 

Student Member, IEEE, Chiaki Umemura 

R 

Document Version: Accepted author manuscript. Link to publication record in Manchester Research Explorer
DOI: 10.1109/TIA.2022.3185571



2 

the end-winding inductance for concentrically-wound IMs: 

coils are represented by their central filaments, and a coil table 

is used to store the information such as the coil winding 

direction and coil connections. However, the direct 

implementation of Neumann integrals via numeric quadrature 

can produce a singularity if any two elements intersect which 

prevents end-winding shape simplification, and, although it is 

significantly faster than 3-D FEA, it can still be too slow as 

the “inner core” of fast design optimization procedures. 

Hence, closed-form solutions of Neumann integrals are 

derived in [18] and [19] for mutual inductances of two straight 

filaments placed in an arbitrary position and of two parallel 

and coaxial rectangular loops. Coils can be approximated by 

small straight segments and assumed to have a round cross-

section in the self-inductance calculation and point cross-

section in the mutual inductance calculation [18]. For the 

mutual inductances between more complex shapes such as arc 

filaments and coaxial circular filaments, solving Neumann 

integrals can yield expressions involving asymptotical series 

approximation and elliptic integrals, so hybrid numerical-

analytical evaluation is needed [20] – [22]. The closed-form 

expressions exhibit good accuracy, resolve singularity issues 

and can be computed quickly on standard computers [23]. 

However, most papers focus on the coil-level inductance 

calculation while the winding-level inductance collection is 

ignored. Due to the properties of a three-phase winding layout, 

periodicity and symmetry can be invoked to enable a faster 

winding inductance collection which further reduces the 

computation time and is suitable for a 3-D optimization design 

program.  

This paper proposes a fast winding estimation method for 

ACRIMs. Coils are initially broken down into straight 

conductors and a single filament located at the center of each 

conductor is used to represent coil shape and position. Closed-

form solutions are then derived from Neumann integrals to 

calculate the self and mutual inductances of these straight 

segments with arbitrary orientation, which avoids singularity 

issues and accelerate calculation times. Segment-level 

inductances are then summed to obtain the coil self and coil-

to-coil mutual inductances. The coil-level inductances are 

subsequently collected to calculate the phase self and phase-

to-phase mutual inductances, so that only independent coil-

pairs are involved, which eliminates redundant computation 

and further reduces the computation burden. Finally, the phase 

self and phase-to-phase mutual inductances are combined into 

the equivalent-circuit per-phase inductances. The proposed 

method is validated against 3-D FEA. Compared to [1], this 

paper also adds an experimental validation on an ACRIM 

prototype: the determination of the coil shape using 

measurable prototype geometric parameters is presented, from 

which the estimated winding inductance values are calculated 

then compared with the measured values. The estimation 

accuracy is also validated in the comparison between the 

analytically-predicted and tested ACRIM performance.  

II. COIL INDUCTANCE

A. Inductances of Straight Conductors

In the analytic estimation, coils are assumed to be

composed of straight conductors with a round cross section. 

The first step to work out coil inductances is to determine the 

self-inductance of one segment and the mutual inductance of a 

pair of segments with arbitrary orientation. Closed-form 

solutions for Neumann integrals were developed in [23], their 

expressions are very convoluted so will not be repeated here.  

1) Self-Inductance of a Straight Conductor

The formal expression for the self-inductance of a

nonmagnetic, straight conductor can be written as 

( , )cond LL f l = (1) 

where l is the conductor length, ρ is the radius of its cross 

section.  

2) Mutual Inductance of Two Straight Conductors

Representing the conductors by straight filaments locating

at their centers, the mutual inductance of a pair of conductors 

can be expressed as follows:  

1 1 2 2( , , , )cond MM f P Q P Q= (2) 

where {P1,Q1} and {P2,Q2} are the coordinates of the start and 

end points of filaments 1 and 2 respectively. The spatial 

relationship of the two filaments is firstly determined using the 

coordinates of P1, Q1, P2, Q2, then for different filament 

orientations, such as parallel, skew, meeting at one end, 

intersecting, etc., different closed-form expressions are 

applied. For reinforced robustness, if two filaments intersect, 

they can also be broken down at the intersection point and 

their mutual inductance can be treated as the sum of mutual 

inductances of several sub-filaments meeting at one end. This 

approach resolves any singularity issue arising from the 

intersection of filaments.  

Comparison of the analytic results with numeric integrals 

shows that, the closed-form expressions are accurate, robust 

and computationally fast, and therefore suitable to be 

integrated into optimization design programs.  

