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ABSTRACT
In this paper we provide an overview of the approach we used as
teamCreamy Fireflies for the ACMRecSys Challenge 2018. The com-
petition, organized by Spotify, focuses on the problem of playlist
continuation, that is suggesting which tracks the user may add to
an existing playlist. The challenge addresses this issue in many use
cases, from playlist cold start to playlists already composed by up to
a hundred tracks. Our team proposes a solution based on a few well
known models both content based and collaborative, whose predic-
tions are aggregated via an ensembling step. Moreover by analyzing
the underlying structure of the data, we propose a series of boosts
to be applied on top of the final predictions and improve the recom-
mendation quality. The proposed approach leverages well-known
algorithms and is able to offer a high recommendation quality while
requiring a limited amount of computational resources.
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1 INTRODUCTION
Recommender systems are a useful tool to offer personalized and
relevant content to users in many different sectors like e-commerce
or entertainment, in such a way to help the user in identifying rele-
vant content in a wide database. The ACM RecSys Challenge 2018
organized by Spotify focuses on automatic playlist continuation.
This domain, as described in [5], is characterized by two important
issues that often arise in recommender systems: sparsity of the
user-item interactions and the cold-start problem [2].

Collaborative Filtering (CF) [3] is one of the most successful and
effective techniques available in recommender systems, however
they are prone to rapidly loose their effectiveness when the user-
item interactions are sparse. User-based CF considers users to be
similar if they tend to interact with items in a similar way, while
item-based CF considers tracks to be similar if many users inter-
acted with them in a similar way. With increasing sparsity in the
interactions, the ability of CF to accurately inference the similarity
between playlists and tracks decreases.

Cold-start problem refers to the task of recommending items
to new users and/or recommending new items to users. In case
of an almost empty playlist, recommending tracks under the CF
framework becomes difficult because there is not enough listening
history to make robust recommendations. Also if a new track is
added to the system and no user has previously listened to it, it is
impossible to find other similar tracks.

In both of these cases Content-Based recommender systems al-
leviate the problem of recommendation by constructing item-item
and user-user similarities from the features available for items and
users, respectively [1]. Our team proposes a hybrid recommender
system solution to the RecSys Challenge 2018 which merges collab-
orative filtering and content based techniques while leveraging at
the same time both given playlists’ structure and domain knowl-
edge. As per competition rules, the source code is publicly available
1.

The rest of the paper is organized as follows. In Section 2 we
outline the problem formulation, the dataset structure and the
evaluation metrics. In Section 3 we describe the preprocessing
steps. In Section 4 we list the algorithms we have used. In Section

1https://github.com/MaurizioFD/spotify-recsys-challenge
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5 we describe the ensemble structure and in Section 6 the post-
processing steps and boosts. Section 7 describes how we addressed
the creative track and which data we used. Finally Section 8 lists the
computational requirements for the various phases of our proposed
solution.

2 PROBLEM FORMULATION
The RecSys Challenge focuses on the music recommendation task,
in particular on automatic playlist continuation. The goal is to
develop a recommender system which is able, given a playlist and
some related information to generate a list of recommended tracks
that can be added to that playlist, thereby "continuing" it. The
challenge is split in two parallel tracks with different rules:

• Main track: only the Million Playlist Dataset (MPD) 2 can be
used to train the recommender system.

• Creative track: external, public and freely available data
sources are allowed in order to enrich the MPD and improve
the quality of the recommendations.

2.1 Dataset description
Spotify provided for the competition two different datasets:

• The Million Playlist Dataset: contains 1M playlists created by
users on the Spotify platform. These playlists were created
between January 2010 and October 2017. Each playlist con-
tains a title, the track list (including track metadata) editing
information (last edit time, number of playlist edits) and
other miscellaneous information about the playlist.

• The Challenge Set: contains 10K incomplete playlists. The
challenge is to recommend 500 tracks for each of these
playlists. Playlists are grouped into 10 different categories,
with 1K playlists in each category:

(1) Playlists with title only
(2) Playlists with title and the first track
(3) Playlists with title and the first 5 tracks
(4) Playlists with first 5 tracks (no title)
(5) Playlists with title and the first 10 tracks
(6) Playlists with first ten tracks (no title)
(7) Playlists with title and the first 25 tracks
(8) Playlists with title and 25 random tracks
(9) Playlists with title and the first 100 tracks
(10) Playlists with title and 100 random tracks

For further details of the two datasets refer to the dataset website.

