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Abstract

Laser Powder Bed Fusion (L-PBF) is a widely-used additive manufacturing (AM) technique for producing complex
metal parts used for a variety of dynamically loaded applications. Fatigue performance of standardized L-PBF sam-
ples is at present fairly well understood, while the knowledge on the fatigue behaviour of real-life complex shaped
components is often lacking. This work presents insight, methods and results on predicting L-PBF component fa-
tigue life using FE-based simulations, stress-based sample fatigue data and machine learning respectively. A realistic
end-use part with representative geometry for many industrial applications was selected and produced in Ti-6Al-4V
by L-PBF along with many standardized samples under different building orientations and with different types of
heat treatments and surface finishing steps. The results indicate that the developed tool for component fatigue life
prediction can accurately predict both the failure location and the number of cycles to failure.
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Introduction

Additive Manufacturing (AM) is increasingly being used as a production technique for functional parts in a variety
of applications. Laser Powder Bed Fusion (L-PBF), also known as Selective Laser Melting (SLM), is a widely used
AM technique for processing a variety of metals to form complex three-dimensional parts.

L-PBF has been successfully used in the last three decades to produce parts in a variety of metals, from which
316L, Ti-6Al-4V and AlSil0Mg are amongst the most widely used and reported [1, 2, 3, 4]. From these materials,
Ti-6Al-4V is frequently used for applications that need light weight, good biocompatibility and/or good corrosion
resistance and/or high performance under increased thermal and/or mechanical loads. In most of these applications,
also the fatigue performance of the material is important. The fatigue behaviour of titanium alloys produced by LPBF
has hence been studied intensively during the past ten years.

Multiple studies have analysed the influence of heat treatments, surface treatments and build orientation on dif-
ferent aspects of fatigue behaviour. In as-built state, Ti-6Al-4V produced by L-PBF is usually characterised by a
fine acicular @’ martensitic microstructure. Compared to a coarser mill annealed microstructure, Van Hooreweder
et al. [5] showed that L-PBF Ti-6Al-4V exhibits reduced fracture toughness due to this unstable martensitic matrix.
Heat treatment operations lead to a transformation of the martensite into various forms of @ + § microstructure [6].
An increase in ductility is reported after such transformation. Therefore, owing to the ease of slip transfer across the
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a/p interface, a higher fatigue performance is generally observed. A number of studies report the fatigue results of
L-PBF Ti-6Al-4V after stress relief, annealing and HIP treatments. From the analysis of data reported in literature,
despite the effect of the different microstructure on Ti-6Al-4V fatigue performance [7], it has been observed that the
most dominant influencing factors were found to be surface conditions, porosity and defects. Lack of fusion voids,
gas pores, un-molten particles and small cracks can indeed act as fatigue crack initiation sites. Combined with such
defects, the rough surface obtained after L-PBF induces micro-notch like effects that further accelerate the crack ini-
tiation behaviour. Giinther et al. [8] verified this concept by testing machined fatigue samples with internal channels.
They observed that cracks initiated from the as-fabricated surface of internal channels. Samples with reduced channel
diameters exhibited higher fatigue lives. Surface treatment operations such as machining remove the stress concentra-
tion effects and enhance the fatigue performance [9]. Fatemi et al. [10] performed multiaxial fatigue tests and found
that the results remained similar to those of torsional tests; i.e., the fatigue performance of machined samples was
better than the fatigue performance of non-machined samples. However, one of the main advantages of AM tech-
niques over the conventional manufacturing methods is the ability to produce parts with complex geometries as net
shape, and therefore the machining operations of such intricate geometries might be difficult if not impossible in some
cases [11].

Another important aspect that significantly impacts the AM Ti-6Al-4V fatigue performance can be associated
to the part orientation with respect to the building direction. In fact, inclined surfaces might present poorer surface
quality with respect to the vertical surfaces as they are affected by the staircase effect on up-facing surfaces and dross
formation on down-facing surfaces. These two phenomena have been considered as detrimental factors for fatigue
performance of AM Ti-6Al-4V samples in as-produced surface condition [12].

Besides the effect of the surface conditions, recent reviews on fatigue performance of AM Ti-6Al-4V samples [11,
13] also summarized how volume post-treatments influence the material fatigue properties. In particular Singla et
al. [13] highlighted how HIP has been considered by several authors [11, 14, 15] as a powerful post-treatment to
minimize the defect population and size with a consequent beneficial impact on fatigue performance. However,
the enhancement of AM Ti-6Al-4V fatigue properties consequent to a HIP post-process can only be appreciated
on machined coupons. In fact Cutolo et al. [16] concluded that for specimens with an as-produced surface, the HIP
treatment was not able to improve the L-PBF Ti-6Al-4V fatigue behaviour as does a straightforward and economically
competitive stress relieving treatment. The reason for that was attributed to the difference in microstructure generated
by stress relieving (SR) and HIP. In particular the fine o + 8 microstructure generated by SR guaranteed a higher
resistance to crack initiation with respect to the coarse « + § microstructure generated by HIP.

The large majority of scientific articles dealing with fatigue of LPBF produced titanium focuses on investigations
at the sample scale with test geometries ranging from classical cuboids to standardized tensile and fatigue test samples.
These geometries are significantly different from the complex three-dimensional geometries that are eventually used
in real-life applications. Using sample (fatigue) data to predict the mechanical behaviour and fatigue life of a LPBF
component in Ti-6Al-4V is, however, not a straightforward task. Indeed, many local factors such as surface roughness,
microstructure, loading and stresses, defects, etc. should be accurately accounted for [17].

According to the knowledge of the authors, this paper is among the first studies that present and discuss validated
approaches for fatigue life prediction of L-PBF produced components in Ti-6Al-4V. The presented tools, methodology
and insights can also be extended towards other AM technologies and materials. Recently Molaei et al. [18] and Li et
al. [19] predicted the fatigue behaviour of a Ti-6Al-4V aerospace component. Extreme value statistics of defects was
used to calculate the effective defect size for fatigue life predictions. Although the predicted stress concentration zone
coincided with the experimental crack initiation site, the hotspot surface was machined. As a result, no L-PBF-related
surface influential factors were considered.

This paper extends upon the fatigue life prediction methods for complex geometries produced by AM as presented
by Elangeswaran et al. [20]. The tools and approaches presented by the aforementioned study by Elangeswaran et al.
are extended and used for the fatigue life prediction of an industrially relevant benchmark part in Ti-6Al-4 V.

