Supporting information

Sample dimensions

Sample dimensions for strut-only configurations are reported in Table 1. In Figure 1 A the $\mathbf{S}_{1 \mathrm{a}-1 \mathrm{~b}}$ and $\mathbf{S}_{\mathbf{x} 30^{\circ}}$ structures are shown as example. $\mathbf{D}_{\mathbf{e}}$ and $\mathbf{D}_{\boldsymbol{i}}$ are the external and internal diameters of the cylindrical body respectively, \mathbf{L} is its length; \mathbf{d} is the diameter of the struts, \mathbf{p} and \mathbf{n} are the spacing and the number of struts along the cylinder and $\boldsymbol{\alpha}$ is the inclination of criss-crossing struts.

Table 1. Samples dimensions for struts-only configurations.
Strut-only configurations

Name	$\mathbf{D}_{\mathbf{e}}$	$\mathbf{D}_{\mathbf{i}}$	\mathbf{L}	\mathbf{d}	\mathbf{p}	\mathbf{n}	$\boldsymbol{\alpha}$
$\mathbf{S}_{\mathbf{1 a}}$	20	17	66.67	2	3.37	20	-
$\mathbf{S}_{\mathbf{2 a}}$	20	17	66.67	1.5	3.37	20	-
$\mathbf{S}_{\mathbf{3 a}}$	20	17	66.67	1.2	3.37	20	-
$\mathbf{S}_{\mathbf{1 a 1 b}}$	20	17	66.67	2	3.37	20	-
$\mathbf{S}_{\mathbf{2 a 1 b}}$	20	17	66.67	1.7	3.37	20	-
$\mathbf{S}_{\mathbf{3 a 1 b}}$	20	17	66.67	1.4	3.37	20	-
$\mathbf{S}_{\mathbf{2 a 2 b}}$	20	17	66.67	1.5	3.37	20	-
$\mathbf{S}_{\mathbf{3 a 2 b}}$	20	17	66.67	1.3	3.37	20	-
$\mathbf{S}_{\mathbf{3 a 3 b}}$	20	17	66.67	1.2	3.37	20	-
$\mathbf{S}_{45^{\circ}}$	20	17	66.67	2	3.37	20	-
$\mathbf{S x 3 0}^{\circ}$	20	17	66.67	1.6	6.7	8	30
$\mathbf{S x 4 5}^{\circ}$	20	17	66.67	1.5	6.7	8	45
$\mathbf{S x 6 0}^{\circ}$	20	17	66.67	1.6	6.7	5	60

Samples dimensions for ridges-only configurations are reported in Table 2. In Figure 1B, the $\mathbf{R}_{\mathrm{e}} 30^{\circ}, 22^{\circ}$ structure is shown as example. As for struts-only configuration, $\mathbf{D}_{\mathbf{e}}, \mathbf{D}_{\mathbf{i}}$ and \mathbf{L} are the external, internal diameter and length of the cylindrical body; $\boldsymbol{\beta}$ is the helix angle, $\boldsymbol{\theta}$ is the spacing between helixes and $\boldsymbol{r}_{\boldsymbol{h}}$ is the helix radius.

Table 2. Samples dimensions for ridges-only configurations.
Ridge-only configurations

Name	D_{e}	Di	L	β	θ	r_{h}
Re $30^{\circ}, 20^{\circ}$	20	17	66.67	30	20	0.65
Re $30^{\circ}, 45^{\circ}$	20	17	66.67	30	45	0.65
Re $30^{\circ}, 90^{\circ}$	20	17	66.67	30	90	0.65
Re $45^{\circ}, 20^{\circ}$	20	17	66.67	45	20	0.75
Re $45^{\circ}, 45^{\circ}$	20	17	66.67	45	45	0.75
Re $45^{\circ}, 90^{\circ}$	20	17	66.67	45	90	0.75
Re $60^{\circ}, 20^{\circ}$	20	17	66.67	60	20	0.825
Re $60^{\circ}, 45^{\circ}$	20	17	66.67	60	45	0.825
Re $60^{\circ}, 90^{\circ}$	20	17	66.67	60	90	0.825
$\mathrm{R}_{\mathrm{i4} 5^{\circ}, 20^{\circ}}$	20	17	66.67	45	20	0.75
Ri45 ${ }^{\circ}$,45 ${ }^{\circ}$	20	17	66.67	45	45	0.75

$\mathbf{R}_{\mathbf{i} 45^{\circ}, 90^{\circ}}$	20	17	66.67	45	90	0.75
$\mathbf{R}_{\mathbf{x} 30^{\circ}, 90^{\circ}}$	20	17	66.67	30	90	0.65
$\mathbf{R}_{\mathbf{x} 45^{\circ}, 90^{\circ}}$	20	17	66.67	45	90	0.75
$\mathbf{R}_{\mathbf{x} 60^{\circ}, 90^{\circ}}$	20	17	66.67	60	90	0.825

Samples dimensions for combined configurations can be obtained by combining the corresponding strut- and ridge-only designs.

A

B

Figure 1. Samples dimensions for struts-only (A) and ridges-only (B) configurations.
Convergence analysis
Convergence analyses have been performed separately on strut- and ridge-only configurations with linearelastic assumptions.

Starting from strut-only configurations, convergence analysis for three-point bending has been performed on the $\mathbf{S}_{1 \mathrm{a}}$ structure. Results are shown in Figure 2 A , in which the reaction force is plotted as a function of the number of elements. According to it, the approximate mesh size chosen is of 1 mm on the outer wall and of 0.5 mm on the inner side, where struts are present.

Concerning ridges-only configuration, the analysis has been carried out on the $\mathbf{R}_{\mathrm{e}} 45^{\circ}, 90^{\circ}$ configuration. Results are shown in Figure 2 B , in which the reaction moment is plotted as a function of the number of elements. The approximate mesh size chosen is of 1 mm on the wall where there are no ridges, and of 0.5 mm where they are present.

Figure 2. Convergence analysis results: reaction force as a function of the mesh size are reported for the $S_{1 a}$ structure (A) and for the $\operatorname{Re} 45^{\circ}, 90^{\circ}$ configuration (B). The chosen mesh size is the one highlighted by the big solid dots.