B. Self-Inductance of a Coil

Assuming the coil is composed of N straight segments, the

self-inductance of the coil is 

1 1,

N N

coil i ij

i j j i

L L M
= = 

 
= + 

 
  (3) 

where Li is the self-inductance of i-th segment, Mij is the 

mutual inductance between the i-th and the j-th (i ≠ j) 

segments.  

C. Mutual Inductance of a Pair of Coils

Supposing the coil 1 and coil 2 are composed of N1 and N2

straight segments respectively. The mutual inductance 

between two coils is  

1 2

1 1

N N

coil ij

i j

M M
= =

=  (4) 

where Mij is the mutual inductance between the i-th segment 

from coil 1 and the j-th segment from coil 2. In a radial-flux 

machine, stator and rotor coils are typically located on two 

concentric baseline circles of radii rb1 and rb2, as shown in Fig. 

1. When the coil geometries and the radii of the baseline
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circles are fixed, the mutual position of the coils is defined by 

the angle ∆θ between the two coil axes. As a result, the mutual 

inductance of a pair of coils can be written as  

( )coilM M =  (5) 

which is a function of the angle between the two coils. 

Fig. 1. A pair of coils (solid thick lines) on two concentric baseline circles 
(dashed lines) of radii rb1 and rb2. The grey circles represent the cross-sections 

of the coils. The angle between two coil (magnetic) axes is ∆θ.  

III. PHASE WINDING AND EQUIVALENT-CIRCUIT INDUCTANCE

COLLECTION ROUTINE 

The next step is to group the individual coil inductances to 

form the phase winding self and mutual inductances. Balanced 

three-phase, single-layer, lap windings are assumed for the 

stator and rotor with each winding composed of identical coils 

with appropriate connections. Stator and rotor coils are 

different, lying on concentric baseline circles of different radii 

(see Fig. 1). The winding layout has periodicity pp however, 

where pp is the number of pole pairs, this property can be used 

to reduce the number of calculations for coil-to-coil 

inductances. 

A. Phase Self-Inductance

The self-inductance, Lph, of the stator or rotor phase

winding (i.e., with identical coils on the same baseline circle) 

can be divided into three parts,  

0 1 2phL L M M= + + (6) 

where L0 is the sum of self-inductances of all coils in the 

phase, M1 is the sum of mutual inductances between coils in 

the same phase and same pole pair, M2 is the sum of mutual 

inductances between coils in the same phase but different pole 

pairs.  

1) Term L0

Because coils are identical, the sum of self-inductances of

all coils in a phase is 

0 p coilL p qL= (7) 

where q is the number of coils per pole per phase, Lcoil is the 

self-inductance of one single coil. The number of coil 

inductance calculations involved in L0 is n0 = 1.  

2) Term M1

Coil pairs with the same coil angular distance ∆θ produce

identical contributions, so their mutual inductances only need 

to be calculated for independent, i.e., not repeated, coil pairs 

and then multiplied by their number of repetitions. This 

approach eliminates redundancy and accelerates the 

calculation. 

Based on the slot numbering shown in Table I, the coil 

angular distances and their numbers of repetitions are 

summarized in Table II. It can be seen that, when q > 1, there 

are 2pp(q−i) coil pairs with Δθ = iα, where α is the angle 

between the geometric axes of two coils and plays the role of a 

“slot angle”.  
Table I  

The Slot Numbering 

Pole pair number Phase band Slot number 

1 

A 1, 2, …, q 

B q+1, …, 2q 

C 2q+1, …, 3q 

A 3q+1, …, 4q 

B 4q+1, …, 5q 

C 5q+1, …, 6q 

⋮ ⋮ ⋮ 

Table II 

Angular Distances Between Coils in the Same Phase and Same Pole Pair, 
and the Number of Repetitions * 

∆θ Number of repetitions 

α 2pp(q−1) 

2α 2pp(q−2) 

⋯ ⋯ 
iα 2pp(q−i) 

⋯ ⋯ 
(q−1)α 2pp 

* q ≥ 2. 1 ≤ i ≤ q−1 

The sum of mutual inductances between coils in the same 

phase and same pole pair can be written as,  
1

11

2 ( ) ( ) if 2

0 if 1

q

p

i

p q i M i q
M

q


−

=


− 

= 
 =


(8) 

The number of calculations for independent coil pairs is 

n1 = q−1.  

3) Term M2

It can be seen from Fig. 2 that, the sum of mutual

inductances between coils from pole pairs 1 and 2+j is 

identical to the sum of mutual inductances between coils from 

pole pairs 1 and pp−j (0 ≤ j ≤ pp−2) when pp > 2. This property 

can be invoked along with periodicity to avoid repeating 

calculations between every two pole pairs. 

