
FPGA-Based Design and Implementation
of a Code-Based Post-quantum KEM

Andrea Galimberti

Abstract Post-quantum cryptography aims to design cryptosystems that can be
deployed on traditional computers and resist attacks from quantum computers, which
are widely expected to break the currently deployed public-key cryptography solu-
tions in the upcoming decades. Providing effective hardware support is crucial to
ensuring a wide adoption of post-quantum cryptography solutions, and it is one of
the requirements set by the USA’s National Institute of Standards and Technology
within its ongoing standardization process. This research delivers a configurable
FPGA-based hardware architecture to support BIKE, a post-quantum QC-MDPC
code-based key encapsulation mechanism. The proposed architecture is configurable
through a set of architectural and code parameters, which make it efficient, providing
good performance while using the resources available on FPGAs effectively, flexi-
ble, allowing to support different large QC-MDPC codes defined by the designers
of the cryptosystem, and scalable, targeting the whole Xilinx Artix-7 FPGA family.
Two separate modules target the cryptographic functionality of the client and server
nodes of the quantum-resistant key exchange, respectively, and a complexity-based
heuristic that leverages the knowledge of the time and space complexity of the config-
urable hardware components steers the design space exploration to identify their best
parameterization. The proposed architecture outperforms the state-of-the-art refer-
ence software that exploits the Intel AVX2 extension and runs on a desktop-class
CPU by 1.77 and 1.98 times, respectively, for AES-128- and AES-192-equivalent
security instances of BIKE, and it provides a speedup of more than six times com-
pared to the fastest reference state-of-the-art hardware architecture, which targets the
same FPGA family.

A. Galimberti (B)
Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano,
Via Ponzio 34/5, 20133 Milano, Italy
e-mail: andrea.galimberti@polimi.it

© The Author(s) 2024
F. Amigoni (ed.), Special Topics in Information Technology,
PoliMI SpringerBriefs, https://doi.org/10.1007/978-3-031-51500-2_3

27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51500-2_3&domain=pdf
http://orcid.org/0000-0003-0254-3933
andrea.galimberti@polimi.it
 854
57535 a 854 57535 a

mailto:andrea.galimberti@polimi.it
https://doi.org/10.1007/978-3-031-51500-2_3
https://doi.org/10.1007/978-3-031-51500-2_3
https://doi.org/10.1007/978-3-031-51500-2_3
https://doi.org/10.1007/978-3-031-51500-2_3
https://doi.org/10.1007/978-3-031-51500-2_3
https://doi.org/10.1007/978-3-031-51500-2_3
https://doi.org/10.1007/978-3-031-51500-2_3
https://doi.org/10.1007/978-3-031-51500-2_3
https://doi.org/10.1007/978-3-031-51500-2_3
https://doi.org/10.1007/978-3-031-51500-2_3
https://doi.org/10.1007/978-3-031-51500-2_3

28 A. Galimberti

1 Introduction

Public-key cryptography (PKC) allows sending encrypted messages over an insecure
channel without sharing a secret key, and it has traditionally been a critical component
of secure communication protocols such as TLS and SSH. Quantum computing is,
however, expected to break the traditional PKC solutions [5, 10, 30] in the upcoming
decades, making it mandatory to design new security solutions that can also resist
attacks carried out by quantum computers.

Post-quantum cryptography (PQC) aims to design cryptosystems that can be
deployed on traditional computers and are based on problems that are computa-
tionally hard also for quantum computers, other than traditional ones, thus being
able to resist both traditional and quantum attacks.

The USA’s National Institute of Standards and Technology (NIST) is currently
undertaking a standardization process to define new standards for PQC. Starting
from 82 submissions in 2017, it selected as standards four schemes that can be split
into key encapsulation mechanisms (KEMs), which are meant to share secret keys
confidentially, and digital signatures, which guarantee the authenticity and integrity
of a message to the recipient.

All four schemes selected as standards are lattice-based ones [22, 26], i.e., based
on the shortest vector problem (SVP), which requires searching for the non-zero
vector of a lattice having minimum norm and that is considered NP-hard for both
traditional and quantum computers [27].

NIST claimed, therefore, the need to diversify its portfolio of PQC solutions and
expects to select one more KEM among the three remaining code-based ones, i.e.,
BIKE, Classic McEliece, and HQC. Code-based cryptography dates back to the
McEliece cryptosystem, introduced in 1978 and based on the difficulty of decoding
a generic linear code [21], which is recognized as an NP-hard problem. Code-based
cryptosystems in NIST’s PQC standardization process are compared in Figs. 1 and 2,

64

256

1024

4096

16384

512 2048 8192 32768 131072 524288 2097152

C
ip

h
e
rt

e
x
t

(b
y
te

s
)

Public key (bytes)

BIKE Classic McEliece HQC

Fig. 1 Size in bytes of the public key and ciphertext of the KEMs advancing to the fourth round
of the NIST PQC standardization process [24]

FPGA-Based Design and Implementation of a Code-Based PQ KEM 29

Fig. 2 Performance of NIST Round 4 KEMs on a x86-64 CPU, considering a 2000 cycles/byte
transmission cost [25]

respectively,accordingtotheirpublickeyandciphertextsizes,whichshowhowClassic
McEliece has a huge public key, in the order of millions of bits, and software perfor-
mance, which highlights BIKE as the best performing scheme when also considering
the cost of transmitting the public keys and ciphertexts between the communicating
nodes.

BIKE is a post-quantum code-based KEM using quasi-cyclic moderate-density
parity-check (QC-MDPC) codes. These codes are employed in a scheme similar to
the well-studied Neiderreiter one, which dates back to the early 1980s. Compared to
traditional Niederreiter schemes, whose underlying binary Goppa codes must have
sizes in the order of millions of bits to provide quantum resistance, BIKE achieves
a significantly smaller public key, in the order of tens of thousands of bits, through
its usage of QC-MDPC codes.