First of all, in order to build a L-PBF Ti-6Al-4V fatigue database, an extensive experimental campaign was per-
formed on coupon level, considering different combinations of building orientations, volume and surface treatments.
Using machine learning and physical understanding of the material, a simulation-based fatigue life prediction of an
industrial Ti-6Al-4V demonstrator produced by L-PBF was then performed. This demonstrator presents many of the
typical features of additively manufactured components such as thin walls, overhanging surfaces, and internal holes.
The prediction was followed by an experimental validation of the fatigue life and failure location of the demonstrator.

2



R65,2
©
s l]
T
a 1 ]
o
15 g
60
20 R6,1 — @6
DETAILA ‘ \
i S S - —
v
AT A

Figure 1: (a) Fatigue sample geometries produced by L-PBF in Ti-6Al-4V (dimensions in mm): plain and notched specimen geometries. For
notched coupons, three different radii have been considered. (b) Industrial demonstrator geometry produced by L-PBF in Ti-6Al-4V, with indication
of the fatigue loading, build direction (BD), bulky zone (A), internal flange (B), thin features (C), support rollers (D), symmetry line (E), loads (F),
connection with the actuator (G) and critical zones for fatigue crack initiation (I) and (II), and from a to & the roughness measurement regions. (c)
internal flange including the hole of the produced L-PBF part.

Finally, a comparison between the predicted lifetime and the experimental fatigue life was performed. The results
indicate that the crack initiation point in the industrial benchmark part can be accurately predicted. In addition, the
predicted number of load cycles leading to crack initiation in the life range of 10* to 10° cycles for three different
loading conditions corresponds well with the actual fatigue life in the same life range.

Materials and methods

Samples and component design

Figure 1-(a) shows the miniature fatigue sample design used in this work with continuously reducing fillet and
critical cross-section of diameter 2.5mm. Fatigue behaviour of this geometry was validated in previous studies [16, 21,
22, 23]. The miniature fatigue samples were printed under various build directions (BD). BD was defined as the angle
between the specimen z axis (Figure 1-(a)) and the build platform of the L-PBF system. Furthermore, Figure 1-(a)
shows the notched specimen geometry.

The geometry of the industrial demonstrator is indicated in Figure 1-(b). The industrial demonstrator was produced
under a fixed build direction as indicated in Figure 1-(b). The design of the demonstrator was conceived to include in
one geometry the typical critical features of additively manufactured parts, such as thin walls represented by region
B of Figure 1-(b), overhanging surfaces (feature II of Figure 1-(b)), passing holes (feature I of Figure 1-(b)). The
passing holes have not been machined, since they were intended to replicate powder removal hole.

Material and manufacturing

All samples and components used in this study were produced using a commercial DMP ProX320 LPBF machine
(3DSystems-LayerWise, Leuven, Belgium) equipped with a SOOW fiber laser and with vacuum chamber technology
to reduce oxygen levels during production to below 50ppm. Gas atomized LaserForm® Ti-6Al-4V powder was
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used. A layer thickness of 60um was used with the L-PBF parameters corresponding to officially released LaserForm
Ti-6Al-4V standard [24].

Two different volumetric thermal treatments were performed on L-PBF Ti-6Al-4V samples: stress relief (SR)
and hot isostatic pressing (HIP). The stress relieving operation consists of heating the samples at a temperature of
850°C for 2h followed by air cooling. The HIP operation was performed at 920°C with a pressure of 100MPa for 2h,
followed by furnace cooling.

Ti-6Al-4V samples underwent two different surface treatments: electro-plasma polishing (EPP) and machining
(MC). EPP was performed by Plasmatec B.V. by submerging the samples in a plasma cloud, using their default pa-
rameters for titanium. After this operation, a 130um reduction in diameter was observed and accounted for. The
machined samples were turned down from oversized hexagonal bars to the final geometry, aiming at a surface rough-
ness smaller than 0.2um R,. For each investigated condition three building orientations with respect to the baseplate
were considered, i.e. vertical (90°), horizontal (0°) and inclined (50°). A summary of all the conditions investigated
is presented in Table 1.

Table 1: Different process conditions employed for fatigue analysis.

Build orientation =~ Material condition Surface condition
Vertical (90°) As-built (AB) Non-machined (NM)
Horizontal (0°)  Stress-relieved (SR)  Electro plasmapolished (EPP)
Inclined (50°) HIP Machined (MC)

The notched specimens were obtained from hexagonal bars that underwent SR operation and that were subse-
quently machined to the final geometry of Figure 1-(a). Three different radii R have been considered, i.e. 1.5, 0.50,
and 0.25mm, corresponding to stress concentration factors &, equals to 1.58, 2.25 and 3.09 respectively. Notched
coupons have been produced under a fixed BD, i.e. z axis perpendicular to the build plate.

The industrial component was produced with layers perpendicular to the building direction (BD) indicated in
Figure 1-(b). One volumetric post-treatment was performed after production on the industrial component, namely
a stress relieving operation consisting of heating the components at a temperature of 850° C for 2h followed by air
cooling. Except for zones a and b indicated in Figure 1-(b), the external surfaces were considered in their as-produced
state. Zones a and b were, instead, machined to remove the as as-produced roughness. This machining operation is
done for facilitating the fatigue testing only, as zones a and b will indeed not be the critical zones for fatigue failure.

Fatigue life prediction

Fatigue life prediction was achieved using FE analysis in Siemens Simcenter 3D to derive the stress fields under
the defined loading conditions, and subsequent durability analysis using a custom developed code in the Open Solver
interface of the Siemens Simcenter 3D Specialist Durability solver.

The FE analysis was performed on a one-quarter model of the actual geometry, exploiting symmetries in the
geometry and the loading conditions. The boundary conditions were modelled as a rigid cylinder (D in Figure 1-(b))
at the bottom of the component with a frictionless contact defined between specimen and cylinder. The force was
introduced at the top of the model and distributed over the contact area between the load-application fixture and the
specimen. Quadratic CTETRA(10) elements were used in the model, with an average element size of 1mm throughout
the component. Mesh refinements down to 0.1mm element size were applied in regions of high stress, resulting in a
total mesh size of approximately 400, 000 elements. A linear-elastic material definition corresponding to the measured
static properties of Ti-6Al1-4V was used, as well as a static, linear (SOL101) analysis method using the NX Nastran
FE solver. Global convergence of the models was checked by comparing the force-displacement behaviour of the
FE- model vs. static loading experiments performed on the component. Agreement down to the resolution of the
employed sensors was achieved.

STL scans from actually printed components were converted into FE models with model parameters similar to
the procedure described above (based on the CAD model). While small differences could be observed between actual
and theoretical components, the critical regions in the model (zones I and II in Figure 1-(b)) were not affected by the
impact of geometric tolerances. As such, all further analyses were performed on the CAD-based FE analysis.



