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Abstract— We address the problem of controlling the di-
lution rate in a chemostat to regulate the ratio between
the concentrations of two microbial populations growing in
continuous culture. After analyzing the open-loop dynamics of
this multicellular system, we present two alternative feedback
control strategies, one based on a gain-scheduled state feedback
controller, the other on a switching control strategy. We show
that both strategies are effective in solving the problem and
illustrate the results by a set of representative numerical
simulation.

I. INTRODUCTION

Synthetic Biology aims at engineering biological systems
with new functionalities, with applications ranging from
health treatments to bioremediation, to production of biofuels
and drugs in bioreactors. This is made possible by embedding
into living cells, such as bacteria and fungi, artificial genetic
circuits modifying the natural behavior of these biological
systems. That is, they change at what condition and rate
genes are expressed in the cells to produce proteins or chem-
icals. However, the complexity and hence the capabilities
of these engineered genetic circuits are limited by inherent
factors in their host cells, such as excessive metabolic burden,
competition of limited resources and incompatible chemical
reactions. To overcome these limitations a promising strategy
is to distribute the required functionalities among several cell
populations forming a microbial consortium, so that each
cell strain embeds a smaller subset of engineered genes [1]–
[4]. In this way each cell carries out a specialized role and,
by dividing the labor, contributes more efficiently to the
achievement of the final goal. Unfortunately, this solution
comes with an additional challenge; due to unavoidable
differences in their genetic loads, each cell population in the
consortium will grow at different rates, and can give rise to
undesired dynamics, such as oscillations, or even extinction
[5]. Therefore, for the correct operation of the designed
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consortium it is essential to guarantee stable coexistence be-
tween the constituent populations by regulating their relative
numbers. Moreover, in applications in which each population
produces a different chemical reagent, keeping the balance in
the consortium at the correct ratio is fundamental to achieve
high efficiency in the production of desired metabolic end
products. In the absence of mechanisms designed ad hoc
into the cells allowing them to self-balance their ratio, it is
necessary to regulate the populations’ densities by means
of some external action [6]. Also, in industrial applications
where high production efficiency is required, external control
strategies should be preferred to embedded solutions, because
additional genetic circuits can cause further metabolic burden
to the cells and hence lower production rates of the desired
metabolic end products.

Previous work presented in the literature considered the
problem of guaranteeing coexistence of two cellular pop-
ulations in a chemostat. In [7] the authors showed that
two species can be made to coexist by means of state-
feedback control of the dilution rate, with the resulting
closed-loop system having an equilibrium point in the non-
negative orthant to which all solutions converge. The pro-
posed controller was shown to be robust with respect to
bounded uncertainties on the growth functions, however the
closed-loop dynamics could not be arbitrarily assigned due
to constraints on the control gains. Moreover, the problem
of guaranteeing survival of a resident species with respect to
the invasion of a new species was also studied in [8].

In this letter we consider the problem of regulating the
relative numbers, i.e., the ratio, of two independent cellular
species in a chemostat, while, at the same time, guaranteeing
their survival and the convergence dynamics of the closed-
loop system. After presenting a complete description of the
rich nonlinear dynamics of the system, we propose and
analyze two control algorithms that, by acting only on the
dilution rate, can regulate the ratio between the concen-
trations of the two species grown in continuous culture in
the same chemostat to a given desired value, say rd. The
first control algorithm we present is a gain-scheduled state-
feedback controller guaranteeing global convergence to the
desired set-point. The second control algorithm is a switching
controller changing the dilution rate between two values to
guarantee convergence of all solutions towards the desired
set-point located on the sliding region. We analyze the
closed-loop dynamics for both controllers and compare their
robustness to parameter perturbations. Finally, we conclude
by discussing the advantages and limitations of the proposed
control strategies.
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Fig. 1. Graphical representation of the domain of definition Sr (gray
region) of the reduced system (2) and position of the control set-point xd.
The set-point xd is the point of intersection between the equilibrium set E
defined in (6) (blue line) and the line designing the desired ratio rd defined
in (7) (red line).