Given the complexity of PQC cryptosystems such as BIKE in terms of memory
requirements and software performance, providing effective hardware support will
be paramount to ensuring a wide adoption and effective deployment of post-quantum
security solutions across the computing continuum ranging from embedded devices
at the edge to HPC [1]. Indeed, with ever more private, sensitive, and critical data
collected and processed in a variety of scenarios, it is mandatory to design computing
platforms that not only provide optimal performance for the target applications [13,
33, 34] and the energy and power efficiency required by the specific use case [35]
but also guarantee the security of the users’ data.

Implementations of BIKE from the literature encompass software, hardware, and
hardware-software ones. However, all of them suffer from different drawbacks [16].
Software implementations [3, 7, 8], including those targeting desktop-class Intel
CPUs with support for AVX2 instructions and running at more than 4 GHz [2],
provide poor performance, whereas hardware ones are custom-tailored to specific
target platforms [28, 29].

30 A. Galimberti

This research delivers a configurable FPGA-based hardware architecture to sup-
port BIKE through two modules dedicated the client- and server-side functionalities
of the key exchange. The proposed architecture aims to improve performance over
the existing state-of-the-art software and hardware implementations of BIKE, and
it is configurable through architectural and code parameters that, through a single
parametric design, allow for using the resources available on FPGAs effectively,
supporting different large QC-MDPC codes, and targeting the whole Xilinx Artix-7
FPGA family.

2 Components for QC-MDPC Code-Based Cryptography

The hardware components implementing binary polynomial inversion [17], binary
polynomial multiplication [4], and Black-Gray-Flip (BGF) decoding [31], i.e., the
three most complex operations employed within the BIKE cryptosystem, were specif-
ically designed in a parametric way to exploit parallelism as desired according to
the performance requirements and the area constraints given by the target platform.
Their designs, meant for FPGA targets, are suitable not only for accelerating the
BIKE post-quantum KEM but more in general for other applications making use of
large binary polynomials and QC-MDPC codes.

Dense-dense binary polynomial multiplication The dense-dense binary polyno-
mial multiplier [32] performs the multiplication between two large polynomials in
.Z2[x]/(x p + 1), with degree . p in the order of tens of thousands, through a hybrid
architecture that mixes the Karatsuba and Comba algorithms [9, 20].

Applying a configurable number of iterations of the Karatsuba algorithm reduces
the number of smaller partial products compared to schoolbook multiplication. Each
iteration can either compute its three partial products in parallel, on separate internal
multipliers, or sequentially, on a shared one. The multipliers employed to compute
such partial products either have a Karatsuba architecture themselves or a Comba-
based one. At the end of Karatsuba’s recursive application, the Comba formula is
indeed leveraged to perform the actual computation of the partial products since the
size of the operands after the recursive application of the Karatsuba algorithm is
still too large to fit into a combinational multiplier. Comba multiplication schedules
efficiently the computation of such partial products on a combinational component
that performs the carry-less multiplication between two .BW -bit digits, where . BW
corresponds to the datapath bandwidth.

Selecting the number of Karatsuba recursions, whether each computes its partial
products sequentially or concurrently, and the datapath bandwidth allows for explor-
ing a variety of performance-area trade-offs.

Binary polynomial exponentiation The exponentiation at the power of . k of a poly-
nomial . f (x) in .Z2[x]/(x p + 1), where . k and . p are coprime as in QC-MDPC codes

FPGA-Based Design and Implementation of a Code-Based PQ KEM 31

employed by BIKE, corresponds to a permutation in which each .i-th bit of the
operand . f (x) corresponds to the .((i · k) mod p)-th bit of the result .g(x).

The exponentiation component [17] implements a two-stage architecture. The
first one includes a.p-bit memory and outputs. E bits per cycle, while the second one
contains.E .p-bit memories, each receiving a bit from the first stage and writing it in
the corresponding position. Finally, the contents of the second-stage memories are
XORed to produce the actual result of the exponentiation. As an optimization, the
usage of lookup tables pre-computed at design time avoids the computation of the
bit start addresses and address increments required to obtain the positions of bits in
the result polynomial.

The .E number of result bits computed per clock cycle, which determines the
execution time and area of the exponentiation component, can be selected at design
time with any value between . 1 and . p.

Binary polynomial inversion The binary polynomial inversion component [17] imple-
ments a Fermat-based algorithm that computes, by iterating binary polynomial
multiplications and exponentiations, the multiplicative inverse of a polynomial in
.Z2[x]/(x p + 1), which is the most time-consuming operation in BIKE’s key gener-
ation primitive [19].

The multiplications and exponentiations are carried out on dense-represented
operands by two separate parametric components, i.e., the dense-dense binary poly-
nomial multiplication and binary exponentiation components described previously.
The two types of operations are computed on their dedicated components by schedul-
ing them in a pipelined fashion, executing independent multiplications and exponen-
tiations concurrently and thus minimizing the execution time of the overall inversion
operation.

The dense-dense binary polynomial multiplication and binary polynomial expo-
nentiation components are configurable in their code and architectural parameters,
and finding an optimal performance-area trade-off for the inversion one requires bal-
ancing their resource utilization and execution time.

Black-Gray-Flip decoding The decoding component implements the BGF decod-
ing algorithm [11], a variant of the baseline QC-MDPC bit-flipping decoding algo-
rithm. The BGF algorithm iterates the computation of two multiplications, performed
respectively in the integer and binary domains, between a dense polynomial operand
and a sparse one [31]. The two dense-sparse multiplications are performed concur-
rently in a pipelined fashion, and the number of the bits computed in parallel in both
is configurable by the designer [4].

The multiplication between a sparse polynomial .s(x) with Hamming weight . v,
i.e., . v coefficients set to 1, and a dense one .d(x) corresponds to the addition of . v
copies of .d(x) each shifted by the position of the corresponding . 1 in .s(x). In the
binary domain case, the addition corresponds to XOR, and the result polynomial
has binary coefficients, i.e., either 0 or 1. On the contrary, in the integer domain
case, it corresponds to integer arithmetic addition, and the result’s coefficients are
thus integer values comprised between 0 and. v. The two integer- and binary-domain

32 A. Galimberti

Fig. 3 Baseline architecture of the sparse-dense multiplication components

multiplications are performed by separate components, each dedicated specifically
to one of them, but both implement a similar architecture.