Subsequent to the FE static analysis, durability calculations were performed using the Open Solver interface of the
Siemens Simcenter 3D Specialist Durability software. A custom computation was implemented based on a Machine
Learning approach, in order to account for the localized material features within the AM component. For more
information, the reader is referred to Elangeswaran et al. [20] where the process is described for stainless steel 316L.
A similar approach, with modified covariance and mean function definitions was applied to model the Ti-6Al-4V
material under influence of the parameters listed in Table 1. The fatigue prediction methodology is represented in
Figure 2.

Sample analysis

Stress-based
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Figure 2: Schematic illustrating the work-flow for simulation-based fatigue life prediction of metal L-PBF components (adapted from [20]).

The upper block of the schematic involves the analysis of material fatigue performance on sample level that
culminates in the definition of a stress-based fatigue database that accounts for the different fatigue influencing factors,
i.e. surface and volume treatments, building orientations, mean-stress dependency, and notch factors. The lower block
involves the fatigue analysis of the demonstrator. The stress-based fatigue data are processed and machine learning
tools as well as empirical laws are developed to relate the influencing factors with the component fatigue life.

The life prediction approach is a modified stress life approach. In the first phase of the analysis, the complex
(and/or multi-axial) load history is reduced into its fundamental load cycles. Each fundamental load cycle is char-
acterized by its stress amplitude and mean stress (derived from the combination of the FE stress analysis and the
load history), as well as the number of repetitions in the full load history. Common rain-flow counting methods are
often used, while the Siemens Simcenter 3D Specialist Durability solver relies on the so-called hysteresis operator
to achieve this step. For the present case of simple, constant-amplitude loads, the entire load history is essentially
reduced to a single cycle.

Each fundamental load cycle is then further processed to compensate for mean stress effects. For this study, the
Walker equation was used, as reported by Cutolo et al. [25]. After mean stress compensation, each fundamental load
cycle is characterized by only its equivalent stress amplitude (in absence of mean stress) and the repetitions in the load
history.

The final step in the stress life approach is to convert stress in each element (for each fundamental stress cycle)
into an equivalent lifetime and damage value. In the present work, conventional S-N curves have been replaced by
a machine learning methodology. In contrast to a single (or few) pre-determined S-N curve, the machine learning
approach allows for prediction lifetime for each element considering its unique set of features (surface roughness,
the angle between principal stress direction and print direction, global heat treatments, etc.). Essentially, through the
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machine learning algorithm, each individual element gets assigned a unique S-N curve tuned to the local conditions
present at that element.

The full load history is repeated and damages for each fundamental cycle are summed until a critical damage value
(usually close to 1) is reached within the model, leading to the final prediction of a component lifetime. During the
learning phase of machine learning, only coupon test data is used. The full set of coupon test results is split, where
a part is used for training, and the remainder is used for validation (this has been repeated several times for different
divisions of the full set of test data, to quantify the robustness of the hyperparameters). For the component lifetime
assessment, none of the experimental results on the component were used as training for machine learning.

The outcome of the Durability analysis provides an element-by-element prediction of fatigue life. External post-
processing was performed to compensate for notch effects near the surface of critical area I before comparing numer-
ical predictions to experimental results.

Motivation for using supervised machine learning

Different process parameters, post-production procedures, and physical characteristics can yield different material
fatigue performance for L-PBF parts. Even though an extensive test campaign was conducted, it was not yet able
to obtain a parametric description of how the various fatigue-influencing factors interacted. This demands for the
selection of a non-parametric probabilistic model along with a model parameter identification. In this article, a Gaus-
sian process regression, a supervised machine learning algorithm, is used as proposed by Elangeswaran et al.[20]. A
Gaussian process is considered supervised a machine learning approach since the modeller must select a covariance
function that describes the correlations between the input parameters (for more information, please refer to Appendix
I). By using such a process, it is possible to eliminate the issue of finding a parametric description of the problem.
A multidimensional vector with known data regarding process parameters, surface and material state, and physical
attributes is used as input by the Gaussian process to forecast fatigue performance. The mean and standard deviation
of the material fatigue life are the procedure’ outputs.

Fatigue testing

Coupon testing

Axial tension-compression fatigue tests were performed on the miniaturised samples at zero mean stress. An
Instron E10000 fatigue set-up with a 10kN load cell and pneumatic grips was used for the tests. Load-controlled
sinusoidal constant amplitude stresses were applied at a frequency of 30Hz. For each stress amplitude (o7,), the
number of cycles to failure, stiffness degradation of 5% or run-out at 2 - 10° cycles was noted as Ny, whichever is the
earliest occurrence. The observed data points were fitted with Basquin’s equation (o, = AN f)”), where A and b are
material constants , to obtain a stress-life (SN) plot.

Fatigue tests were conducted with a stress-ratio R = —1. For stress-relieved coupons, produced vertically, stress-
ratio R = 0.1 and R = 0.5 were also investigated.

In order to evaluate the fatigue strength of the material, the step procedure illustrated by Nicholas et al. [26] and
validated by Bellows et al. [27] was used. In particular, the fatigue strength at 2 - 10° cycles was calculated via the
following equation:

Ny
Taye = ON-1+ Ao 7106 (D)
in which Ny is the number of cycles to failure, Ao is the stress step increment, oy_ is the previous stress amplitude
that did not cause failure of the coupons.

Component testing

Fatigue tests were performed on the components with a load-ratio R = 0.1. The components were clamped in an
actuator with a maximum load capacity of 25kN. In order to reduce boundary conditions uncertainties, the component
was simply supported on hardened cylinders on both sides (Figure 1-(b), part D). In this way the contact of the sample
was reduced to a well-defined line contact, which could be accurately translated in the simulation. The force was
transferred from the actuator to the component via a semi-cylindrical hardened bar and, in order to avoid misalignment
effects, a flexible connection between the bar and the actuator was used to assure a uniform load distribution between
the two sides of the component. Three different maximum load levels were investigated, i.e. 10.8, 12 and 14kN with a
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frequency of 15Hz. 10 samples were tested in total. During each fatigue test, force and displacement were constantly
monitored.

Sample and component analysis

For microstructural analysis, representative ground and polished samples were etched with modified Keller’s
reagent (95 mL H,0,2.5 mL HNOs, 1 mL HCI, 1.5 mL HF). Optical and scanning electron microscopy analysis were
performed using Keyence VHX 6000 and Philips XL30 FEG systems, respectively. Archimedes method was used to
determine the relative density of the samples. Besides, porosity was also observed with optical microscopy. Sur-
face roughness was measured with a Mitutoyo Formtracer CS-3200S4 device. Three measurements were performed
on each sample with an approximate rotation interval of 120°. Tensile tests were conducted on a Shimadzu AG-X
Plus machine according to ASTM ES8 specification, using a video extensometer for strain measurements. Post-fatigue
fracture surfaces were analysed by SEM with Philips XL30 FEG.