II. MATHEMATICAL MODELS AND DYNAMICS

We consider two microbial populations growing in con-
tinuous culture in a chemostat [7], [9]. The two species are
assumed to feed on the same substrate and to be indepen-
dent, that is, they do not directly influence their respective
growth rate. The chemostat model with two species, can be
expressed as

ẋ1 =
(
µ1(s)−D(t)

)
x1

ẋ2 =
(
µ2(s)−D(t)

)
x2

ṡ = − 1
Y1
µ1(s)x1 − 1

Y2
µ2(s)x2 +D(t)(sin − s)

(1)

where the variables x1, x2 ∈ R≥0 denote the concentrations
of biomass of the species 1 and 2, respectively, and s ∈
[0, sin] denotes the concentration of the substrate in the
chemostat. Moreover, µi(s) is the growth rate of the i-th
species, sin is the concentration of substrate in the inlet
flow, assumed to be constant, and Yi is the yield coefficient,
defined as the ratio between the biomass created and the
substrate consumed, assumed without loss of generality to
be unitary for both species. The control input D(t) : R≥0 7→
[Dmin, Dmax], with Dmin > 0, is the dilution rate, defined as
the ratio between the inlet flow rate and the culture volume in
the chemostat. The dilution rate is assumed to be the same for
both species, that is, the culture is well-mixed and mortality
and attachment of the bacteria are neglected [8].

Under the assumption that the control input D(t) is per-
sistently exciting [10], i.e., such that

∫ +∞
0

D(τ)dτ = +∞,
it follows that the subspace S := {(x1, x2, s) : x1 +x2 +s =
sin} is attractive and invariant for all solutions of system (1).
So, provided that D(t) > 0 for all t > 0 and that the initial
condition of system (1) belongs to S, the dynamics of (1) on
S can be described by considering the reduced system [7]{

ẋ1 =
(
µ1(s)−D(t)

)
x1

ẋ2 =
(
µ2(s)−D(t)

)
x2

(2)

defined on the invariant set Sr := {(x1, x2) ∈ R2
≥0 : x1 +

x2 ≤ sin} (Fig. 1).

A. Growth dynamics

A fundamental role in the dynamics of model (1) is played
by the growth rate functions µi(·) : [0, sin] 7→ R≥0, which

are generally assumed to be C1, strictly increasing and such
that µi(0) = 0, for i = 1, 2. We consider the case in which
µ1 and µ2 have at most two intersection points, namely at
s = 0 and s = s̄, that is the case of strictly concave growth
rate functions. When they intersect only at s = 0, it follows
that one species grows always faster than the other, that is,
µi(s) > µj(s), i 6= j, for all s > 0 and for any value of D.
From the Competitive Exclusion Principle (CEP) [11], this
implies that no control input D(t) exists such that more than
one strain survives at steady state. Specifically, any positive
solution of (1) converges to the equilibrium point such that
s = λi(D), xi = sin − λi(D) and xj = 0, where λi(D) :=
sup{s ∈ [0, sin] : µi(s) < D}, i = 1, 2, is the so-called
break-even concentration.

On the other hand, if the growth functions also intersect
at s = s̄, it is possible for the two species to coexist.
This corresponds to a scenario in which the two species are
complementary, that is, one species grows faster than the
other for low values of s, while the situation is reversed for
high values of s. In what follows we will consider this latter
scenario obtained by making the following assumption [8].

Assumption 1: There exists s̄ ∈ (0, sin] such that

(µ1(s)− µ2(s))(s− s̄) > 0, s ∈ [0, sin], s 6= s̄. (3)

Moreover, we denote with D̄ := µ1(s̄) = µ2(s̄) the
corresponding value of the dilution rate.

In the rest of this letter we consider growth functions of
Monod’s type [12], that is, we assume

µi(s) :=
µ∗i s

ki + s
, i = 1, 2, (4)

where µ∗i and ki are positive constants.

B. Open-loop dynamics and bifurcation analysis

Before presenting the control problem and the solutions
we propose in the next sections, we analyze here the rich
nonlinear dynamics of the open-loop system (2). Namely,
we show the steady state behavior of system (2) and how it
changes as the dilution rate D is being varied.