The baseline architecture, depicted in Fig. 3, stores in a BRAM mem-
ory (Operand.Mem) the dense operand polynomial and in a flip-flop-based regis-
ter (Shift.Reg) the position of a bit set to 1 in the sparse one. The content of
Operand.Mem is shifted according to the value stored in ShiftReg and accumulated
in the result polynomial BRAM memory (Result.Mem) according to the addition
operation specific to the implemented arithmetic. In Fig. 3, .W corresponds to the
number of polynomial coefficients read and written per clock cycle, .K refers to the
bit length of the coefficients of the result polynomial, and .A refers to the width of
read and write addresses.

The computation of the overall sparse-dense multiplication can be parallelized,
reducing execution time at the cost of additional area, by instantiating multiple
shift-and-accumulate modules. Up to . v of such modules can be implemented to
perform the shift-and-accumulate operation after feeding them different values
of positions of bits set to 1 in the sparse operand. The overall product of the
multiplication will finally be obtained as the sum of the result polynomials from
each of the instantiated shift-and-accumulate modules.

Sparse-dense binary polynomial multiplication The sparse-dense binary polynomial
multiplier [4] is employed within all three KEM primitives of BIKE, i.e., key genera-
tion, encapsulation, and decapsulation, and it is designed with the same architecture
as the one employed by the binary dense-sparse multiplier instantiated in the BGF
decoding module. Its parallelism is similarly configurable by selecting the number
of shift-and-accumulate operations to compute concurrently, which can be any value
between 1 and. v, where . v is the Hamming weight of the dense operand polynomial.

FPGA-Based Design and Implementation of a Code-Based PQ KEM 33

PRNG Mem

Inv
Mul

Mem

Mem

Mul
Dec

PRNG

SHA3

Keygen

Decaps

PRNG Mul
SHA3

Server = Encaps

Client

Fig. 4 Top-level architecture of the BIKE client and server cores

Other components The SHA-3 component [14] implements the SHA3-384 crypto-
graphic hash function [12]. It computes the 384-bit digest of the SHA3-384 cryp-
tographic function of the input message according to an architecture similar to the
high-speed core detailed in [6], which was modified to support the standard SHA-3
cryptographic hash functions in place of pre-standard Keccak functions.

The pseudorandom number generation (PRNG) component [14] performs the
generation of a pseudorandom sequence of bits with fixed Hamming weight by
using an internal SHAKE256 module, which implements an architecture similar to
the SHA-3 component, albeit producing a variable-length output according to the
needs of the surrounding pseudorandom generation logic. The SHAKE256 module
expands a seed obtained from a TRNG [18] into a digest output that is broken up into
(.log2 p)-bit chunks, each possibly representing the position of a bit set to 1 within
a .p-bit vector, and the extracted values are evaluated to discard the values which
have been generated previously, avoiding cancellations and therefore enabling the
generation of a vector with the desired Hamming weight. Moreover, values larger
than or equal to . p are discarded, providing a uniform distribution of bits set to 1
within the random-generated bit vector.

3 Client-Server BIKE Architecture

Two separate cores target the cryptographic functionality of the client and server
nodes of the BIKE key exchange, respectively. The client and server cores, whose
architecture is depicted in Fig. 4, make use of the configurable binary polynomial
arithmetic and BGF decoding components, the SHA-3 core, and the pseudorandom

34 A. Galimberti

number generator that were previously described, and contain additional BRAM-
based memories to store the large binary polynomials [15].

The Client core is composed of two main modules, Keygen and Decaps,
devoted to the key generation and decapsulation of BIKE, respectively [14]. The
Keygen module performs three subsequent hardware operations, namely pseudo-
random number generation (executed by the PRNG component), binary polyno-
mial inversion (Inv), and binary polynomial multiplication (Mul). Similarly, the
Decaps module executes a sequence of four hardware operations, namely binary
polynomial multiplication (Mul), BGF decoding (Dec), computation of SHA-3 hash
digest (SHA3), and pseudorandom number generation (PRNG). The PRNG and Mul
components are notably shared between the Keygen and Decaps modules to min-
imize duplicate hardware resources.

The Server core only includes the Encaps module [14], devoted to the encap-
sulation primitive of BIKE, which requires performing a sequence of three hardware
operations, namely pseudorandom number generation (PRNG), binary polynomial
multiplication (Mul), and computation of the SHA-3 hash function (SHA3).

The optimal parameterization, which maximizes performance within the available
FPGA resources, of the configurable components, i.e., binary polynomial arithmetic
and BGF decoding ones, is identified by using a complexity-based heuristic that
leverages the knowledge of such parametric components’ time and space complexity
to steer the design space exploration. The execution time is selected as a proxy for the
time complexity, while the space complexity is modeled by the number of occupied
BRAM memory blocks since the design is dominated by BRAM usage due to the
large polynomials and the exploited parallelism.

4 Experimental Evaluation

The experimental evaluation aims to gauge the performance and resource utilization
improvements of the proposed FPGA-based architectures compared to state-of-the-
art software, hardware-software, and hardware implementations.

Experimental setup The proposed components were described in SystemVerilog and
then implemented in Xilinx Vivado 2020.2 targeting Xilinx Artix-7 FPGAs, which
were selected as the target platform since they are the de-facto standard in research,
due to their wide availability and best price-performance ratio among FPGAs, and
they were chosen as the hardware target by NIST, to avoid differences due to FPGA
technologies and ASIC technology nodes. RTL synthesis and implementation were
carried out targeting a 91 MHz clock frequency, i.e., an 11ns clock period.

