Supporting information

Sample dimensions

Sample dimensions for strut-only configurations are reported in Table 1. In Figure 1A the S_{1a-1b} and $S_{x30^{\circ}}$ structures are shown as example. D_e and D_i are the external and internal diameters of the cylindrical body respectively, **L** is its length; **d** is the diameter of the struts, **p** and **n** are the spacing and the number of struts along the cylinder and α is the inclination of criss-crossing struts.

Strut-only configurations							
Name	De	Di	L	d	р	n	α
S _{1a}	20	17	66.67	2	3.37	20	-
S _{2a}	20	17	66.67	1.5	3.37	20	-
S _{3a}	20	17	66.67	1.2	3.37	20	-
S _{1a1b}	20	17	66.67	2	3.37	20	-
S _{2a1b}	20	17	66.67	1.7	3.37	20	-
S _{3a1b}	20	17	66.67	1.4	3.37	20	-
S _{2a2b}	20	17	66.67	1.5	3.37	20	-
S _{3a2b}	20	17	66.67	1.3	3.37	20	-
S _{3a3b}	20	17	66.67	1.2	3.37	20	-
S _{45°}	20	17	66.67	2	3.37	20	-
Sx30°	20	17	66.67	1.6	6.7	8	30
Sx45°	20	17	66.67	1.5	6.7	8	45
Sx60°	20	17	66.67	1.6	6.7	5	60

Table 1. Samples dimensions for struts-only configurations.

Samples dimensions for ridges-only configurations are reported in Table 2. In Figure 1B, the $R_{e 30^{\circ}, 20^{\circ}}$ structure is shown as example. As for struts-only configuration, D_e , D_i and L are the external, internal diameter and length of the cylindrical body; β is the helix angle, θ is the spacing between helixes and r_h is the helix radius.

 Table 2. Samples dimensions for ridges-only configurations.

Ridge-only configurations						
Name	De	Di	L	β	θ	r _h
R _{e 30°,20°}	20	17	66.67	30	20	0.65
Re 30°,45°	20	17	66.67	30	45	0.65
R _{e 30°,90°}	20	17	66.67	30	90	0.65
Re 45°,20°	20	17	66.67	45	20	0.75
R e 45°,45°	20	17	66.67	45	45	0.75
R _{e 45°,90°}	20	17	66.67	45	90	0.75
Re 60°,20°	20	17	66.67	60	20	0.825
Re 60°,45°	20	17	66.67	60	45	0.825
R _{e 60°,90°}	20	17	66.67	60	90	0.825
R i 45°,20°	20	17	66.67	45	20	0.75
R i 45°,45°	20	17	66.67	45	45	0.75

R i 45°,90°	20	17	66.67	45	90	0.75
R _{x 30°,90°}	20	17	66.67	30	90	0.65
R x 45°,90°	20	17	66.67	45	90	0.75
R _{x 60°} ,90°	20	17	66.67	60	90	0.825

Samples dimensions for combined configurations can be obtained by combining the corresponding strut- and ridge-only designs.

Figure 1. Samples dimensions for struts-only (A) and ridges-only (B) configurations.

Convergence analysis

Convergence analyses have been performed separately on strut- and ridge-only configurations with linearelastic assumptions.

Starting from strut-only configurations, convergence analysis for three-point bending has been performed on the S_{1a} structure. Results are shown in Figure 2 A, in which the reaction force is plotted as a function of the number of elements. According to it, the approximate mesh size chosen is of 1 mm on the outer wall and of 0.5 mm on the inner side, where struts are present.

Concerning ridges-only configuration, the analysis has been carried out on the $\mathbf{R}_{e\,45^\circ,90^\circ}$ configuration. Results are shown in Figure 2 B, in which the reaction moment is plotted as a function of the number of elements. The approximate mesh size chosen is of 1 mm on the wall where there are no ridges, and of 0.5 mm where they are present.

Figure 2. Convergence analysis results: reaction force as a function of the mesh size are reported for the S_{1a} structure (A) and for the Re 45°,90° configuration (B). The chosen mesh size is the one highlighted by the big solid dots.