2.2 Evaluation metrics
Predictions are evaluated according to three different metrics and
final rankings are computed using the Borda Count election strategy.
Assuming the ground truth set of tracks defined by Gt , and the
ordered list of recommended tracks by Rt :

• R-precision: this metric is evaluated both at the track level
(e.g., tracks correctly recommended) and at the artist level
(e.g., any other track by the same artist). The track level is

2https://recsys-challenge.spotify.com

computed as follows:

Rprect =
|Gt ∩ Rt1:|Gt | |

|Gt |
BeingGa the ground truth set of unique artists ofGt and Ra
is the ordered list of recommended artists of Rt for all the
tracks which have not been matched at the track level, the
artist level is computed as follows:

Rpreca =
|Ga ∩ Ra |

|Ga |
Amatch at the artist level can only be counted once per artist
per playlist. The final score is:

Rprec = Rprect + 0.25 ∗ Rpreca
• NDCG: normalized discounted cumulative gain is a well
known rank-based metric used in recommender system.

• Recommended Songs clicks: is computed as follows:

clicks =

⌊
arдmini

{
Rti : Rti ∈ Gt

}
− 1

10

⌋
where Rti is the track that occupies the ith index of the
ordered list of recommended tracks Rt . Recommended Songs
clicks is the number of refreshes needed before a relevant
track is encountered.

3 PREPROCESSING
In order to address the cold-start problem in first category, where
we have no available interactions for playlists, we apply information
retrieval techniques to build a feature space from playlists titles.
The following preprocessing steps have been adopted:

(1) Removing spaces from titles made by only separated single
letters.

(2) Elimination of uncommon characters like dots and brackets.
(3) Separation of words composed by letters and numbers, ap-

pending the resulting new tokens.
(4) Appending to the title the Lancaster and Porter stemming

of title’s words.
The result is a list that contains all the original tokens and the newly
created ones.

3.1 Track position and Artist Heterogeneity
In this music recommendation domain playlists are created by users
and sometimes exhibit a common underlying structure due to the
way a user fills them.

(1) Adding all the songs from the same Album one after another.
(2) Creating playlists with tracks from only one Artist and the

featurings that involve him.
(3) Creating a long playlist of one genre and fill them in the

years with new songs of the same artist.
(4) Creating a playlist with many different artists in the first

tracks, and readding the same artists later on as seen in
Figure 1.

To leverage these patterns we define a new measure to estimate
how diverse the artists are.

ArtistHeteroдeneityp = log2

( �� uniqueTracksp ���� uniqueArtistsp ��
)
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Figure 1: ArtistHeretogeneity for 1000 long playlists. The
gray area behind the points shows the Distribution of ArH,
over three different sampling strategies of songs in a long
playlist.

Where p is the playlist. A value ofArH = 0 refers to a playlist with
a lot a different artists, like the ones with the Top100 songs of a
genre. A high value of ArH points to a very repetitive playlist.

In particular, consider a set of 500 long playlists (from 100 to
250 songs). If you observe the first 20 songs or the same number of
songs but sampled at random you will obtain very different values
for ArtistHeterogeneity, see Figure 1. We are also able to exploit
the behaviour highlighted by this results by applying both boosts
and clustering, as it is described in Section 5.2 and 6.1

4 ALGORITHMS
Our model is composed by five well known algorithms, some con-
tent based, some collaborative and some item-based and some user-
based. In the following sections we will call playlist-track matrix
(PTM) the matrix having the playlists as rows, tracks as columns
and a cell value of one if the track belongs to that playlist.

4.1 Personalized Top Popular
For each element from category two, we implemented a personal-
ized top popular algorithm based on the only track in the playlist.

4.1.1 Track Based. We select all the playlists containing that
track and compute the top popular on them.

4.1.2 Album Based. Given the track’s album, we select all the
playlists containing tracks from that album and compute the top
popular on them.

4.2 Collaborative Filtering - Track Based
In the track-based CF algorithm first we apply BM25 [4] normaliza-
tion on the PTM, then we define the similarity between two tracks i
and j as the dot product between the corresponding PTM columns:

si j = ri ∗ r j

The score prediction of target track i for playlist u is given by:

rui =
KNN∑
jϵ I (u)

ruj ∗ (sji )p

Where KNN are the top k-nearest neighbors and p is a coefficient
that helps to discriminate values of the similarity.