Results and discussion

Microstructure, quasi-static properties and roughness measurements of samples

Figure 3: SEM images of as-built microstructure (a), stress relieved microstructure (b), and of HIP’ed microstructure (c)

Microstructures of the three material conditions are shown in Figure 3. A fine martensitic ¢’ microstructure is
obtained after L-PBF. SEM images represent this fine needle-like microstructure in Figure 3-(a), respectively. High
cooling rates in L-PBF results in this metastable structure of @’ phase supersaturated with (3 stabilising elements. This
martensitic microstructure is transformed into a Widmanstitten or basketweave a+f8 microstructure after the stress
relief heat treatment, as seen in Figure 3-(b). Precipitation of incoherent S particles at prior 8 phase boundaries or
high dislocation density regions results in the decomposition of the o’ phase into a dual phase a+8. A coarser a+8
microstructure is obtained after HIP treatment as shown in Figure 3-(c). Temperatures higher than those in the stress
relief treatment have evidently resulted in microstructure coarsening.

The tensile test results corresponding to as produced samples showed a yield stress oy, = 1086 + 15 [MPa], an
ultimate tensile stress oyrs = 1246 + 22 [MPa], and an elongation at fracture of 11 = 1 [%]. After volumetric post-
treatments, stress relieved samples presented the following static properties o, = 914 + 45 [MPal, oyrs = 1002 + 30
[MPa], and an elongation at fracture of 16+3 [%], whereas for the HIP coupons o, = 860+40 [M Pal, oyrs = 960£30
[MPa], and an elongation at fracture of 18 + 4 [%] were measured.

Higher strength and limited elongation to fracture is observed in as-built condition, corresponding to the marten-
sitic microstructure. Stress relief heat treatment has resulted in a drop in strength with increase in elongation to frac-
ture, as expected from a dual phase @+8 microstructure. The evidence of further microstructure coarsening through
HIP is reflected in the additional decrease in strength and increase in elongation to fracture.

The roughness measurements performed on the sample coupons for all the conditions listed in Table 1 are reported
in Table 2. The results indicate how electro-plasma polishing and machining operations can improve the surface
quality of the LPBF Ti-6Al-4V samples significantly.

The EPP treatment was able to improve the surface quality of samples that were built vertically and with 50°
orientation with respect to the baseplate. On the other hand, a small difference was measured for horizontally produced
EPP samples with respect to non-machined ones. Given the geometry of the coupons, the reason for that could be
attributed to the fact that for this particular orientation (i.e. 0°) the surface morphology is mainly influenced by a
severe staircase effect and the EPP treatment was not able to smoothen this.
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Table 2: Surface roughness summary for LPBF Ti-6Al-4V samples in all the different surface conditions and building orientations expressed in
terms of mean values of R, and R,,.

Surface condition  Building orientation  R,[um] R,[um]

0° 9791 172.10
NM 50° 23.51 52.03
90° 9.11 24.54
0° 33.11  110.70
EPP 50° 7.09 25.32
90° 2.67 9.11
MC 0° 50° 90° 0.11 0.4

Component surface roughness

One of the produced components was cut with EDM to evaluate the surface morphology and roughness around
the critical locations. The measurements were performed at the locations indicated in Figure 1-(b) and the results are
reported in Table 3.

Table 3: Surface roughness summary measured on the component critical regions indicated in Figure 1-(b).

Position a b c d e f g h
R,[pm] | 022 021 2020 8.67 3270 2042 8.67 3594
R,[um] | 0.78 0.76 60.72 29.12 89.46 41.37 29.12 102.73

Sample fatigue behaviour
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Figure 4: Fatigue stress-life curves of LPBF Ti-6A1-4V at all sample conditions (R=-1). a) Complete fatigue database for L-PBF Ti-6Al-4V. b)
Fatigue performance of L-PBF Ti-6Al-4V in function of the building orientation and surface condition. ¢) Fatigue performance of L-PBF Ti-6Al-
4V in function of different building orientation and different microstructures generated by volumetric treatments. d) Fatigue performance of L-PBF
Ti-6Al-4V specimens with machined surface and different notch geometries.

Fatigue results of all the sample conditions are shown in Figure 4. The relationship between stress amplitude and
cycles to failure is plotted in log-log scale. When studying the surface condition Figure 4-(b), it becomes clear that
non-machined samples exhibit the lowest fatigue performance. Significant improvement is seen after electro plasma

8



polishing. The highest results are observed for machined samples. Comparing the influence of heat treatments,
Figure 4-(c), shows that as-built samples exhibit the lowest performance and stress relieved samples the highest.
The results of HIP samples lie in between these two conditions. Varying trends are seen on the influence of build
orientation. In general, for all the microstructural conditions, vertically built samples performed better than inclined
samples, followed by horizontal ones. Stress relieved and EPP samples also exhibit a similar trend. However, no
significant variations are seen for as-built and EPP samples . Within the stress relieved and machined category,
horizontal and vertical samples record the highest performance, followed by inclined ones. Furthermore, the influence
of geometric discontinuities can be observed in Figure 4-(d). The fatigue life in low and high cycles regime was
reduced in presence of notches with k;, = 3.09 batch showing the lowest fatigue behaviour.

Representative fracture surfaces for the stress relieved condition are shown in Figure 5. Cracks initiated from the
surface and propagated towards the core for all the sample conditions. A rough surface can be seen for non-machined
samples in Figure 5-a and d with unmolten powder particles sintered to the surface. A micro-notch effect is induced by
the stress concentrators from this rough surface, leading to early crack initiation. A finer surface is obtained after the
EPP operation and cracks initiated from the surface, as expected from samples with no obvious surface stress raisers.
Figure 5-b and e show the fracture surfaces of an EPP sample. Fracture surfaces of machined samples in Figure 5-c
and f reveal a very similar appearance as those of the EPP samples.

Figure 5: Fracture surfaces of stress relieved samples in non-machined (a) and (d), EPP (b) and (e), and machined (c) and (f) conditions

The fatigue database presented in Figure 4 has been extended with the Haigh’s diagram presented in a previous
study by Cutolo et al. [25] in which the detrimental impact of positive mean stresses have on L-PBF Ti-6Al-4V
fatigue properties was presented. Two main behaviours were observed: on the one hand, for the machined and
electro-polished coupons, the relation between stress amplitude and mean stress follows a linear Soderberg’s, whereas
for as-produced surfaces, a Walker’s equation expresses the variation of the stress amplitude with the mean stress.