Fig. 2: The winding layout for the coils in the same phase but different pole 

pairs (pp ≥ 3), where β is the pole-pair angular span and only coils in phase A 

are shown. The sum of mutual inductances between coils from pole pairs 1 

and 2 is identical to the sum of mutual inductances between coils from pole 
pairs 1 and pp, and so on.  

Also, based on Table I, the coil distances and their 

repetitions are summarized in Table III, where β is the pole-

pair angular span.  

The sum of mutual inductances between coils in the same 

phase but different pole pairs is  
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1

2

2 ( ) if 3

if 2

if 10

K

p p

j

pp

p

p S j Z p

M
pp Z

p

=

  
+   

  
= 

=
 =


(9) 

where the expressions for S, Z and K are presented in the 

Appendix. The number of calculations for independent coil 

pairs involved in M2 is  

2

1
(2 1) if is odd

2

(2 1) if is even
2

p

p

p

p

p
q p

n
p

q p

−
−


= 

 −


(10) 

The total number of coil self-inductance and coil-to-coil 

mutual inductance calculations in the phase winding self-

inductance collection is nLph = n0+n1+n2.  

Table III 

Angular Distances Between Coils in the Same Phase but Different Pole Pairs 

and the Number of Repetitions * 

∆θ Number of repetitions 

(j−1)β ppq 

(j−1)β±α pp(q−1) 

⋯ ⋯ 
(j−1)β±iα pp(q−i) 

⋯ ⋯ 
(j−1)β±(q−1)α pp 

* q ≥ 1, pp ≥ 2. 1 ≤ i ≤ q−1 when q ≥ 2, 2≤ j ≤ pp. 

B. Mutual Inductance of Two Adjacent Phases on the Same

Baseline Circle

For a balanced three-phase winding, the mutual inductances 

between two adjacent phases are identical, i.e., 

MAB = MBC = MCA. Based on Table I, the angular distances 

between coils from two adjacent phases and their number of 

repetitions can be summarized as shown in Table IV.  

Table IV 

Angular Distances Between Coils from Two Adjacent Phases  
and the Number of Repetitions * 

∆θ Number of repetitions 

(j−1)β+2qα ppq 

(j−1)β+(2q±1)α pp(q−1) 

⋯ ⋯ 
(j−1)β+(2q±i)α pp(q−i) 

⋯ ⋯ 
(j−1)β+(2q±(q−1))α pp 

* q ≥ 1, pp ≥ 1. 1 ≤ i ≤ q−1 when q ≥ 2, 1≤ j ≤ pp.

Then the mutual inductance of two adjacent phases on the 

same baseline circle, Mph, can be written as 
1

0

1

1

1

0

( 2 )

if 2

( ) ( (2 ) )

( 2 ) if 1

(

)

p

p

p

p

j

q

ph

i

p

p

j

p qM j q

q

M q i M j q i

p M j q q

 

 

 

−

=

−

=

−

=


+

 


= + − + 


 + =








(11) 

The number of calculations for independent coil pairs is 

nMph = pp(2q−1).  

C. Mutual Inductance of Two Phases on Two Different

Baseline Circles

The number of stator and rotor coils per pole per phase are 

denoted as qs and qr respectively. The stator and rotor have the 

same angular pole-pair span, β = 2π/pp. Fig. 3a shows the 

stator and rotor slots when the first coils of the stator phase A 

and rotor phase a are geometrically aligned to each other. The 

corresponding rotor position is defined as origin for the rotor 

rotation angle. Assuming that the phase sequence of the 

windings for both stator and rotor is “ ABCABC  (repeated) 

...”, when the rotor rotates by an arbitrary angle φ, as shown in 

Fig. 3b, the position for every coil in the stator reference frame 

can be derived as shown in Table V.  

The origin for coil position, θ = 0, is defined as the coil axis 

position of the first coil in stator phase A in pole pair 1. Angle 

θA(is,js) refers to the position of is-th coil of phase A in js-th 

pole pair measured from the assumed origin for θ. Based on 

the coil positions, the angle between any two coils can be 

calculated. For example, the angle between coil (is,js) in stator 

phase A and coil (ir,jr) in rotor phase a is ΔθAa(is,js,ir, 

jr) = θa(ir,jr) − θA(is,js), and the sum of all M(ΔθAa(is,js,ir,jr)) 

yields the mutual inductance between stator phase A and rotor 

phase a. In summary, the mutual inductance between one 

stator phase winding and one rotor phase winding when the 

rotor is at a generic position φ is (12).  