4.3 Collaborative Filtering - Playlist Based
We define the similarity between two playlists i and j as the Tversky
[6] coefficient between the corresponding PCM rows:

si j =
ri ∗ r j

α(|ri | − ri ∗ r j ) + β(|r j | − ri ∗ r j ) + ri ∗ r j + h
Where α and β are the Tversky coefficients between [0,1] and h is
the shrink term.
The score prediction of target item i for user u is given by:

rui =
KNN∑
vϵU (i)

(suv )p ∗ rvi

4.4 Content Based Filtering - Track Based
For the track-based content based filtering (CBF) we first applied
BM25 normalization on the track-content matrix associating each
track to its features, next we define the similarity between two
tracks i and j as the dot product between the two feature vectors:

si j = fi ∗ fj

The score prediction of target item i for user u is given by:

rui =
KNN∑
jϵ I (u)

ruj ∗ (sji )p

We run three different types of CBF, each one based on different
combination of item features: Artist ID, Album ID, Album ID to-
gether with artist ID.

For the last one, after a phase of tuning, we assign different
weight in the track content matrix giving more weight to the album
features since it provides us better overall score.

4.5 Content Based Filtering - Playlist Based
We applied two different playlist-based CBF algorithms.

4.5.1 Track features. We build a playlist content matrix in which
we represent playlists with the feature of the tracks they contain.

We then again built three different user-content matrix using
different combinations of track features: Artist ID, Album ID, Album
ID together with artist ID.

Next we apply BM25 on the playlist content matrix and we
compute the similarity between two playlists i and j as the Tversky
coefficient between the two playlist-feature vectors.

4.5.2 Playlist name. We create a playlist-content matrix for
the tokens extracted from titles. Some playlists have untokenizable
titles (e.g., emojis) to avoid empty recommendations and to improve
accuracy we ensembled two different approaches relying on the
playlist title

(1) Content based filtering (CBF) based on the tokens extracted
from the titles in the preprocessing phase.
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(2) Content based filtering (CBF) based on an exact title match.
The final model is a weighted sum of the recommendations of the
two aforementioned approaches.

4.6 Parameters tuning
For each algorithm and for each category onwhichwe are evaluated,
we tune the parameters on our validation set.

• number of k-nearest neighbors (KNN) of the similarity ma-
trices

• the power coefficient p for the similarity values
• the coefficients α and β of the Tversky similarity
• the shrink term h

5 ENSEMBLE
5.1 Base Ensemble
An analysis on the case of study makes us observe that the different
algorithms are better suited for subsets of playlists with specific
characteristics. Content base approaches fit well on short playlists
with similar features, on the other hand, collaborative filtering
approaches gave us the best results on long and heterogeneous
playlists.
We divide the results by category as it is shown in Figure 2. If we
consider N algorithms, we use them to compute, for each playlist,
N sets of tracks scores such that the highest valued tracks will be
recommended to that playlist.

Figure 2: Category splitting of each algorithm.

The final model is a weighted sum of the N score predictions
taking into account the length of the playlist and the position of
the tracks. This allows to take advantage of the diversity in the
predictions made by the different algorithms.

5.2 ArH-based Cluster Ensemble
One of the characteristics we took into account is the Artist Het-
erogeneity (ArH). Playlists are assigned to a cluster based on their
ArH index, see Table 1.

Cluster1 Cluster2 Cluster3 Cluster4
ArHp =0 <1 <2 >=2

Table 1: Artist Heterogeneity clusters

For each category and for each cluster we search the best model
weights by bayesian optimization, Figure 3.

This ensemble also takes into account the cluster of the playlist.
For the categories 4,5,6,8,10 this approach gives better results than
the base ensemble (see Table 2). The final model for these categories
is still a weighted sum of the N score predictions, but taking into
account the ArH cluster.

Figure 3: Cluster division and Bayesian optimization

clicks NDCG R-precision
ArH-based -0.0322 +0.0058 +0.0041

Table 2: Relative improvement for categories 4, 5, 6, 8, 10
after playlist’s clusterization.

6 POSTPROCESSING
Once we apply our per-category ensemble technique, we obtain a
new set of predictions which takes into account the recommen-
dations of each algorithm. We improve our score leveraging on
domain-specific patterns of the dataset.