The proposed architectures were validated from the functional point of view, both
through post-implementation simulation, on Artix-7 35, Artix-7 50, and Artix-7 200
FPGAs, and through prototype execution on a Digilent Nexys 4 DDR board, which
features an Artix-7 100 FPGA. In each case, the results from the executions of 10000

FPGA-Based Design and Implementation of a Code-Based PQ KEM 35

key generations, encapsulations, and decapsulations on the proposed architectures
were compared with the corresponding outputs of software execution.

Reference implementations The experimental evaluation was carried out against
state-of-the-art software, hardware-software, and hardware implementations of the
BIKE post-quantum KEM.

The additional Intel AVX2-optimized software implementation of BIKE [2] was
selected as the software reference. It provides a constant-time execution on Intel
x86-64 CPUs that support the Intel AVX2 instruction set extension, i.e., CPUs from
the Intel Haswell generation and later ones. Within the experimental evaluation, it
was executed on an Intel Core i5-10310U CPU, a desktop-class 64-bit processor
implementing the x86-64 ISA and providing support for the Intel AVX2 extension,
running at a clock frequency up to 4.4 GHz. Moreover, the PC mounting the Intel
CPU ran the Ubuntu 20.04.3 LTS operating system.

The solution proposed in [23], which makes use of HLS-generated accelera-
tors, each implementing a BIKE primitive, was selected as the hardware-software
reference. Three different combinations of KEM primitives implemented in hard-
ware, depending on the available FPGA resources, with the remaining ones exe-
cuted instead in software on the CPU, allow targeting three chips from the Xilinx
Zynq-7000 heterogeneous SoC family, which feature ARM CPUs coupled with pro-
grammable FPGA logic equivalent to the Artix-7 one.

The official FPGA-based hardware implementation [28] was instead selected
as the state-of-the-art hardware reference. The proposed design, targeting Xilinx
FPGAs and described in SystemVerilog, delivers a unified architecture that imple-
ments the whole BIKE KEM and executes it in constant time. The authors provide
three instances ranging from a lightweight one that minimizes resource utilization
up to mid-range and high-performance ones.

Area results The area of the proposed architecture is evaluated according to its uti-
lization of the FPGA resources available on the target chips. Table 1 details the
look-up tables (LUT), flip-flops (FF), and block RAM (BRAM) blocks occupied by
the client and server instances. The proposed architecture’s smallest client and server

Table 1 Area results, expressed in terms of LUT, FF, and BRAM resources, and execution times,
in milliseconds, for the proposed client and server cores

Core Equivalent
security

Lightweight High-performance

Resources Exec.
time

Resources Exec.
time

LUT FF BRAM LUT FF BRAM

Client AES-128 31792 17805 43.5 5.71 126510 51492 357 0.58

AES-192 31411 20181 45.5 19.27 124891 53067 360 1.71

Server AES-128 19804 11401 30 0.03 91422 46208 275.5 0.03

AES-192 19979 12282 28 0.08 72725 37795 235.5 0.06

36 A. Galimberti

Table 2 Execution times, in milliseconds, for the state-of-the-art and proposed implementations.
Legend: LW lightweight, MR mid-range, HP high-performance instances

Equivalent
security

Ref.
SW [2]

Ref. HW/SW [23] Ref. HW [28] Proposed

AVX2 LW MR HP LW MR HP LW HP

AES-128 1.08 617.31 482.48 288.18 11.13 6.36 3.69 5.74 0.61

AES-192 3.51 .− .− .− 37.10 19.71 11.69 19.35 1.77

cores fit in Artix-7 50 and 35 FPGAs, respectively, while the largest instances target
Artix-7 200 chips, i.e., the highest-end chips of the FPGA family.

The experimental results demonstrate how the proposed cryptographic cores can
scale across a range of FPGA chips. Moreover, they show that BRAM memories are
the most used resources, relatively to the ones available on the target chip, on the
larger Artix-7 200 FPGAs, while instances targeting the smaller chips are bounded
by the LUT utilization. The proposed architectures usually employ a large fraction
of the available look-up tables while requiring a more limited amount of flip-flops.

Performance results Performance is measured by the execution time of the BIKE
KEM primitives on the client and server sides of the key exchange. Table 1 lists the
execution times, expressed in milliseconds, for the client and server instances of
the proposed architecture, while Table 2 compares the aggregate execution times of
BIKE between the state-of-the-art and proposed solutions.

The experimental results highlight significant improvements over the considered
state-of-the-art references. The latency of the BIKE KEM can be reduced by almost
two times, in the AES-192-equivalent use case, compared to the AVX2-optimized
software execution, and the smaller proposed instances outperform even the mid-
range state-of-the-art FPGA-based instances. Finally, the best-performing proposed
architectures outperform the high-performance state-of-the-art ones by more than
six times, as also shown in Fig. 5, which compares the execution time, broken down
in the three KEM primitives, between the FPGA-based architectures.

5 Conclusions

This research presented a configurable FPGA-based hardware architecture that
implements the BIKE QC-MDPC code-based cryptosystem, aiming to improve per-
formance over the existing state-of-the-art software and hardware solutions.

The proposed architecture provides effective FPGA-based hardware support for
QC-MDPC codes suitable to post-quantum cryptography applications. Configurable
code and architectural parameters allow using a single design to support different
QC-MDPC codes underlying the PQC cryptosystems and to target any FPGA chip
from the Xilinx Artix-7 family. Hence, different performance-area trade-offs can be
explored through the parametric configurability to satisfy the performance require-

FPGA-Based Design and Implementation of a Code-Based PQ KEM 37

Fig. 5 Execution times of BIKE with AES-128-equivalent security. Legend: LW lightweight, MR
mid-range, HP high-performance instances

ments and area constraints set for the overall system that integrates BIKE hardware
support. Two modules support the KEM primitives to be executed on the client and
server nodes of the key exchange, respectively, and a complexity-based heuristic
steers the design space exploration to identify the best parameterization of the con-
figurable hardware components by leveraging the knowledge of their time and space
complexity.