Component fatigue testing

Fatigue test results of the components are presented in Table 4 in terms of maximum applied load, number of
cycles to complete failure and cycles to damage initiation. The number of cycles to failure was determined as the last
complete cycle that the component could withstand before the destruction of the sample occurred.

Table 4: Overview of the component fatigue tests.

Test id. 1 2 3 4 5 6 7 8 9 10
Load level 12kN 12kN 12kN 14kN 14kN 10.8kN 10.8kN 10.8kN 14kN 12kN
Cycles to failure 113,000 99,000 105,000 59,000 58,000 190,500 173,000 157,000 60,500 118,500
Cycles to damage initiation | 70,000 95,500 83,600 50,755 49,520 120,664 116,811 114,044 48,400 90,433




Figure 6 shows the evolution of the maximum and minimum displacement during a component fatigue test. As
can be noticed, there is a large difference between the displacement at the final load cycle and the displacement at
the cycle at which the minimum displacement starts to significantly decrease. This experimentally observed drop in
stiffness, with as a consequence a decrease of the minimum displacement, has been considered as the point of damage
initiation and early crack propagation.
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Figure 6: Representative maximum and minimum displacement evolution during component fatigue testing

More specifically, the cycle count at which the compliance, defined as the displacement amplitude normalized
with the displacement amplitude at the 5000 cycle, drops by 6%, has been considered as damage initiation point in
this work. The experimentally observed number of cycles at damage initiation has been compared with the prediction
as presented in the next section.

By looking at the evolution of the minimum displacement in function of the number of cycles to failure, it is
possible to trace the damage evolution of the component. The crack initiate at the internal hole and propagates
throughout the internal thin walled flange. Once it reached the bulky regions (Figure 1-(c) and (e)), the displacement
rate changes (Il in Figure 6-(b)), and multiple cracks were generated in proximity of the hardened cylinders. Once
these secondary cracks propagated across the component, the final fracture occurred (Figure 6-(b) and Figure 7-(c)).

Post-fracture component analysis revealed that fatigue cracks always initiated at the top and bottom surfaces of the
component internal hole (region I of Figure 1-(b)), and then propagated across the internal flange following a direction
that is slightly inclined with respect to the building direction.

A typical crack path is presented in Figure 7-(a). Due to the poor surface quality of these regions, fatigue failures
are prone to initiate at these locations. Figure 7-(b) shows representative fractured surfaces of the components around
the hole with the red arrows indicating possible crack initiation locations.

The internal holes were not machined, therefore, their surfaces present the typical morphology resulting from
the L-PBF process. The top part of the hole presents a high surface roughness characterized by a large amount of
partially molten particles. Moreover, at this location, the surface presents several imperfections resulting from the
dross formation during the manufacturing of non-supported down-facing surfaces. In particular, the top-right and
top-left corners, Figure 7-(b), present both lack of material that result in the undesirable formation of sharp notches
that can act as stress raisers which facilitated the crack onset.

The bottom surface, on the other hand, presents the typical morphology of slightly inclined up-facing surfaces
characterized by the staircase effect. In this case, the fatigue cracks might initiate at the inter-layer notches between
two successive layers, as indicated by the orange arrows on Figure 7-(b).

Component fatigue prediction

Figure 8-a shows the maximum principal stress for a region of interest of the tested component under a 1.5kN
load. The highest principal stresses are found near the hole in the component (region I in Figure 1-(b)), while a more
extensive zone of high stresses (80% of the absolute maximum principal stress in the model) is found in region II.
While surface conditions (orientation between principal stress and print layers, as well as surface roughness condi-
tions) are different in regions I and II, a first analysis with the Durability solver indicates that region I is in fact the
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Figure 7: (a) Optical microscopy of the component internal flange after a fatigue test. The green arrows indicate two cracks initiating at the
hole down-facing and up-facing surfaces. The black arrow indicates the building direction. (b) SEM images of the component fractured surface:
crack initiated both at the top and bottom surface of the internal hole; top-right corner and top-left corner presenting lack of material due to dross
formation. (c) Final fracture of the demonstrator.

critical area in terms of fatigue failure as the stress amplitude is higher while the surface condition is less favourable
for fatigue.

In order to obtain a higher resolution of the stress concentrations surrounding the hole, a sub-modelling approach
was used to build a high-fidelity model of region I. The macro-model and micro-model were linked through the
displacement fields at the boundaries of the micro-model.

A close-up of the micro-model under similar loading conditions as the macro-model is shown in Figure 8-b. This
sub-model consists of 210,000 CHEXA(20) quadratic elements with average element size of 35um. The obtained
maximal stress is close to the stresses obtained in the macro-model. However, due to the increased mesh density, a
better approximation of the stress field away from the surface can be obtained, which will be exploited in compensating
for notch effects in the durability analysis.

Figure 8-(c) shows the outcome of the Durability analysis using the custom designed fatigue prediction model
on the sub-model, at a load amplitude of 4.86kN and an R-ratio of 0.1. The results show a very low cycle count of
1,500 cycles at the most critically loaded element in the model. However, it can also be seen that a strong gradient
exists near the surface, where lifetime quickly increases away from the surface. It is well-known that for strong
stress gradients (or notches) compensation measures must be implemented to avoid underestimating fatigue life due
to sharply concentrated stresses. A critical distance compensation method was implemented in a post-processing
scenario, based on results from notched coupons [28] (pre-print article, under revision FFEMS). Lifetime of the
component was then estimated at the critical distance normal to the surface at the highest stress concentration, resulting
in an estimated lifetime of approximately 100,000 cycles (compared to the original 1,500 cycles at the surface stress
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Figure 8: (a) Component principal stress field at the critical locations for 1.5kN load, (b) Sub-model of component critical area under a 1.5kN
macroscopic load. (c¢) Durability prediction for a 4.86kN load amplitude at R = 0.1, accounting for as-built surface roughness on the surface and
stress-relieved material condition

concentration).

Validation of component fatigue life prediction

From a comparison of Figure 7-(a) and Figure 8 it can be noticed that the Durability solver can properly isolate
the damage initiation for the component accounting for the poor surface quality of the as produced hole. Moreover,
the simulation results also clearly indicate the path that the cracks will follow during the propagation phase. In fact,
Figure 8-(c) shows that the two crack initiation points are on a direction that is inclined with respect to the vertical
direction.