The equilibrium points of system (2) can be obtained as
the intersections between the four nullclines of its vector
field in the domain Sr. Specifically, each equation ẋi = 0,
i = 1, 2, has two solutions, namely xi = 0, that is, the xj-
axis, i 6= j, and

x2 = −x1 + sin − si, si =
kiD

µ∗i −D
, (5)

where the last equation follows from µi being of Monod’s
type (4). Therefore, the origin (0, 0) is always an equilibrium
point for the system; its stability depending on D. Moreover,
the system might admit other steady states whose number
and stability depend on the values of D and on the growth
functions µi. Specifically, we can identify the following
six cases corresponding to different positions of the two
nullclines (5) in Sr (Figure 2):

(I) D = 0: when s1 = s2 = 0 the nullclines (5) overlap
and all solutions asymptotically converge to the stable
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Fig. 2. Possible state portraits of system (2) for different values of
constant dilution rate D. Blue dashed and red dotted lines correspond to
the two nullclines of the system reported in (5) for i = 1 and i = 2,
respectively. Full, empty, and half-filled dots represent stable, unstable and
saddle equilibria, respectively.

equilibrium set E0 := {(x1, x2) ∈ Sr : x1 + x2 =
sin}, while the origin is locally unstable. This case
corresponds to an undesired working condition in which
no new substrate is added to the reactor and the biomass
is in starvation. However, this situation can never occur
in continuous culture as it is always assumed that
D(t) > 0, ∀t > 0.

(II) 0 < D < D̄: there are two equilibrium points, each
one on an axis, corresponding to their intersection with
the nullclines (5). Specifically, x∗2 := (0, sin − s2) is a
stable node and x∗1 := (sin − s1, 0) is a saddle, where
si is as in (5), while the origin is locally unstable. This
case corresponds to a low concentration of the substrate
at steady state due to its consumption and low dilution
rate. This results in species 2 prevailing over species 1.

(III) D = D̄: the nullclines (5) again overlap and all solu-
tions asymptotically converge to the stable equilibrium
set

E := {(x1, x2) ∈ Sr : x1 + x2 = sin − s̄}, (6)

while the origin is locally unstable. These equilibrium
points correspond to a condition of stable coexistence
between the two species.

(IV) D̄ < D < µ2(sin): this case is similar to case (II)
but with opposite stability properties of the equilibrium
points, that is, x∗1 is a stable node and x∗2 is a saddle,

while the origin is still locally unstable. In this case
species 1 prevails at steady state because of the high
concentration of substrate.

(V) µ2(sin) < D < µ1(sin): there is only one intersection
in the domain Sr between the nullclines (5) and the axes
at the point x∗1, which is stable, while in this case the
origin is a saddle. At steady state species 2 is washed-
out from the chemostat due to the dilution rate D being
greater than its maximum growth rate µ2(sin).

(VI) µ1(sin) < D < Dmax: there is a unique stable equilib-
rium point in the origin to which all solutions converge.
In this case, D being greater than the maximum value
of both growth rates causes the washout of both species,
that is, the cells are removed from the chemostat faster
than they can grow.

The transitions between the dynamical behaviors described
above are due to bifurcations of the equilibrium points of
the system. In particular, in cases (I) and (III) the system
undergoes a degenerate transcritical bifurcation [13], in
which the equilibrium sets E0 and E appear, respectively,
as the two nullclines (5) overlap. These two sets are not
structurally stable, since they suddenly disappear for any
small perturbation of the bifurcation parameter D from the
bifurcation points D = 0 and D = D̄. On the other hand, for
D = µ2(sin) (D = µ1(sin)) the equilibrium points undergo
a regular transcritical bifurcation, in which the equilibrium
point x∗2 (x∗1) collides with the one in the origin, exchanges
stability and exits the domain Sr.

III. CONTROL PROBLEM FORMULATION

Under Assumption 1 it follows that, by applying a con-
stant, open-loop control input D = D̄ to system (2), coex-
istence of the two species can be achieved at steady state.
Specifically, any solution of (2) converges to the equilibrium
set E defined in (6), and more precisely to a point whose
position depends on the initial condition x0 = (x0,1, x0,2).
Therefore, it is not possible by means of any open-loop
control input to guarantee at the same time coexistence of
both species while regulating the ratio between the steady-
state concentrations x1 and x2 to some reference value.
Moreover, structural instability of the equilibrium set E ,
uncertainties on the parameters of the growth functions µi(s)
and other disturbances cannot be rejected by means of any
open-loop control law. It is therefore necessary to regulate
the dilution rate of the chemostat by employing closed-loop
control laws. More formally, we want to solve the following
control problem.