Fig. 3: (a) Stator (top) and rotor (bottom) coil slots (= ticks) when the first (= 

label “1”) stator and rotor coils of phases A and a are geometrically aligned. 
(b) The rotor rotates by an angle φ.

1 1 1

0 0 0

( ) ( ( , , , ))
p s r

p q q

sr p

j i k

M p M i j k  
− − −

= = =

=    (12) 

where 

( , , , ) ( )s r ri j k j i uq k      = − + + +  (13) 

The number of calculations for independent coil pairs is 
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nsr = ppqsqr. The mutual inductance between stator phase A 

winding and rotor phase a winding at a generic rotor position, 

i.e., MAa(φ), is when u in (13) is set to 0, MAb(φ) is when u = 4,

and MAc(φ) is when u = 2. Other stator-to-rotor phase mutual

inductances can be directly written by invoking cyclic

symmetry. Therefore, at any rotor rotation angle,

MAa = MBb = MCc, MAb = MBc = MCa, and MAc = MCb = MBa.

Table V 
Angular Position of i-th Coil in j-th Pole Pair in all Stator and Rotor Phases * 

Phase  Angular position of coil (i,j) 

Stator, A θA(is,js)=(js−1)β+(is−1)αs 

Rotor, a θa(ir,jr)=(jr−1)β+(ir−1)αr+φ 
Stator, B θB(is,js)=(js−1)β+(4qs+is−1)αs 

Rotor, b θb(ir,jr)=(jr−1)β+(4qr+ir−1)αr+φ 

Stator, C θC(is,js)=(js−1)β+(2qs+is−1)αs 
Rotor, c θc(ir,jr)=(jr−1)β+(2qr+ir−1)αr+φ 

* qs ≥ 1, qr ≥ 1, pp ≥ 1. 1 ≤ is ≤ qs, 1 ≤ ir ≤ qr, 1 ≤ js, jr ≤ pp.

D. The Equivalent-Circuit Inductances

Finally, the winding inductance values are converted into

the per-phase equivalent circuit values. The equivalent circuit 

of an ACRIM is shown in Fig. 4, where ωs is the stator supply 

frequency, k is the stator-to-rotor turns ratio, s is the slip value, 

Rs, Rr are the stator and rotor per-phase resistance respectively, 

Cs and Cr are the stator and rotor capacitance respectively, Ls, 

Lr are the stator and rotor self-inductances respectively, Lm is 

the magnetizing inductance.  

Fig. 4: Per-phase equivalent circuit of an ACRIM (motor convention). 

The detailed derivation for winding inductance values has 

been given in [1], so only the final expressions are presented 

here. The stator and rotor self-inductance values used in the 

equivalent circuit are 

s sA ABL L M= − , r ra abL L M= − (14) 

where LsA and Lra are the self-inductance of stator phase A and 

rotor phase a winding respectively. The magnetizing 

inductance value used in the equivalent circuit is, 
2 2 2

1/2

(

)

m Aa Ab Ac

Aa Ab Ab Ac Ac Aa

L M M M

M M M M M M

= + +

− − −
(15) 

which is applicable to any rotor position. 

IV. 3-D FEA RESULTS AND VALIDATION 

For preliminary validation of the proposed analytic 

inductance calculation approach, a 3-D FEA model of a three-

phase, six-pole air-cored IM was built in COMSOL. Single-

layer fully-pitched coil windings were considered initially for 

the stator and rotor, with qs = 3 and qr = 2 coils per pole per 

phase for the stator and rotor respectively. Since simple 

rectangular or hexagonal coil shape would cause end-coil 

intersections in the full winding — which cannot be tolerated 

in a 3-D FE model — hexagonal coils with end-steps were 

adopted for the 3-D FE model, as shown in Fig. 5. The coil 

dimensions are given in Table VI and three snapshots of the 3-

D FE winding models are shown in Fig. 6.  

Fig. 5: The hexagonal coil used in the FE model (left) and the hexagonal coil 

model used in analytic calculation (right).  

Table VI 

Geometry of the Stator and Rotor Coils in the Six-Pole Machine.  

Stator Rotor 

Baseline circle radius, rb 109.9 mm 103.3 mm 
Conductor diameter, dc 3.5 mm 3.5 mm 

Length of the axial conductors, h 253.3 mm 200 mm 

Step height, e 35 mm 24 mm 
End-winding angle, γ 60° 43° 

Number of coils per pole per phase, q 3 2 

Fig. 6: The 3-D FE model for the stator and rotor windings. 