Figure 9 shows the computationally predicted SN-curve (using the Specialist Durability solver) and its confidence
interval, overlaid on top the experimental test results of the campaign.
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Figure 9: Computational prediction of SN-curve in Region I of the component and the confidence interval on the prediction, overlaid with experi-
mental data points

The results show a very good correspondence between the numerical predictions and the experimental data points.
All test results fall within the confidence interval of the numerical simulations. Note that the stress amplitudes for
the experimental data points were obtained by a linear rescaling of the stresses (critical distance compensated) for the
4.86kN load amplitude (red asterisks in Figure 9), based on the applied load levels. However, as the critical distance
compensation is in fact a function of the component lifetime, it can be expected that the calculated stress level for
low lifetimes (blue asterisk) is slightly overestimated, while for long lifetimes (yellow asterisks) the stress level is
underestimated. More advanced critical distance compensation (work in progress) will result in an even better match
between simulation and experiment.
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Conclusions

This work presents a validated approach for predicting the failure location and the fatigue life of metal components
produced by LPBF based on sample data, FE-simulations and machine learning. More specifically, an industrially
relevant component with several realistic features has been produced by LPBF in Ti-6Al-4V and was tested under
dynamic loading as a real validation for the fatigue prediction model. The following conclusions can be made:

e To capture all relevant fatigue influencing factors, a comprehensive database with fatigue properties of stan-
dardized samples under different conditions is required. These conditions depend on the final application. In
this study they include: build orientation, heat treatment, post-process machining operation, notch and stress-
gradient effect.

o [t takes considerable effort to create such sample fatigue database, but with the advantage that such database can
be used to predict the fatigue life of components produced on the same AM machine using the same material
and processing conditions, and thus avoiding the very time- and cost-expensive fatigue testing of large complex
components.

e Machine-learning can be an effective tool to use all sample fatigue data available as input to estimate fatigue
performance for sample conditions that were not tested.

e FE-based stress calculation is required as input for any fatigue life prediction method, and is fairly straightfor-
ward as for any AM part a suitable CAD file is always available.

o In the present work, the effect of the stress-gradient on fatigue life could be accurately accounted for using the
critical distance method.

e The failure location of the industrially relevant Ti-6Al-4V component could be accurately predicted in this
work. This is very interesting on its own, as it can allow LPBF users to decide for post-machining of only
those areas that are predicted as sensitive locations for crack initiation, hence reducing the post-processing
costs significantly compared to full component machining.

e The fatigue life prediction tool was also able to predict the number of cycles to failure within a 95% confidence
interval.

Appendix I

Machine learning - The Gaussian process

A Gaussian process G% is defined as a collection of random variables indexed by some continuous input vector x
of dimension d such that for any finite set of input vectors the corresponding random variables are jointly Gaussian
distributed [29]. In other words, the Gaussian process might be pictured as a multivariate Gaussian distribution
whose dimensionality, mean vector, and covariance matrix are functions of a set of input vectors. For a single input
vector, the Gaussian process produces a normal variable such that GP(x) ~ N(u(x), o2(x)). For an extension to the
multidimensional case let X = [xlT, V... x,{], where n defines the size of the set. Then the Gaussian process produces
an n-dimensional output vector, which is jointly Gaussian distributed such that GP(X) ~ N(mp(X), Kp(X)). Let
¥ = [V1,....y.]7 be a vector containing experimental observations. If a Gaussian process is to be used to model a
relation to X, y is considered a realization of n random variables. They are divided into a GP and a noise term E such
that

Y ~ GPy + E|GPYy. 2)

Herein, E can have an arbitrary pdf and is also referred to as likelihood function. Thus, the experimental findings
y are considered a draw from a multivariate Gaussian distribution with added noise. It is pointed out that only Y is
observable in experiments, not the output of G or E.
In case E is assumed to be a normally distributed random variable with zero mean and covariance matrix ogl,
Equation (2) results in
ey ~ N(gylmy(X). Ky(X)) - NOIgy. oeD). 3)
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where gy is a draw from the GP that is used to model Y and I is the identity matrix of size n X n. It is pointed out
that Gaussians are closed under multiplication. The product of two Gaussians is another (un-normalized) Gaussian.
m and K are constructed using mean functions m and covariance functions k, also referred to as kernel, such that

[m]; = m(x;) and [K];; = k(x;, x;). 4)

The parameters required in these functions are referred to as hyper-parameters. m can be freely selected, but the
resulting K must be positive semi-definite. Covariance functions most often work on the difference between input
vectors (x; — x;) or on their similarity (x; - x;). If those operations are not defined for the input vectors, they need to
be mapped to another space where those operations are indeed defined. For details on how to construct kernels and
how to analyse their properties, the reader is referred to [29]. See [30] and references therein on how to choose a
covariance function.

So far, the Gaussian process has been used to produce joint distributions. To be of practical use, it is aimed at
obtaining the output y corresponding to some new input x based on some experimental data X and y. To this end, the
Joint distribution ¢y , is conditioned to obtain the conditional distribution ¢,,y. If the added noise is assumed to be
Gaussian as detailed above, closed form solutions are available and the expected mean and the variance of Y|Y read

E[YIY] = uy(x) + k" (X, 0)(Ky(X) + 03D~ (y = my (X)) &)

and
V[YIY] = k(x,x) - k' (X, x)(K(X) + o:D) " k(X, x), (6)

respectively. Therein, k is a vector of length n that is obtained when evaluating the covariance function for the new
input combined with all other input. Furthermore, the mean value is called a linear predictor since it linearly combines
the training data points.

Gaussian process regression

From experiments on uni-axially loaded specimen presented in Figure 4, the raw input vector
- T
Xraw = [X, 1, ¥, tyol] @

and the corresponding load cycles until failure are available. Therein, r defines the surface roughness, i signifies the
angle between the printing direction and the maximal principal stress direction, and

tvol € {as-built (ASB), hot isostatic pressing (HIP), stress release (SR)} 8)

is a categorical parameter indicating the volume treatment applied. For 18 different combinations of r, ¥, and tyo
SN curves have been experimentally determined by varying only x. The different settings and properties distinctively
change the fatigue characteristics. For such cases, where there is additional knowledge available, the Gaussian process
model can be vastly advantageous. A kernel can be formulated based on little knowledge to capture the trends in the
data. Unfortunately, the data does not contain enough run-outs to employ a Gaussian process to predict the endurance
limit. Hence, the run-outs are disregarded in the present study.

Transformation of input vector

Any transformation of the input needs to conserve the properties of covariance functions as mentioned in the
previous paragraph. Then, transforming the input can be understood as defining a new kernel. First of all, since x,y
contains continuous as well as discrete variables, the map { ASB, HIP, SR} — {0, 1} x{0, 1} x{0, 1} given by t,5; — 01
is introduced, where a 1 signifies the applied volume treatment [30]. Secondly, the common logarithm of r is taken to
more evenly distribute the values. Thirdly, the continuous parameters x, log,, r and i are subtracted by their respective
mean and subsequently divided by their respective standard deviation to obtain the standardized quantities ¥, log, 7,
and ¢, respectively. Upon this standardization an easy prior with zero mean can be assumed. Thus, a 6-dimensional
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input vector
~ ~ 7 7, T T
X = [x, log 7, ¥, tvol] ®

is generated for every data point.