Problem statement: Design some feedback control input
D(x1, x2) for system (2) such that:

1) coexistence of the two species is guaranteed for all time,
that is, xi(t) > xi,min, ∀t > 0, i = 1, 2, where xi,min >
0 is some safety threshold to avoid extinction of species
i due to unwanted events, such as washout or starvation;

2) the ratio x2/x1 between the concentrations of the two
species is robustly regulated at steady state to a desired
value rd > 0, that is,

x2(t) = rd · x1(t), as t→ +∞. (7)
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Notice that the previous control problem corresponds to
requiring that all solutions of system (2) are stabilized to the
point of intersection between the equilibrium set E in (6),
where coexistence is possible, and the line defined by (7)
(see Fig. 1), that is, to the point

xd :=

(
sin − s̄
1 + rd

, rd
sin − s̄
1 + rd

)
. (8)

We further assume that the concentrations x1 and x2

are either directly or indirectly measurable, for example by
means of fluorescent reporter proteins produced by one or
both species.

IV. PROPOSED CONTROLLERS

In this section we present and analyze two feedback
control strategies that solve the control problem presented
in Section III. Namely, a proportional gain-scheduled state-
feedback and a switching controller. After presenting the
control laws, we validate and compare their robustness by
means of numerical simulations.

In all simulations we use the following values of the
parameters of the growth functions µi(s) [8]: µ∗1 = 0.5,
k1 = 5, µ∗2 = 0.16, k2 = 0.13. Furthermore, we set sin = 5,
Dmin = 0.1, Dmax = 1. These limiting values of the dilution
rate D guarantee, respectively, a continuous flow rate of
culture medium and that fresh medium equal to the volume
of the culture is added in the bioreactor at most in one hour.

A. State-feedback control

The first controller we propose is a state-feedback con-
troller whose control gains continuously depend on the
desired ratio rd. This to guarantee, locally to the set-point
xd, the same closed-loop dynamics for any rd. Specifically,
the control input is defined as

D(x) = D̄ +K(rd) · (xd − x), (9)

saturated when exiting the interval [Dmin, Dmax], with
K(rd) =

(
K1(rd),K2(rd)

)
being the control gain vector.

The control input (9) is composed by two terms: (i) a
feedforward action D̄, that guarantees convergence to the
equilibrium set E of coexistence between the two species,
and (ii) a feedback action K(rd) · (xd − x) that steers the
state x towards the desired set-point xd ∈ E and rejects
disturbances due to uncertainties on the system parameters.

The control gain vector K(rd) is evaluated by assigning,
via pole placement, the desired eigenvalues (λ1, λ2) to the
closed-loop dynamics (2) and (9) locally to the desired set-
point xd. Specifically, the control gains are obtained by
solving the equations tr(J) = λ1 + λ2 and det(J) = λ1λ2,
where J is the Jacobian matrix of the linearized system
δẋ = J(K, rd)δx, with δx = x − xd. They can be given
as

K1(rd) = a1 + b1 rd +
c

1 + rd
, (10)

K2(rd) = a2 + b2
1

rd
+

c

1 + rd
, (11)

where a1, a2, b1, b2, c are coefficients whose expressions
are defined in (12)-(16).

By numerical analysis, the closed-loop dynamics has been
found to have four equilibrium points: a stable node in xd, an
unstable node in the origin, and two saddles, each on one dif-
ferent axis (Fig. 3, left panel), and their stability properties do
not depend on the particular choice of the control parameters.
Therefore, under the action of the feedback control input (9),
all solutions converge to xd for any initial condition x0 ∈ Sr.

A representative simulation of the closed-loop system is
reported in Fig. 3. The control strategy is able to regulate the
two concentrations to the desired ratio rd = 1, as required;
the state of the system converging to the point xd lying on E .
Notice that the response of the closed-loop system is largely
affected by the intrinsic growth rate of the biomass in the
chamber which, of course, cannot be sped up by the control
input.

B. Switching control

The second controller we consider is a switching controller
that changes the control input D between two constant
values, d+ and d−, with d− < d+, depending on the sign of
a scalar function σ(x), that is,

D(x) =

{
d+, if σ(x) > 0

d−, if σ(x) < 0
, (17)

where
σ(x) := x2 − αx1 − γ. (18)

The switching surface Σ is defined as the zero-set of σ(x),
i.e., Σ := {x ∈ Sr : σ(x) = 0}, and it is chosen such that Σ
and E intersect at the point xd in (8), linking the parameters
α and γ as follow

α = rd − γ/xd,1. (19)

Moreover, if the control parameters are chosen such that

γd− < γD̄ < γd+, (20)
0 < γ < sin − s̄, (21)

then (i) there exists a sliding region Σ̂ ⊆ Σ towards which all
solutions converge, and (ii) xd is a stable pseudo-equilibrium
point for the sliding vector field fs(x).