The analytic and FEA results are compared in Table VII, 

where both results are calculated when stator phase A and 

rotor phase a are geometrically aligned, i.e., when the rotor 

position is φ = (αr−αs)/2 = 1.67°. The FE winding inductance 

values are all directly extracted from COMSOL, the FE values 

of the inductances used in the equivalent circuit are calculated 

based on the FE winding inductances. It can be seen that the 

largest error is about 1%. Such small disagreements between 

analytic and 3-D FE results are deemed to be caused by 

discrepancies in the analytic and FE geometries and residual 

errors in the FE solution. In fact, coils in the analytic 

calculation have sharp corners while coils in the FE model 

have round corners.  

On a PC with an i7 CPU (3.20 GHz) and a 16 GB RAM, the 

simulation time for the FE model is 1 h 31 min, the time 

required to calculate all the analytic values in Table VII is 

only 0.18 s. It is clear that the proposed method greatly 

reduces the computational cost.  

V. EXPERIMENTAL VALIDATION 

In this section, the proposed method is validated using a 

manufactured ACRIM prototype, the inductance is initially 
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estimated based on the prototype geometry, then the machine 

performance is calculated, both are compared with the 

experimental results.  

Table VII 

Comparison of the Analytic and FEA Results When 
the Stator Phase A and Rotor Phase a are Geometrically Aligned *.  

Analytic value 
(unit: μH) 

FE value 
(unit: μH) 

Error  
(%) 

Winding 

inductance 
breakdown 

LsA 11.7733 11.7110 −0.53 

Lra 4.2965 4.2614 −0.82 

MAB −1.8008 −1.8052 0.24 

Mab −0.4251 −0.4293 0.98 

MAa 3.5040 3.4914 −0.36 

MAb −0.9679 −0.9649 −0.31 

MAc −0.7579 −0.7616 0.48 

Equivalent 

circuit 
inductances 

Ls 13.5741 13.5162 −0.43 

Lr 4.7216 4.6907 −0.66 

M 4.3707 4.3582 −0.29 

* This condition corresponds to a rotor position φ = 1.67° in Fig. 3(b). 

A. Structure of the ACRIM prototype

The ACRIM prototype is shown in Fig. 7. Both stator and

rotor have hand-wound, six-pole, three-phase, single-layer lap 

windings, and two coils per pole per phase. The stator housing 

and rotor hub are cast using epoxy resin which is more 

lightweight compared to electrical steels and has the 

advantages of eliminating iron losses and saturation issues. 

Since the rotor is no longer magnetic, holes can be cut to 

remove some materials for further mass reduction and better 

cooling. Coils are glued to the slotless stator and rotor 

structure. Retaining sleeves are molded outside the rotor end-

windings to reduce deformation and avoid stator-rotor contact 

in rotation. For cooling enhancement, air is also blown into the 

prototype through pipes connected to the front cover. In this 

paper, the prototype has stator capacitors only so stator 

windings are connected to the supply inverter through 

capacitors in series and the rotor windings are short-circuited.  

Fig. 7: Photos of the ACRIM prototype (a) pre-formed rotor coil (top) and 

stator coil (bottom) before mounting on the machine; (b) stator housing and 

coils; (c) rotor hub and coils; (d) assembled ACRIM prototype with 
capacitors.  

B. Coil shape determination and analytic estimation

To estimate the inductances, the first step is to determine

the analytic coil shape. Since coils are initially wound and pre-

formed on a jig, then mounted and fixed to the epoxy stator 

housing or rotor hub one by one, all stator or rotor coils are 

assumed to be identical. It can be seen from Fig. 7b and Fig. 

7c, the coil end-windings are arranged in a manner to avoid 

coil-to-coil clashing and the bundle of end-windings are bent 

along the stator or rotor periphery to avoid stator-to-rotor 

clashing. Fig. 8 sketches a sectional view of the ACRIM. In 

the manufacturing process, due to the overlaps in the coil 

ends, the end-winding region has a thicker radial depth than 

the axial region. To describe the shape of one coil end, the 

winding diagram of the stator and rotor is drawn as Fig. 9a, for 

the end-windings of coils in phase A, their left-edges can be 

seen on the top of the coils in phase B and their right-edges 

can be seen on the bottom of coils in phase C, and situations 

are the same for end-windings of phase B and phase C coils. 