Definition of kernel

Here, a kernel is presented based on the simple assumption that life is a monotonically decreasing linear function
of ¥ and log,, 7. This means that an increased distance between data points does not result in a loss of covariance but
in an increase thereof. For example, if we were to predict the life of a specimen based on a single measurement, we
would be more certain life decreased the higher the stress value (or surface roughness value) was relative to the single
data point. The overall linear trend is captured by

U 6 06| X
kl(xi’xj)_|:1Og]077i:|.[0102 03 |[logio7; (10)

introducing the two hyper-parameters 6, and #,. The smaller their values are, the less sensitive the output is to a
change of the corresponding input variables. To locally allow for a deviation from this linear trend, the two functions

1
ko (xi, x ) = (% %) 63 exp [—EAdeiag (0,0,6;%,65%, 65%,65%) Ax (11)

and
. N 1 . 2 2
ks(xi,x)) = (logyo 7 logyg 7;) - 63 exp [—EAdelag (0.0, 657, lg,alf,elg)Ax} (12)

are formulated, where Ax = x; —x; and diag (e) defines a diagonal matrix containing the different length scales. These
two covariance functions can be seen as a linear model, much as in Equation (10), but with the hyper-parameters
describing the linear trend replaced by a squared-exponential kernel. 63 and 6, signify signal variance and 64-6; as
well as 6y-0;, define length-scales. In the process of maximizing the marginal likelihood, large length-scales will
be identified for negligible input dimensions. In k, and k3, the first two diagonal elements are set to zero to ensure
monotonicity when the stress or surface roughness varies. Far away from any training data, the contribution of the
squared exponential will approach zero and the linear trend will be described solely by k;. Next, the kernel is refined
by

1 . - - s
ka(x;,x}) = 675 exp [—E(wi — PO W - w,o] (13)

and
1
ks(xi, x;) = 65 exp [—EAdeiag (0,0,0,67¢, 677,63 Ax] (14)

to smoothly capture the covariances when altering  and #,,). 63 and 6,5 are signal variances. For insignificant input
dimensions large values for the length-scales 814 and 0,4-0;5 are identified in the optimization procedure. Finally,

ke(xi,x ;) = 01404 (15)

is employed to describe the scatter by the independent noise parameter 8;9. The kernel actually used in the Gaus-
sian process regression results from summing up the six different contributions. Altogether, 19 hyper-parameters are
required which might seem a lot but they are used to compute ngbs/ 2 different entries of the covariance matrix. More-
over, 18 standard linear regression models would amount to 53 parameters. It is noted that the squared exponentials
could not be replaced by less smooth covariance functions from the Matérn class, for example, which is believed to
be due to the noisy and scarce data allowing only for the identification of smooth trends.

Identification of hyper-parameters
To identify the hyper-parameters, a variation of the leave-one-out cross-validation [29] is applied to balance data
representation and generalization to new input. From the 18 SN-curves of Figure 4-(a) (excluding data for notched
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specimens), 18 different training data sets are created, each consisting of 17 SN-curves. Then, the hyper-parameters
are selected that globally maximize the sum of the 18 likelihoods. The obtained hyper-parameters listed in Table 5
result in a likelihood of —1146.

Table 5: Hyper-parameters of the presented kernel identified for Ti-6Al-4V data without run-outs.

91 92 93 94 95 96 97
6.23-107" 5.64-107" 1.29-107" 328-10° 572-10° 1.36-10* 2.79-107!

g 09 O10 on 012 013 014
2591071 3.04-10* 1.32-102 1.62-10> 936-10* 3.32-10° 7.03-10°

015 016 017 013 O19
297-107' 490-1073 5.26-10" 1.70-10° 2.97-107!

Based on the values obtained for 6; and 6, it can be stated that a clear non-stationary trend is identified for the
influence of the stress and surface roughness on life. Likewise, 65 and g are in the same order of magnitude such that
the slopes will vary locally. But since 64- 6 are relatively large, the covariance captured by k, is dominated by 6;.
The short length-scale 6y results from the very noisy data such that no smooth trend is present. The small values of
610 and 6;, suggest a high relevance of the corresponding heat treatments in the covariance of Y at different surface
roughness values. ;4 appears to be large in comparison to the other length-scales but it reflects that y has a bigger
range. Moreover, large values are obtained for the length-scales 6, 611, and 6,7, which all correspond to the volume
treatment HIP effectively removing this input dimension. Thus, in predictions it will only matter if the specimen
received any volume treatment at all.

To give a more intuitive examination of the kernel, the ordinary least-squares method is applied to both, the
experimental data and the predicted mean of life from the Gaussian process determining the intercept ¢y as well as
the slope c;. The results of that procedure are shown in Table 6. Therein, the standard deviations of a prediction
o, are given as well. The resulting mean values of o, are 0.23 and 0.31, respectively. This means that, as could be
expected, the 18 different linear fits are closer to the data as the Gaussian process model, which ’explains’ more of
the data with noise. The kernel identifies two different slopes that depend on if a volume treatment was applied. This
observation is in line with remarks made above about the values of the identified hyper-parameters. Apparently, the
coupling between surface roughness and stress captured by k; is too weak to be noticeable here. The slight differences
in slopes are erased by rounding off.

Furthermore, it seems to be instructive to study the cases #11 and #18, two SN-curves with distinct differences
between the obtained parameters given in Table 6. The raw data, the respective least-squares fit, the prediction of
the Gaussian process, and the respective 95% prediction intervals for the two cases are depicted in Figure 10. In
Figure 10-(a) the data shows little scatter and accordingly the least-squares fit leads to small uncertainties of predicted
values. In contrast, the Gaussian process predicts a distinctively larger variance as an average of the total noise in the
data is deduced and used in predictions. In other words, the Gaussian process also "knows’ the scatter of all other data
and it is concluded that #11 only constitutes a ’lucky’ draw from a much noisier distribution. Figure 10-(b) shows
the data of SN-curve #18, which is considered a rather improbable draw from the underlying distribution following
from the given kernel. The deviation from the rest of the data is thus explained by noise. In comparison to SN-curve
#11, it is shifted keeping the slope roughly constant. Although in this case, a single linear fit leads to completely
different conclusions, it might be arguable that in the process of data analysis the three data points with the highest
life in Figure 10-(b) could have been excluded from the fitting process with a linear model. Then, the obtained slope
and intercept would be more similar to the predictions of the Gaussian process.
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Table 6: Results of the ordinary least-squares method performed on the data and the Gaussian process outputs.