Next we prove the previous statements. We first analyze
(i). Denoting with f+(x) and f−(x) the closed-loop vector
fields when D = d+ and D = d−, respectively, and with
f±N = ∇σ ·f± their normal component to Σ, a sliding region
exists if f+

N (x) < 0 ∧ f−N (x) > 0 for some x ∈ Σ. From the
first condition on f−N and ∇σ = [−α 1]> we have

∇σ · f− =− α(µ1x1 − d−x1) + µ2x2 − d−x2

= (−αµ1x1 + µ2x2)︸ ︷︷ ︸
ds(x)

−d− (−αx1 + x2)︸ ︷︷ ︸
γ

> 0,

which is equal to d−γ < ds(x). Likewise, from the second
condition on f+ we get ds(x) < d+γ. Combining these two
previous conditions we obtain

γd− < ds(x) < γd+, (22)
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where ds(x) := −αµ1(s)x1 + µ2(s)x2. Also, using Filip-
pov’s convention [14, p.52], i.e.,

fs(x) = λf+(x) + (1− λ)f−(x),

with

λ =
f−N

f−N − f+
N

=
ds
γ

d−

d+ − d− , 0 ≤ λ ≤ 1,

the sliding vector field can be defined as

fs(x) :=f− + λ(f+ − f−)

=

[
µ1x1 − d−x1

µ2x2 − d−x2

]
+
ds
γ
d−
[
−x1

−x2

]
=

[(
µ1(s)− ds(x)/γ

)
x1(

µ2(s)− ds(x)/γ
)
x2

]
and it has four equilibrium points, namely (0, 0), (0, γ),
(−γ/α, 0), and a last one for ds(x)/γ = µ1(s) = µ2(s) = D̄
at the point of intersection between Σ and E . Therefore,
using (22) we have that the desired set-point xd is a pseudo-
equilibrium point of fs only if the control parameters satisfy
(20). Moreover, condition (22) also implies that γ > 0.

To prove (ii) we can analyze the local stability of the
equilibrium points in (0, 0) and (0, γ) of the sliding vector
field fs(x) by studying the sign of its components locally
to the points. Indeed, if these two points are found to be
unstable, then the pseudo-node in xd must be stable. It can
be proved that the origin is always unstable since fs,1(x1, 0)
and fs,2(0, x2) are both positive close to the origin. For what
concerns the point in (0, γ), we have that fs,2(0, x2) > 0
for 0 < x2 < γ and fs,2(0, x2) < 0 for x2 > γ, therefore
solutions on the x2-axis converge to (0, γ). On the other
hand, in the transversal direction we have that

fs,1(x1, γ) = µ1(s)

(
1− µ2(s)

µ1(s)
+
α

γ
x1

)
x1, (23)

whose changing of sign depends on γ being greater or less
than sin − s̄, since the term 1 − µ2(s)/µ1(s) in (23) is
positive only when the state x is below E , that is, when
x1 + x2 < sin − s̄. Hence, it follows that when γ > sin − s̄
the point (0, γ) is a stable node, while when γ < sin−s̄ it is a
saddle. Therefore, the equilibrium point xd at the intersection
between Σ and E , is stable if condition (21) holds.

Note that at the boundary of this region in the parameter
space two different bifurcations occur. When γ = sin − s̄
the stability of the desired point is lost due to a degenerate
transcritical bifurcation similar to the one described in the
previous section. As γ decreases, each of the two vector
fields generates a fold bifurcation of tangent points [13] of
the Filippov vector field, which gives rise to crossing regions
in the switching surface at the right and at the left of the
pseudo-equilibrium, respectively (see the crossing region at
the left of the pseudo-equilibrium in the lower-left panel
of Fig. 4), causing the boundaries of the sliding region Σ̂
to shrink, until Σ̂ disappears for γ = 0 at an invisible-
invisible pseudo-Hopf bifurcation [13]. Note that if γ = 0
the bifurcating pseudo-equilibrium is stable, and is reached
via converging crossings of the switching manifold, at a rate
less than exponential. However, for γ in (21) there always
exists an attractive sliding region in the neighborhood of the
pseudo-node at xd, to which all solutions in Sr converge.