This arrangement of the coil ends can be simplified and the 

displacement of coil ends in the radial direction can be lumped 

together and characterised by steps. As a result, the end-

winding region can be seen to have two layers, each coil has 

half coil end in the top layer as plotted by solid lines in Fig. 9b 

and the other half end in the bottom layer as plotted by dashed 

lines. Fig. 10a shows one stator coil and one rotor coil with the 

two-layer end, their axial parts are on the baseline circles and 

are parallel to the x-axis. To avoid clashing in rotation, the 

stator coil ends are bent outwards forming a top layer and the 

rotor coil ends are bent inwards forming a bottom layer, while 

the stator bottom layer and the rotor top layer are on the stator 

and rotor baseline circles respectively. The two layers are 

connected by steps es and er. Fig. 10b shows a top view of the 

stator and rotor coils, their end-winding angles are γs and γr 

respectively.  

Fig. 8: A sectional view of the ACRIM. 

Fig. 9: (a) End-winding layout of the stator and rotor coils in the ACRIM 

prototype; (b) End-winding layout of the stator and rotor coils with the 

illustration of a two-layer arrangement in the end-winding region where solid 
lines represent the top layer and dashed lines represent the bottom layer.  
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Fig. 10: Shapes of the stator (red) and rotor (blue) coils used in the analytic 

calculation (a) oblique view, (b) top (xy) view.  

The measurable geometric parameters of the ACRIM 

prototype are collected in Table VIII. Based on the geometric 

relationship shown in Fig. 8 and Fig. 10, the step size is 

calculated as e = b−d, and are es = 16.8 mm and er = 14 mm 

for stator and rotor coils respectively, the end-winding angle is 

calculated as γ = tan−1[(a−c/2)/(πrb/6)], giving γs = 27.85° and 

γr = 25.67° for stator and rotor coils respectively. It is assumed 

that the coil-side area is constant over the coil, and equivalent 

round cross sections with the actual coil-side area are used in 

the analytic calculation. The curved coil ends are broken into 

several straight segments. The complete stator and rotor three-

phase windings used in the analytic calculation are shown in 

Fig. 11. The calculation results are collected in Table IX.  

Table VIII  

Geometry of the ACRIM Prototype 

Stator Rotor 

Number of coils per pole per-phase, q 2 2 

Axial winding baseline circle radius, rb 109.9 mm 103.3 mm 

Axial winding coil side radial depth, d 7.2 mm 3.5 mm 
Axial winding coil side tangential width, c 19.2 mm 18.0 mm 

Axial winding length, h 240 mm 215 mm 

End-winding region axial length, a 40 mm 35 mm 
End-winding region radial depth, b 24 mm 17.5 mm 

Fig. 11: Shapes of the stator (left) and the rotor (right) three phase windings 

used in the analytic calculation. Red, blue and green colors represent the three 

phases respectively.  

C. Testing and results comparison

In the parameter testing, the phase winding resistance and

phase self-inductance are directly measured using an LCR 

meter. The stator or rotor phase-to-phase mutual inductance is 

measured by energizing one stator or rotor phase using AC 

current and measuring the induced voltages in the other 

phases. The stator-to-rotor mutual inductances are measured in 

the same way when the stator and rotor are magnetically 

aligned, which is obtained by energizing stator phase A and 

carefully rotating the rotor to a position at which the 

maximum induced voltage is observed in rotor phase a. All the 

phase-to-phase mutual inductances, Mph-ph, are calculated 

using Mph-ph = V/ωI, where I and ω are the excitation-current 

magnitude and frequency respectively, V is the induced-emf 

magnitude in the other winding. The measured values are 

collected and compared with the analytic estimations in Table 

IX. The discrepancies are calculated with respect to the test

values.

As shown in Table IX, the discrepancies in resistances are 

around 3% which assure that the analytic coil shapes have a 

close total length as the prototype coil. The inductance values 

are very small, in the levels of hundreds of μH. The estimated 

values are all of the same orders of magnitude as the tested 

values and exhibit a reasonable degree of accuracy. Most of 

the discrepancies are within 10%. The major discrepancies are 

as follows: 33.87% discrepancy in the stator phase-to-phase 

mutual inductance, −16.53% in the stator-to-rotor aligned 

mutual inductance and 23.11% in the stator-to-rotor 

heteronym mutual inductance. There are several factors that 

may contribute to these discrepancies. Firstly, all coils are 

assumed to be identical in the analytic estimation, but the 

shapes of hand-wound coils in the prototype are likely to 

differ from coil to coil, especially at the coil ends. Secondly, 

the analytic coil shape is a simplification of the real shape, as 

it lumps the gradual displacement in the radial direction into 

steps and assumes a constant end-winding angle. Thirdly, 

analytic coils are assumed to have an unvarying, round cross-

section, but the real coils have flatter cross sections and their 

shape change in the end-winding region.  