The experimental evaluation of the proposed architecture highlighted significant
improvements over the state-of-the-art software, hardware-software, and hardware
implementations of BIKE from the literature. On the one hand, compared to the refer-
ence software implementation, which exploits the Intel AVX2 extension on desktop-
class CPUs, AES-128- and AES-192-equivalent security instances of the proposed
architecture provide performance speedups of 1.77. × and 1.98. ×, respectively. On the
other hand, the proposed FPGA-based BIKE architecture also outperforms the other
hardware implementations available from literature, including both HLS-generated
and human-designed ones, and provides a speedup over the fastest state-of-the-art
FPGA-based instance of more than six times.

References

1. Agosta G, Aldinucci M, Alvarez C, Ammendola R, Arfat Y, Beaumont O, Bernaschi M, Bia-
gioni A, Boccali T, Bramas B, Brandolese C, Cantalupo B, Carrozzo M, Cattaneo D, Celestini
A, Celino M, Colonnelli I, Cretaro P, D’Ambra P, Danelutto M, Esposito R, Eyraud-Dubois
L, Filgueras A, Fornaciari W, Frezza O, Galimberti A, Giacomini F, Goglin B, Gregori D,
Guermouche A, Iannone F, Kulczewski M, Lo Cicero F, Lonardo A, Martinelli AR, Martinelli
M, Martorell X, Massari G, Montangero S, Mittone G, Namyst R, Oleksiak A, Palazzari P,
Paolucci PS, Reghenzani F, Rossi C, Saponara S, Simula F, Terraneo F, Thibault S, Torquati M,
Turisini M, Vicini P, Vidal M, Zoni D, Zummo G (2022) Towards extreme scale technologies
and accelerators for eurohpc hw/sw supercomputing applications for exascale: the textarossa
approach. Microprocess Microsyst 95:104679. https://doi.org/10.1016/j.micpro.2022.104679.
https://www.sciencedirect.com/science/article/pii/S0141933122002095

https://doi.org/10.1016/j.micpro.2022.104679
https://doi.org/10.1016/j.micpro.2022.104679
https://doi.org/10.1016/j.micpro.2022.104679
https://doi.org/10.1016/j.micpro.2022.104679
https://doi.org/10.1016/j.micpro.2022.104679
https://doi.org/10.1016/j.micpro.2022.104679
https://doi.org/10.1016/j.micpro.2022.104679
https://doi.org/10.1016/j.micpro.2022.104679
https://doi.org/10.1016/j.micpro.2022.104679

38 A. Galimberti

2. Amazon Web Services - Labs: Additional implementation of bike (bit flipping key encapsula-
tion). https://github.com/awslabs/bike-kem (2020)

3. Aragon, N., Barreto PSLM, Bettaieb S, Bidoux L, Blazy O, Deneuville JC, Gaborit P, Gueron
S, Güneysu T, Melchor CA, Misoczki R, Persichetti E, Sendrier N, Tillich JP, Vasseur V, Zémor
G (2017) BIKE website. https://www.bikesuite.org/

4. Barenghi A, Fornaciari W, Galimberti A, Pelosi G, Zoni D (2019) Evaluating the trade-offs in
the hardware design of the ledacrypt encryption functions. In: 2019 26th IEEE international
conference on electronics, circuits and systems (ICECS), pp 739–742. https://doi.org/10.1109/
ICECS46596.2019.8964882

5. Bernstein DJ (2006) Curve25519: new diffie-hellman speed records. In: Yung M, Dodis Y,
Kiayias A, Malkin T (eds) Public key cryptography–PKC 2006. Springer, Berlin, pp 207–228

6. Bertoni G, Daemen J, Peeters M, Van Assche G, Van Keer R (2011) Keccak implementation
overview. https://keccak.team/obsolete/Keccak-implementation-3.1.pdf

7. Chen MS, Chou T, Krausz M (2021) Optimizing bike for the intel haswell and arm cortex-
m4. IACR Trans Cryptogr Hardw Embed Syst 2021(3):97–124. https://doi.org/10.46586/tches.
v2021.i3.97-124, https://tches.iacr.org/index.php/TCHES/article/view/8969

8. Chen MS, Güneysu T, Krausz M, Thoma JP (2022) Carry-less to bike faster. In: Ateniese G,
Venturi D (eds) Applied cryptography and network security. Springer International Publishing,
Cham, pp 833–852

9. Comba PG (1990) Exponentiation cryptosystems on the IBM PC. IBM Syst J 29(4):526–538.
https://doi.org/10.1147/sj.294.0526

10. Diffie W, Hellman M (1976) New directions in cryptography. IEEE Trans Inf Theory 22(6):644–
654. https://doi.org/10.1109/TIT.1976.1055638

11. Drucker N, Gueron S, Kostic D (2020) Qc-mdpc decoders with several shades of gray. In:
Ding J, Tillich JP (eds) Post-quantum cryptography. Springer International Publishing, Cham,
pp 35–50

12. Dworkin M (2015) Sha-3 standard: permutation-based hash and extendable-output functions.
https://doi.org/10.6028/NIST.FIPS.202

13. Fornaciari W, Agosta G, Cattaneo D, Denisov L, Galimberti A, Magnani G, Zoni D (2023)
Hardware and software support for mixed precision computing: a roadmap for embedded and
hpc systems. In: 2023 design, automation & test in Europe conference & exhibition (DATE),
pp 1–6. https://doi.org/10.23919/DATE56975.2023.10137092

14. Galimberti A, Galli D, Montanaro G, Fornaciari W, Zoni D (2022) FPGA implementation of
bike for quantum-resistant TLS. In: 2022 25th euromicro conference on digital system design
(DSD), pp 539–547. https://doi.org/10.1109/DSD57027.2022.00078

15. Galimberti A, Galli D, Montanaro G, Fornaciari W, Zoni D (2022) On the use of hardware
accelerators in qc-mdpc code-based cryptography. In: Proceedings of the 19th ACM inter-
national conference on computing frontiers. CF ’22, Association for Computing Machinery,
New York, NY, USA, pp 193-194. https://doi.org/10.1145/3528416.3530243, https://doi.org/
10.1145/3528416.3530243