Two representative simulations of the closed-loop system
are reported in Fig. 4, for choices of γ > xd,2 (top panels)
and γ < xd,2 (bottom panels). In both cases there exists a
unique stable pseudo-equilibrium point, on the sliding region
Σ̂ at its intersection with the equilibrium set E . Notice that
in the case γ > xd,2 the convergence of sliding solutions
to the pseudo-equilibrium is slower than in the other case.
This is essentially due to f+(x) and f−(x) pointing almost
in the same direction in the neighborhood of Σ̂, and does
not depend significantly on the particular choice of d+ and
d− being made. For this reason and to guarantee greater
robustness to disturbances, as we are going to show next,
the control parameter γ must be chosen in the range

0 < γ < xd,2. (24)

In conclusion, to stabilize all solutions on the set-point xd,
it suffices to choose the control parameters in (17)-(18) so
as to satisfy conditions (20), (19) and (24).

C. Robustness and performance analysis

Here we first analyze the robustness of the proposed
controllers to variations of the parameters of the growth
functions µi(s), i = 1, 2, and later we compare their
performance in terms of average settling time. Perturbations

a1 = − (s̄+k2)4(λ1λ2(s̄+k1)2−k1(λ1+λ2)µ∗
1(s̄−sin))+k2µ

∗
2(s̄−sin)(s̄+k2)2(µ∗

1(2k1s̄+s̄
2−k1sin)+(λ1+λ2)(s̄+k1)2)−k2µ∗

2
2(s̄−sin)(s̄+k1)2(2k2s̄+s̄

2−k2sin)
(s̄−sin)(s̄+k2)2(µ∗

2(s̄+k1)2(2k2s̄+s̄2−k2sin)−µ∗
1(s̄+k2)2(2k1s̄+s̄2−k1sin))

(12)

a2 = (sin − s̄)−1

(
λ1λ2(s̄+k1)2(s̄+k2)2

µ∗
1(s̄+k2)2(2k1s̄+s̄2−k1sin)−µ∗

2(s̄+k1)2(2k2s̄+s̄2−k2sin)
− µ∗

2(2k2s̄+s̄
2−k2sin)

(s̄+k2)2 +
µ∗
1 s̄

s̄+k1
+ λ1 + λ2

)
(13)

b1 =
λ1λ2 (s̄+ k1) 2 (s̄+ k2) 2

(s̄− sin) (µ∗1 (s̄+ k2) 2 (2k1s̄+ s̄2 − k1sin)− µ∗2 (s̄+ k1) 2 (2k2s̄+ s̄2 − k2sin))
(14)

b2 = − ((s̄+ k2) (λ1 (s̄+ k1) + µ∗1s̄)− µ∗2s̄ (s̄+ k1)) ((s̄+ k2) (λ2 (s̄+ k1) + µ∗1s̄)− µ∗2s̄ (s̄+ k1))

(s̄− sin) (µ∗1 (s̄+ k2) 2 (2k1s̄+ s̄2 − k1sin)− µ∗2 (s̄+ k1) 2 (2k2s̄+ s̄2 − k2sin))
(15)

c =
(s̄− sin)

(
k1µ
∗
1 (s̄+ k2) 2 − k2µ

∗
2 (s̄+ k1) 2

)
2

µ∗1 (s̄+ k1) 2 (s̄+ k2) 4 (2k1s̄+ s̄2 − k1sin)− µ∗2 (s̄+ k1) 4 (s̄+ k2) 2 (2k2s̄+ s̄2 − k2sin)
(16)
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Fig. 3. State-feedback controller. Left panel: State portrait of the closed-
loop system (2) and (9). Blue dashed and red dotted lines correspond to the
two nullclines. Full, empty, and half-filled dots represent stable, unstable
and saddle equilibria, respectively. The gray area of the plane represents the
(x1, x2) values in which the control input is not saturated. Right panel: time
evolution of the state and of the control input of the thick green trajectory
reported in the left panel. For the closed loop system, λ1 = λ2 = −0.2,
rd = 1, xd = (1.42, 1.42), K1 = 0.11, and K2 = −0.34.
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Fig. 4. Switching controller. Left panels: State portraits of the closed-
loop system (2), (17) and (18). The switching surface Σ is the thick line,
full when sliding conditions (22) are satisfied, dotted otherwise (crossing
region). Full, empty, and half-filled dots represent stable, unstable and saddle
equilibria or pseudo-equilibria, respectively. In the top panel γ = 2, in the
bottom panel γ = 0.4. Right panels: time evolution of the state and of the
control input of the thick green trajectories reported in the respective left
panel. In the shaded regions, the control switches at high frequency between
the two values. Other parameter values: rd = 1, xd = (1.42, 1.42), d+ =
Dmax, d− = Dmin.