For the ACRIM prototype with hand-wound windings, 

because of the manufacture uncertainties, the shapes, cross-

sections and arrangement of end-windings are very complex 

and it is extremely difficult to build an accurate 3-D FE model 

– a “high-fidelity” 3-D FE model would require a very

detailed set of in-situ 3D measurements on the individual coil

shapes or even a 3D scanning. On the other hand, a 3-D FE

model for the notional coil shape derived from the measured

geometry in section V.B using real cross-sectional areas

results in clashes in end-winding conductors which cannot be

tolerated in the 3-D FE models as they prevent the definition

of individual coils. To avoid clashing, the end-winding step

size, angle or the cross-section area have to be varied but this

causes deviations from the measured prototype geometry

constraints, which makes the results no longer comparable.

However, a “filamentary” 3-D FEA model which has the same

winding shape as Fig. 11 and uses thin round wires with 2 mm

radius rather than actual cross-sections to avoid conductor

clashing can still be built to cross-check the estimated mutual

inductance results, which are less sensitive to the coil-side

cross-section shape. Clearly self-inductances are not

comparable [23]. The 3-D FE model is shown in Fig. 12, the

results are compared in Table IX. The discrepancies for

estimated MAB, Mab, MAa, MAb, M values with respect to

corresponding 3-D FEA results are 0.94%, 0.66%, −0.05%,

0.47% and 0.01% respectively. It can be seen that there is

good agreement between the estimated and FEA values as

demonstrated in the previous section for a different geometry.



8 

In fact, in the proposed analytic approach, the real coil-side 

cross-section area can be taken into account even with the 

notional coil shapes derived from a few measurements on the 

prototype geometry (section V.B) and even if this process 

entails end-winding clashing. Unlike 3-D FEA, the proposed 

approach can handle conductor intersecting and resolve 

mathematical singularity issues, so it is very robust. In 

addition, the proposed method avoids highly-detailed 

modelling work, and achieves a reasonable degree of 

accuracy. Closed-form expressions and the inductance 

collection routine further accelerate its calculation speed, so it 

can be integrated into an optimization program.  

Table IX 
Comparison of the Analytic Estimated,  

“Filamentary” 3-D FEA and Test Values 

Estimated  
value 

“Filamentary” 
3-D FEA value 

Measured  
value 

Discrepancy * 
(%) 

Rs (mΩ) 200.75 / 198.20 −1.29 

Rr (mΩ) 381.47 / 393.93 3.16 

LsA (μH) 712.47 / 661.25 −7.75 
Lra (μH) 669.48 / 628.10 −6.59 

MAB (μH) −56.49 −57.03 −85.43 33.87 

Mab (μH) −59.88 −60.27 −63.99 6.44 
MAa (μH) 482.31 482.06 413.89 −16.53 

MAb (μH) −62.61 −62.91 −81.43 23.11 

Ls (μH) 768.96 / 746.68 −2.98 

Lr (μH) 729.36 / 692.09 −5.38 
M (μH) 544.92 544.97 495.32 −10.01 

* The “Discrepancy” refers to the discrepancy of estimated values with 

respect to measured values.

Fig. 12: The 3-D FE model for prototype-inductance validation, (a) and (b) 

show one stator coil and one rotor coil; (c), (d) and (e) show the stator and 
rotor windings.  

The ultimate goal of inductance calculations is the ACRIM 

performance prediction. Therefore, the ACRIM performance 

predicted by using the equivalent circuit with analytic 

estimated and tested R, L values in Table IX were also 

compared with the performance at the test-bench. In the first 

experiment, because of heating issues and mechanical speed 

limitations, the ACRIM prototype is operating under a 

10 Vrms, 150 Hz AC voltage supply with the rotor speed 

varying from 0 to 3000 rpm. Fig. 13 shows test results for the 

ACRIM with and without (i.e., a simple air-cored IM — 

“ACIM”) capacitors. The ACRIM stator capacitance is 

1.653 mF per phase, tuned to cancel out the equivalent 

reactance seen from the ACIM stator terminals at the peak-

efficiency slip, i.e., the ACRIM achieves unity power factor at 

its peak-efficiency point under this supply frequency [4]. The 

torque is also improved since the stator winding is carrying 

more current compared with the ACIM. It can be seen that the 

machine torque, efficiency and power factor versus slip curves 

predicted using estimated R, L show good corelations with the 

test points. However, there is an overestimation in the 

efficiency. The difference between the two efficiency-slip 

curves plotted using measured and estimated R, L is larger 

than 3% in the slip range of 0.080 to 0.297 and the largest 

difference is 3.59% at the slip of 0.16. This is caused by the 

assumption of round cross-section coils in the mutual 

inductance calculation, which are explained in detail in a later 

paragraph.  