6.1 Boosts
The following boosts share a common work flow: they start from a
list of K predicted tracks for a playlist p and for each k ∈ K they
boost the Scorepk computed via the ensemble model in this way:

Scorepk = Scorepk + Boostpk

6.1.1 Gap Boost. It is an heuristic which applies to playlists
of category 8 and 10, where known tracks for each playlist are
distributed at random. Since known tracks are not in order, there
exist "gaps" between each pair of known tracks. We exploit this
information by reordering our final prediction giving more weight
to tracks which seems to better "fit" between all the gaps of the
playlist. Therefore, for each playlist p we select the first K tracks of
the prediction and we add to each of them the following value:

GapBoostpk = γ
∑
д∈G

Sk,дl Sk,дr
dд

∀k ∈ K

where S is a similarity matrix between tracks obtained by a con-
tent based filtering recommender as described in section 4.4, G
is the set of all the gaps in the playlist, дl and дr are the tracks
which correspond respectively to the left boundary and the right
boundary of the gap, dд is the length of the gap (the difference
of the position in the playlist of the boundary tracks) and γ is a
weight factor. This technique improves significantly the R-precision
and the Recommended clicks metrics, leaving the NDCG almost
unchanged.
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Algorithm clicks NDCG R-precision
Gap Boost -0.0003 +0.0001 +0.0021
Tail Boost -0.0060 +0.0015 +0.0008
Album Boost -0.0230 +0.0011 +0.0005

Table 3: Relative improvement of each boost on the three
metrics.

Dataset Name Data Type Year
#nowplaying music 3 Listening behavior 2018
#nowplaying playlists Playlist 2015
MLHD 4 Listening behavior 2017
FMA 5 Audio Features 2017
MSD 6 Audio Features 2011
Spotify API 7 Audio Features, popularity 2018

Table 4: External datasets explored for the creative track. Lis-
tening behaviour refers to timestamps of listening events.

6.1.2 Tail Boost. We apply this technique to categories 5, 6, 7,
9, where known tracks for each playlist are given in order. The
basic idea behind this approach is that the last tracks are the most
informative about the "continuation" of a playlist, therefore we
boost all the top tracks similar to the last known tracks, starting
from the tail and proceeding back to the head with a discount factor.

6.1.3 Album Boost. This approach leverages the fact that some
playlists are built collecting tracks in order from a specific album.
Therefore in categories 3, 4, 7 and 9, where known tracks for each
playlist are given in order, we use this heuristic to boost all the
tracks from a specific albumwhere the last two known tracks belong
to the same album. Album Boost improves the Recommender Songs
clicks metric.

7 CREATIVE TRACK
Our approach to the creative track was heavily inspired by the
approach used to compete in the main track. The rules of the com-
petition specified that to qualify as successful, the final submission
to the creative track must use external sources with the condition
of being public and freely accessible to all participants.

7.1 External Datasets
Under the rules imposed by the competition organizers, we explored
the datasets on table 4.

We spent considerable effort in trying to reconcile the tracks
from the Million Playlist Dataset (MPD) provided by Spotify with
those from external datasets but matching the name of the tracks
and artists proved to be difficult and error-prone. Spotify Web API,
on the other hand, being an API provided by Spotify itself, allowed
us to retrieve for all tracks in MPD and in the Challenge Dataset the

3#nowplaying dataset http://dbis-nowplaying.uibk.ac.at
4The Music Listening Histories Dataset (MLHD)
http://ddmal.music.mcgill.ca/research/musiclisteninghistoriesdataset
5A Dataset For Music Analysis https://arxiv.org/abs/1612.01840
6Million Song Dataset https://labrosa.ee.columbia.edu/millionsong/
7https://developer.spotify.com/documentation/web-api/

Algorithm clicks NDCG R-precision
CBF 19.9644 0.075191 0.037054
creative CBF 17.1286 0.086872 0.050467

Table 5: Track level local evaluation of artist based CBF and
creative CBF (mean value of 10 categories)

following features (using audio-features/{id} and tracks/{id}
endpoints): acousticnes, danceability, energy, instrumentalness, live-
ness, loudness, speechiness, tempo, valence, popularity. During the
data collection process, we found 159 tracks with missing audio
features. As a preprocessing step, we filled in missing values for 159
tracks with the respective mean over all available data. For those
tracks we are not able to retrieve popularity feature therefore we
considered them as non-popular tracks, and filled in the missing
values with 0, the lowest popularity level. In this way, we obtain
a complete enriched dataset which contains 2,262,292 tracks and
corresponding audio features and popularity.