16. Galimberti A, Montanaro G, Fornaciari W, Zoni D (2023) An evaluation of the state-of-the-
art software and hardware implementations of BIKE. In: Bispo Ja, Charles HP, Cherubin S,
Massari G (eds) 14th workshop on parallel programming and run-time management tech-
niques for many-core architectures and 12th workshop on design tools and architectures for
multicore embedded computing platforms (PARMA-DITAM 2023). Open Access Series in
Informatics (OASIcs), vol 107. Schloss Dagstuhl—Leibniz-Zentrum für Informatik, Dagstuhl,
Germany, pp 4:1–4:12. 10.4230/OASIcs.PARMA-DITAM.2023.4, https://drops.dagstuhl.de/
opus/volltexte/2023/17724

17. Galimberti A, Montanaro G, Zoni D (2022) Efficient and scalable FPGA design of GF(2m)
inversion for post-quantum cryptosystems. IEEE Trans Comput 71(12):3295–3307. https://
doi.org/10.1109/TC.2022.3149422

18. Galli D, Galimberti A, Fornaciari W, Zoni D (2022) On the effectiveness of true random number
generators implemented on FPGAs. In: Orailoglu A, Reichenbach M, Jung M (eds) Embedded
computer systems: architectures, modeling, and simulation. Springer International Publishing,
Cham, pp 315–326

https://github.com/awslabs/bike-kem
https://github.com/awslabs/bike-kem
https://github.com/awslabs/bike-kem
https://github.com/awslabs/bike-kem
https://github.com/awslabs/bike-kem
https://github.com/awslabs/bike-kem
https://www.bikesuite.org/
https://www.bikesuite.org/
https://www.bikesuite.org/
https://www.bikesuite.org/
https://doi.org/10.1109/ICECS46596.2019.8964882
https://doi.org/10.1109/ICECS46596.2019.8964882
https://doi.org/10.1109/ICECS46596.2019.8964882
https://doi.org/10.1109/ICECS46596.2019.8964882
https://doi.org/10.1109/ICECS46596.2019.8964882
https://doi.org/10.1109/ICECS46596.2019.8964882
https://doi.org/10.1109/ICECS46596.2019.8964882
https://doi.org/10.1109/ICECS46596.2019.8964882
https://keccak.team/obsolete/Keccak-implementation-3.1.pdf
https://keccak.team/obsolete/Keccak-implementation-3.1.pdf
https://keccak.team/obsolete/Keccak-implementation-3.1.pdf
https://keccak.team/obsolete/Keccak-implementation-3.1.pdf
https://keccak.team/obsolete/Keccak-implementation-3.1.pdf
https://keccak.team/obsolete/Keccak-implementation-3.1.pdf
https://keccak.team/obsolete/Keccak-implementation-3.1.pdf
https://keccak.team/obsolete/Keccak-implementation-3.1.pdf
https://keccak.team/obsolete/Keccak-implementation-3.1.pdf
https://doi.org/10.46586/tches.v2021.i3.97-124
https://doi.org/10.46586/tches.v2021.i3.97-124
https://doi.org/10.46586/tches.v2021.i3.97-124
https://doi.org/10.46586/tches.v2021.i3.97-124
https://doi.org/10.46586/tches.v2021.i3.97-124
https://doi.org/10.46586/tches.v2021.i3.97-124
https://doi.org/10.46586/tches.v2021.i3.97-124
https://doi.org/10.46586/tches.v2021.i3.97-124
https://doi.org/10.46586/tches.v2021.i3.97-124
https://doi.org/10.46586/tches.v2021.i3.97-124
https://tches.iacr.org/index.php/TCHES/article/view/8969
https://tches.iacr.org/index.php/TCHES/article/view/8969
https://tches.iacr.org/index.php/TCHES/article/view/8969
https://tches.iacr.org/index.php/TCHES/article/view/8969
https://tches.iacr.org/index.php/TCHES/article/view/8969
https://tches.iacr.org/index.php/TCHES/article/view/8969
https://tches.iacr.org/index.php/TCHES/article/view/8969
https://tches.iacr.org/index.php/TCHES/article/view/8969
https://tches.iacr.org/index.php/TCHES/article/view/8969
https://tches.iacr.org/index.php/TCHES/article/view/8969
https://doi.org/10.1147/sj.294.0526
https://doi.org/10.1147/sj.294.0526
https://doi.org/10.1147/sj.294.0526
https://doi.org/10.1147/sj.294.0526
https://doi.org/10.1147/sj.294.0526
https://doi.org/10.1147/sj.294.0526
https://doi.org/10.1147/sj.294.0526
https://doi.org/10.1147/sj.294.0526
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.23919/DATE56975.2023.10137092
https://doi.org/10.23919/DATE56975.2023.10137092
https://doi.org/10.23919/DATE56975.2023.10137092
https://doi.org/10.23919/DATE56975.2023.10137092
https://doi.org/10.23919/DATE56975.2023.10137092
https://doi.org/10.23919/DATE56975.2023.10137092
https://doi.org/10.23919/DATE56975.2023.10137092
https://doi.org/10.23919/DATE56975.2023.10137092
https://doi.org/10.1109/DSD57027.2022.00078
https://doi.org/10.1109/DSD57027.2022.00078
https://doi.org/10.1109/DSD57027.2022.00078
https://doi.org/10.1109/DSD57027.2022.00078
https://doi.org/10.1109/DSD57027.2022.00078
https://doi.org/10.1109/DSD57027.2022.00078
https://doi.org/10.1109/DSD57027.2022.00078
https://doi.org/10.1109/DSD57027.2022.00078
https://doi.org/10.1145/3528416.3530243
https://doi.org/10.1145/3528416.3530243
https://doi.org/10.1145/3528416.3530243
https://doi.org/10.1145/3528416.3530243
https://doi.org/10.1145/3528416.3530243
https://doi.org/10.1145/3528416.3530243
https://doi.org/10.1145/3528416.3530243
https://doi.org/10.1145/3528416.3530243
https://doi.org/10.1145/3528416.3530243
https://doi.org/10.1145/3528416.3530243
https://doi.org/10.1145/3528416.3530243
https://doi.org/10.1145/3528416.3530243
https://doi.org/10.1145/3528416.3530243
https://doi.org/10.1145/3528416.3530243
https://drops.dagstuhl.de/opus/volltexte/2023/17724
https://drops.dagstuhl.de/opus/volltexte/2023/17724
https://drops.dagstuhl.de/opus/volltexte/2023/17724
https://drops.dagstuhl.de/opus/volltexte/2023/17724
https://drops.dagstuhl.de/opus/volltexte/2023/17724
https://drops.dagstuhl.de/opus/volltexte/2023/17724
https://drops.dagstuhl.de/opus/volltexte/2023/17724
https://drops.dagstuhl.de/opus/volltexte/2023/17724
https://doi.org/10.1109/TC.2022.3149422
https://doi.org/10.1109/TC.2022.3149422
https://doi.org/10.1109/TC.2022.3149422
https://doi.org/10.1109/TC.2022.3149422
https://doi.org/10.1109/TC.2022.3149422
https://doi.org/10.1109/TC.2022.3149422
https://doi.org/10.1109/TC.2022.3149422
https://doi.org/10.1109/TC.2022.3149422