Fig. 13: Comparison of the torque, efficiency and power factor versus slip 

curves calculated using measured R, L values (Meas. R&L), and using analytic 

estimated R, L values (Est. R&L), with tested points (Tested prf.) of the 

ACRIM with 1.653 mF stator capacitor at 10 Vrms, 150 Hz voltage supply.  

Another experiment was carried out to validate the 

performance prediction accuracy under different frequencies. 

The capacitance of the ACRIM per phase was 900 μF, the 

stator supply AC current magnitude and the rotor speed were 

held constant at 30 Apk and 2800 rpm respectively while the 

supply frequency was varied from 150 Hz to 300 Hz. In Fig. 

14, the torque, efficiency and power factor versus supply 

frequency curves calculated using measured and estimated R, 

L values were compared to the tested points. Again, good 

agreement was observed between the estimated and tested 

curves. Using the analytic estimated R, L values, the power 

factor becomes unity when the supply frequency was 223 Hz, 

and the tested unity power factor point occurs at a supply 

frequency of 220 Hz.  

The overestimation of efficiency (in Fig. 13) and torque (in 

Fig. 14) was mainly caused by the overestimation of the 

magnetizing inductance. It is known that the mutual 
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inductance between two conductors with round cross sections 

is sensibly the same as the mutual inductance between their 

central filaments [23]. However, applying this principle to 

conductors with non-infinitesimal, non-circular cross-sections 

can lead to an overestimation in mutual inductance. In the 

prototype, the axial portion of the coil sides have a flatter 

cross-section shape. A hybrid method combining the proposed 

filament-based method with a 2-D FEA modeling the real 

cross section shape of the axial coil sides can be used to 

correct the self and mutual inductances of axial parts. Though 

this increases the computational costs but it is still faster than a 

3-D FEA. In addition, accurate representation of the actual 3-

D coil shape including the inevitable manufacturing

uncertainties like variations in end-winding cross-section

shape and deviations to avoid end-winding clashing in a 3-D

FEA might not be viable — especially for hand-wound

windings, which may make the 3-D FEA results not fully

representative for the real prototype.

Fig. 14: Comparison of the torque, efficiency and power factor versus stator 
supply frequency curves calculated using measured R, L values (Meas. R&L), 

and using analytic estimated R, L values (Est. R&L), with the tested points 

(Tested prf.) of the ACRIM with 900 μF stator capacitor per-phase at 30 Apk 
AC current supply and constant rotor speed of 2800 rpm. 

VI. CONCLUSION

This paper proposes a fast winding inductance estimation 

method for ACRIMs. The method uses closed-form 

expressions of Neumann integrals to calculate the basic 

inductance “module”, i.e., self and mutual inductances of 

straight conductors placed at any orientation, and builds 

expressions for the self and mutual inductances of coils 

composed by these straight conductors. A collection routine 

for phase-winding self and mutual inductances is developed, 

including the mutual inductance between any stator and rotor 

phase windings at a generic rotor position, which is useful in 

torque ripple estimation. The number of calculations is limited 

to a minimum by considering only independent coil pairs. 

Finally, the self-inductances and magnetizing inductance used 

in the equivalent circuit are derived so that the machine 

operating characteristics can be calculated. Compared to 3-D 

FE models, the proposed analytic approach has a significantly 

lower computational burden and allows coil intersections to be 

handled automatically without raising singularity issues. The 

validation against a 3-D FE model shows that the analytic 

estimation method achieves a very good accuracy. The 

proposed method is also validated experimentally on a 

purposely-built ACRIM prototype: a full coil shape parametric 

representation based on measurable geometric parameters is 

presented, and reasonable accuracy is confirmed in the 

comparison between estimated and tested equivalent-circuit 

inductances, with a maximum discrepancy of about 10%. 

However, it is worth remarking that the estimation accuracy 

has a high dependency on the modelling accuracy of the real 

coil shape, and a high-fidelity coil shape representation for 

“manually-wound” prototype coils is difficult so higher 

discrepancies up to 33.87% can be found in some of the 

winding inductance breakdown values. Finally, the ACRIM 

performance predicted using estimated inductances is 

compared with experimental tests, which shows a good 

correlation.  

APPENDIX 

The expressions of terms S, Z, K in (9) for the summation of 

mutual inductances between coils in the same phase but 

different pole pairs are presented below.  
1
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