7.2 Audio Feature Layered Content Based
Filtering - Track Based

Inspired by the content based filtering (CBF) approach in the main
track, we implemented a creative CBF which is able to adjust the
artist based track recommendation using ten additional features
from our enriched dataset.

In order to better illustrate the idea, we give a graphical repre-
sentation of the item content matrix (ICM) by random sampling 200
artists.The track-track similarity matrix calculated with a normal
CBF, as used in the main track, is not able to distinguish tracks be-
longing to the same artist. We call it artist-level similarity. This
is clear if we take into consideration row i of the ICM which repre-
sents a track; in i only one column has a value of 1 corresponding
to the artist of the track. For two tracks to be similar they must
share the same artist thus making the similarity values of all K
most similar tracks to i equal. In this way we cannot differentiate
between similar tracks of i.

The creative CBF is implemented with the following steps:
(1) Divide the tracks into 4 clusters with equal number of ele-

ments, according to each feature. Take the loudness feature
as an example, the clustering result is shown in Figure 4.

(2) Considering feature clusters as a 3rd dimension, split the
dense ICM into 4 sparse layers. A loudness based layered
ICM is illustrated in Figure 5.

(3) Concatenate 4 layers of sparse matrices horizontally in order
to create a final sparsified ICM.

(4) Applying the CBF approach to the sparsified ICM, we can
calculate a sub-artist-level track-track similarity.

In practice, this creative CBF is able to improve the artist-based
recommendations in all three evaluation metrics. The comparison
is presented on table 5 and 6.

7.3 Feature Layered Collaborative Filtering -
Track Based

Following the sparsifying idea in the previous subsection, we im-
plement a layering procedure also to the playlist-track matrix. In
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Algorithm clicks NDCG R-precision
CBF 17.4876 0.123445 0.003055
creative CBF 13.2587 0.159920 0.006016

Table 6: Artist level local evaluation of artist based CBF and
creative CBF (mean value of 10 categories)

Figure 4: Clustering of tracks over loudness feature. The col-
ors represent the different clusters.

Figure 5: Layered ICM over loudness feature (200 sampled
artists).

creative track, the track features we used for layering procedure
are: all feature clusters, album, artist. While in the main track, the
layering idea is applied with only album and artist feature. Due
to the different character of each category of playlists, in practice,
we found out that this sparsified PTM has a good effect on the
recommendation of the eighth and tenth category of playlists.

8 COMPUTATIONAL REQUIREMENTS
To run the entiremodel we use aAWSmemory optimized cr1.8xlarge
VM with 32 vCPU and 244 GiB of RAM.

The model creation can be done in two different ways depending
on the needs and available resources.
The search of best parameters takes up to 16 hours on the appointed

Step Time RAM Model dependent
Fast Models Creation 4 1h 150GB Yes
Normal Models Creation 4 1.5h 80GB Yes
Bayesian Optimization 5.2 16h 15GB No
Ensemble 5 5m <8GB Yes
Postprocessing 6.1 8m <8GB Yes

Table 7: Computational requirements for the different steps.
Model dependent steps need to be done again to recommend
new playlists

machine but is a procedure that needs to be computed only one
time.

9 RESULTS AND CONCLUSION
Our recommendation architectures allowed us to reach the 4th place
in the main track and the 2nd place in the creative track. The scores
of our final model on both main and creative track are reported in
Table 8. These scores are evaluated against 50 % of the challenge set,
as stated in the website of the challenge. The predictions of most of
the algorithms in the ensemble are heavily correlated. Nevertheless,
the ensemble manages to extract the differing predictions from each
algorithm, which is beneficial for the evaluation score. The major
strength of our architecture is that is built in a simple and modular
way. It can be easily extended with additional features coming
from different datasets and new techniques can be implemented
with no impact on the pre-existent work flow. Furthermore our
architecture relies on an efficient Cython implementation of the
most computationally intensive tasks, which allows to keep the
time and space complexity under a reasonable threshold.

Track clicks NDCG R-precision
Main 1.9810 0.3867 0.2207
Creative 1.9596 0.3858 0.2206

Table 8: Public Leaderboard scores of our final model on
both main and creative track.
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