FPGA-Based Design and Implementation of a Code-Based PQ KEM 39

19. Itoh T, Tsujii S (1988) A fast algorithm for computing multiplicative inverses in GF(2m) using
normal bases. Inf Comput 78(3):171–177. https://doi.org/10.1016/0890-5401(88)90024-7.
https://www.sciencedirect.com/science/article/pii/S0141933122002095

20. Karatsuba A, Ofman Y (1962) Multiplication of many-digital numbers by automatic computers.
Proc USSR Acad Sci 145:293–294

21. McEliece RJ (1978) A public-key cryptosystem based on algebraic coding theory. DSN
Progress Report, pp 114–116 (1978)

22. Micciancio D, Regev O (2009) Lattice-based cryptography. In: Post-quantum cryptography,
pp 147–191. Springer (2009)

23. Montanaro G, Galimberti A, Colizzi E, Zoni D (2022) Hardware-software co-design of bike
with hls-generated accelerators. In: 2022 29th IEEE international conference on electronics, cir-
cuits and systems (ICECS), pp 1–4. https://doi.org/10.1109/ICECS202256217.2022.9970992

24. National Institute of Standards and Technology (NIST)—U.S. Department of Commerce: Nistir
8309, status report on the second round of the nist post-quantum cryptography standardization
process (2020). https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf

25. National Institute of Standards and Technology (NIST)—U.S. Department of Commerce:
Nistir 8413, status report on the third round of the nist post-quantum cryptography
standardization process. https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413.pdf (2022).
10.6028/NIST.IR.8413

26. Nejatollahi H, Dutt N, Ray S, Regazzoni F, Banerjee I, Cammarota R (2019) Post-quantum
lattice-based cryptography implementations: a survey. ACM Comput Surv 51(6). https://doi.
org/10.1145/3292548, https://doi.org/10.1145/3292548

27. Peikert C (2009) Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In: Proceedings of the forty-first annual ACM symposium on theory of
computing. STOC ’09, Association for Computing Machinery, New York, NY, USA, pp 333–
342. https://doi.org/10.1145/1536414.1536461, https://doi.org/10.1145/1536414.1536461

28. Richter-Brockmann J, Chen MS, Ghosh S, Güneysu (2021) Racing bike: improved polynomial
multiplication and inversion in hardware. Cryptology ePrint Archive, Paper 2021/1344. https://
eprint.iacr.org/2021/1344

29. Richter-Brockmann J, Mono J, Güneysu T (2021) Folding bike: scalable hardware imple-
mentation for reconfigurable devices. IEEE Trans Comput. https://doi.org/10.1109/TC.2021.
3078294

30. Rivest RL, Shamir A, Adleman L (1978) A method for obtaining digital signatures and public-
key cryptosystems. Commun ACM 21(2):120–126. https://doi.org/10.1145/359340.359342

31. Zoni D, Galimberti A, Fornaciari W (2020) Efficient and scalable FPGA-oriented design of QC-
LDPC bit-flipping decoders for post-quantum cryptography. IEEE Access 8:163419–163433.
https://doi.org/10.1109/ACCESS.2020.3020262

32. Zoni D, Galimberti A, Fornaciari W (2020) Flexible and scalable FPGA-oriented design of mul-
tipliers for large binary polynomials. IEEE Access 8:75809–75821. https://doi.org/10.1109/
ACCESS.2020.2989423

33. Zoni D, Galimberti A (2022) Cost-effective fixed-point hardware support for risc-v embed-
ded systems. J Syst Arch 126:102476. https://doi.org/10.1016/j.sysarc.2022.102476, www.
sciencedirect.com/science/article/pii/S1383762122000595

34. Zoni D, Galimberti A, Fornaciari W (2021) An FPU design template to optimize the accuracy-
efficiency-area trade-off. Sustain Comput: Inform Syst 29:100450. https://doi.org/10.1016/j.
suscom.2020.100450, www.sciencedirect.com/science/article/pii/S2210537920301761