N

‘ Data ‘ Gaussian process ‘ Differences in %

# ‘ co c1 o) ‘ co c1 o) ‘ Aco Acy Ao,
1 12.00 -3.18 023 | 10.64 -2.54 031 | 12.8 25.1 25.8
2 10.91 -2.81 0.07 | 10.38 -2.54 0.31 | 5.2 10.6 77.0
3 11.48 -2.95 0.10 | 10.74 -2.54 0.31 | 6.9 16.1 68.5
4 11.37 -2.69 0.19 | 10.72 -2.54 0.30 | 6.1 5.8 38.8
5 12.55 -3.21 0.18 | 10.87 -2.54 0.30 | 155 26.3 40.9
6 1244  -3.12 0.06 | 11.08 -2.54 0.31 | 12.3 22.8 79.4
7 12.92  -3.56 031 | 12.68 -347 031 |19 2.7 0.3
8 12.57 -3.24 041 | 13.14 -347 031 | 43 6.6 33.3
9 11.11  -2.58 026 | 13.25 -347 0.31 | 16.1 25.6 16.5
10 11.05 -2.79 032 | 12.72 -347 0.30 | 13.1 19.6 6.5
11 1491 -4.06 0.05 | 1344 -347 030 | 11.0 17.1 82.4
12 17.17 -4.91 021 | 1348 -347 030 | 274 41.6 323
13 17.54 -5.24 043 | 1324 -347 030 | 325 51.1 40.7
14 16.06 -4.38 0.11 | 13.62 -347 030 | 179 26.3 64.9
15 1541 -4.01 0.06 | 13.83 -347 030 | 114 15.6 81.6
16 53.54 -17.08 0.50 | 1532 -3.47 031 | 2494 3925 61.1
17 16.52 -4.26 0.23 | 1437 -347 031 | 150 22.8 28.0
18 51.88 -16.76 0.39 | 14.79 -3.47 0.31 | 250.8 383.3 24.6
mean | 0.23 | 0.31 | 39.42 61.74 44.58
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Figure 10: The SN-curves #11 and #18 are depicted along with an ordinary least-squares fit, the Gaussian process predictions, and the 95%

prediction intervals.

Appendix IT

Definition of the critical distance

The experimental campaign included an investigation on notch sensitivity of Ti-6Al-4V specimens produced by
L-PBF. In particular, samples with three different notch geometries (Figure 1-(a)) were investigated.

In order to understand the fatigue behaviour of notched specimens with respect to the plain coupons it is important
to evaluate the local stress distribution in the proximity of the notch root. In this regard, linear elastic FE analysis was
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performed under axial loading condition. Due to the double symmetry, the numerical models consist of one fourth
of the geometry presented in Figure 1-(b). The numerical simulations results for the three different notch geometries
indicate that the three discontinuities generate a stress re-distribution across the smallest cross section with a stress
concentration at the notch root. An example of the FE numerical simulation results is presented in Figure 11-(a), in
which the geometry with the smallest radius, i.e. p = 0.25mm, was analysed.
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Figure 11: (a) normalized principal stress distribution for k&; = 3.09; b) normalized principal stress in function of the distance from the notch root
for the three notched geometries

Figure 11-(a) shows the principal stress distribution calculated for an applied load that generate a nominal stress of
1M Pa across the smallest cross section. The graphs in Figure 11-(b) show the maximum principal stresses in function
of the distance from the notch root towards to the centre of the model along the radial direction for the three notch
geometry (direction r indicated in Figure 11-(a)). By dividing the maximum value of the maximum principal stress by
the nominal stress across the smallest section it was possible to estimate the stress concentration factor k; for the three
notch geometries, i.e. k; = 1.58,k; = 2.19,k, = 3.09, corresponding to the notch radii of 1.50mm, 0.50mm, 0.25mm,
respectively.

As presented in Figure 11-(b), the three notch radii generate different stress distributions with p = 1.50mm gen-
erating a smoother transition from the peak stress to the stress plateau if compared to p = 0.50mm and p = 0.25mm.
On the contrary the latter two geometries induce similar stress distributions with a steeper transition from the peak
stress to the stress plateau. The curves presented in Figure 11-(b) have been fitted with 2"¢ degree polynomial rational
functions of the type presented by eq. 16 using non-linear least square fitting in which the variable r represents the
distance from the notch root along the axis r of Figure 11-(a).

pﬂ”z + par+ p3

o(r) =
1) rP4+qir+q

(16)

The function expressed by eq 16 for the smaller notch radius (o = 0.25mm, kt = 3.09) has been used to evaluate
the critical distance using the line method as:

2[0
Oeff = =5 o (r)dr (17)
2ly Jo
where o/, is the effective stress that generates the failure, [ is the critical distance, oy is the principal stress, r

represents the distance from the notch root. In the LM the stress is determined by averaging along a line L starting at
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Figure 12: Critical distance in function of the number of cycles to failure

the notch-root. The length of this line is related to the critical distance by the relation: L = 2/, [31].

In particular, the critical distance has been evaluated using the TCD formulated with the line method (i.e. eq. 17)
in the entire fatigue life range as proposed by Susmel and Taylor [32]. The authors re-formulate the TCD so as to
predict notch components’ fatigue life in the low, medium and high cycle regime. According to this procedure it is
possible to define the critical distance in function of the number of cycles to failure. To achieve this, two calibration
SN curves are needed: one generated for plain, non-notched samples and one obtained by testing notched specimens.
For the present study the SN curves of plain and k, = 3.09 specimens were considered as calibration curves. The
relation between critical distance and the number of cycles to failure has been expressed as:

B
lo(Np) = A+ — (18)
Ny

with A = 0.056, B = 6.704, and C = 0.642. The results are presented in Figure 12 in which an asymptotic tendency
of [y can be observed with the increase of Ny. The function expressed by eq. 18 has been used to compensate for
the stress gradient generated by the hole in the internal flange of the component. In particular, given [, for the entire
fatigue life range (i.e. 10° — 2 - 10°), it was possible to calculate the effective stress o, s via eq. 17 in function of the
number of cycles to failure.
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Highlights

- A large database consisting of the different fatigue performance of L-PBF Ti-6Al-4V coupons in function of
different combinations building orientation, heat treatments, and surface treatments, is presented.

- The database is used as training dataset for a machine learning algorithm that, in combination with FE simula-
tion, has been adopted to build a simulation-based fatigue prediction tool.

- The tool has been used to predict the fatigue performance of an L-PBF Ti-6Al-4V part. The predictions were
validated by experimental fatigue testing, providing accurate life estimation.
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