35. Zoni D, Galimberti A, Fornaciari W (2023) A survey on run-time power monitors at the edge.
ACM Comput Surv. https://doi.org/10.1145/3593044

https://doi.org/10.1016/0890-5401(88)90024-7
https://doi.org/10.1016/0890-5401(88)90024-7
https://doi.org/10.1016/0890-5401(88)90024-7
https://doi.org/10.1016/0890-5401(88)90024-7
https://doi.org/10.1016/0890-5401(88)90024-7
https://doi.org/10.1016/0890-5401(88)90024-7
https://doi.org/10.1016/0890-5401(88)90024-7
https://doi.org/10.1016/0890-5401(88)90024-7
https://doi.org/10.1109/ICECS202256217.2022.9970992
https://doi.org/10.1109/ICECS202256217.2022.9970992
https://doi.org/10.1109/ICECS202256217.2022.9970992
https://doi.org/10.1109/ICECS202256217.2022.9970992
https://doi.org/10.1109/ICECS202256217.2022.9970992
https://doi.org/10.1109/ICECS202256217.2022.9970992
https://doi.org/10.1109/ICECS202256217.2022.9970992
https://doi.org/10.1109/ICECS202256217.2022.9970992
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413.pdf
https://doi.org/10.1145/3292548
https://doi.org/10.1145/3292548
https://doi.org/10.1145/3292548
https://doi.org/10.1145/3292548
https://doi.org/10.1145/3292548
https://doi.org/10.1145/3292548
https://doi.org/10.1145/3292548
https://doi.org/10.1145/3292548
https://doi.org/10.1145/3292548
https://doi.org/10.1145/3292548
https://doi.org/10.1145/3292548
https://doi.org/10.1145/3292548
https://doi.org/10.1145/1536414.1536461
https://doi.org/10.1145/1536414.1536461
https://doi.org/10.1145/1536414.1536461
https://doi.org/10.1145/1536414.1536461
https://doi.org/10.1145/1536414.1536461
https://doi.org/10.1145/1536414.1536461
https://doi.org/10.1145/1536414.1536461
https://doi.org/10.1145/1536414.1536461
https://doi.org/10.1145/1536414.1536461
https://doi.org/10.1145/1536414.1536461
https://doi.org/10.1145/1536414.1536461
https://doi.org/10.1145/1536414.1536461
https://doi.org/10.1145/1536414.1536461
https://doi.org/10.1145/1536414.1536461
https://eprint.iacr.org/2021/1344
https://eprint.iacr.org/2021/1344
https://eprint.iacr.org/2021/1344
https://eprint.iacr.org/2021/1344
https://eprint.iacr.org/2021/1344
https://eprint.iacr.org/2021/1344
https://doi.org/10.1109/TC.2021.3078294
https://doi.org/10.1109/TC.2021.3078294
https://doi.org/10.1109/TC.2021.3078294
https://doi.org/10.1109/TC.2021.3078294
https://doi.org/10.1109/TC.2021.3078294
https://doi.org/10.1109/TC.2021.3078294
https://doi.org/10.1109/TC.2021.3078294
https://doi.org/10.1109/TC.2021.3078294
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://doi.org/10.1109/ACCESS.2020.3020262
https://doi.org/10.1109/ACCESS.2020.3020262
https://doi.org/10.1109/ACCESS.2020.3020262
https://doi.org/10.1109/ACCESS.2020.3020262
https://doi.org/10.1109/ACCESS.2020.3020262
https://doi.org/10.1109/ACCESS.2020.3020262
https://doi.org/10.1109/ACCESS.2020.3020262
https://doi.org/10.1109/ACCESS.2020.3020262
https://doi.org/10.1109/ACCESS.2020.2989423
https://doi.org/10.1109/ACCESS.2020.2989423
https://doi.org/10.1109/ACCESS.2020.2989423
https://doi.org/10.1109/ACCESS.2020.2989423
https://doi.org/10.1109/ACCESS.2020.2989423
https://doi.org/10.1109/ACCESS.2020.2989423
https://doi.org/10.1109/ACCESS.2020.2989423
https://doi.org/10.1109/ACCESS.2020.2989423
https://doi.org/10.1016/j.sysarc.2022.102476
https://doi.org/10.1016/j.sysarc.2022.102476
https://doi.org/10.1016/j.sysarc.2022.102476
https://doi.org/10.1016/j.sysarc.2022.102476
https://doi.org/10.1016/j.sysarc.2022.102476
https://doi.org/10.1016/j.sysarc.2022.102476
https://doi.org/10.1016/j.sysarc.2022.102476
https://doi.org/10.1016/j.sysarc.2022.102476
https://doi.org/10.1016/j.sysarc.2022.102476
www.sciencedirect.com/science/article/pii/S1383762122000595
www.sciencedirect.com/science/article/pii/S1383762122000595
www.sciencedirect.com/science/article/pii/S1383762122000595
www.sciencedirect.com/science/article/pii/S1383762122000595
www.sciencedirect.com/science/article/pii/S1383762122000595
www.sciencedirect.com/science/article/pii/S1383762122000595
www.sciencedirect.com/science/article/pii/S1383762122000595
https://doi.org/10.1016/j.suscom.2020.100450
https://doi.org/10.1016/j.suscom.2020.100450
https://doi.org/10.1016/j.suscom.2020.100450
https://doi.org/10.1016/j.suscom.2020.100450
https://doi.org/10.1016/j.suscom.2020.100450
https://doi.org/10.1016/j.suscom.2020.100450
https://doi.org/10.1016/j.suscom.2020.100450
https://doi.org/10.1016/j.suscom.2020.100450
https://doi.org/10.1016/j.suscom.2020.100450
www.sciencedirect.com/science/article/pii/S2210537920301761
www.sciencedirect.com/science/article/pii/S2210537920301761
www.sciencedirect.com/science/article/pii/S2210537920301761
www.sciencedirect.com/science/article/pii/S2210537920301761
www.sciencedirect.com/science/article/pii/S2210537920301761
www.sciencedirect.com/science/article/pii/S2210537920301761
www.sciencedirect.com/science/article/pii/S2210537920301761
https://doi.org/10.1145/3593044
https://doi.org/10.1145/3593044
https://doi.org/10.1145/3593044
https://doi.org/10.1145/3593044
https://doi.org/10.1145/3593044
https://doi.org/10.1145/3593044

40 A. Galimberti

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	 FPGA-Based Design and Implementation of a Code-Based Post-quantum KEM
	1 Introduction
	2 Components for QC-MDPC Code-Based Cryptography
	3 Client-Server BIKE Architecture
	4 Experimental Evaluation
	5 Conclusions
	References