on the values of the parameters µ∗i and ki, can cause the
growth functions to intersect each other at a value, say s̃,
different from the nominal value s̄. This in turn results in a
change of the position of the equilibrium set E defined in
(6) from its nominal position to a new position Ẽ(s̃) (note
that the set-point xd in (8) used by the algorithm depends
on s̄). Hence, the solutions of the closed-loop system will
converge to some other point x̃ to which it corresponds a
different ratio at steady state between the species r̃ 6= rd.
Therefore, we can analyze the robustness of the controllers
by evaluating the relationship between the steady-state ratio
r̃ and the perturbed s̃.

To analyze the robustness of the state-feedback controller
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r
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γ = 0.8
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s∼ s
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r
∼

Fig. 5. Left panel: Robustness analysis of the state-feedback controller.
For each sample (µ̃∗1, k̃1, µ̃

∗
2, k̃2) in the parameter space, the substrate

concentration at coexistence s̃ and the steady-state ratio r̃ in perturbed
conditions were evaluate at closed-loop. A total of 1000 samples were
extracted using orthogonal sampling. Right panel: Robustness analysis of
the switching controller. The graph of the function r̃(s̃) is reported for
different values of the control parameter γ. The control parameters of the
algorithms were set as in Figs. 3-4, with desired ratio rd = 1.

(9) we sampled the parameter space (µ∗1, k1, µ
∗
2, k2) with

the orthogonal sampling method [15] by varying each pa-
rameter by ±30% from its nominal value and taking 1000
samples. For each sample (µ̃∗1, k̃1, µ̃

∗
2, k̃2) we evaluated the

corresponding s̃ and the ratio r̃ to which the closed-loop
system converge. The result of this numerical analysis is
reported in Fig. 5, left panel. We can notice that perturbations
in the parameters that cause an error on s̃/s̄ at most of 50%
result in a regulation error |r̃ − rd| smaller than 30%.

For what concerns the switching controller, under per-
turbation of the parameters, the control algorithm is such
made that it still guarantees convergence to the point of
intersection between Σ and the perturbed equilibrium set
Ẽ(s̃). This point can be analytically computed to explicitly
obtain the following relationship between r̃ and s̃, that is,
r̃(s̃) = (−γ − α sin + α s̃)/(γ − sin + s̃). The graph of the
function r̃(s̃) is reported in Fig. 5, right panel, for different
values of the control parameter γ. As the control parameter
γ decreases, the closed-loop response is more robust to
perturbations of the growth functions. Moreover, it can be
noticed that for γ ≤ 0.8 the switching controller already
exhibits higher robustness that the state-feedback controller.

The performance of the control algorithms have been
compared by numerically evaluating the average settling
time 〈T 〉 of their closed-loop response as their control
parameters change. As the settling time strongly depends
on the initial condition we choose, for each value of the
control parameters, 〈T 〉 was computed by uniformly sam-
pling the domain Sr, evaluating the settling time taking
each point as initial condition and then averaging the results
over all initial conditions. For the state-feedback controller,
we evaluated 〈T 〉 as the desired closed-loop eigenvalues
(λ1, λ2) are varied over [−2, 0] × [−2, 0]. The results are
reported in Fig. 6, left panel, showing a minimum value
of about 16 h. Smaller values of the eigenvalues resulted
in strongly saturated control inputs and therefore they were
not considered. Analogously, the average settling time 〈T 〉
for the switching controller was evaluated as the control
parameter γ was varied in the interval [0.05, 2]. The results
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Fig. 6. Average settling time 〈T 〉 as function of the tuning parameters of
the state-feedback control (left panel) and switching control (right panel)
strategies.

are reported in Fig. 6, right panel, showing a minimum value
of about 16.87 h at γ ≈ 0.35.

V. CONCLUSION

We presented the analysis and control of the concen-
trations of two cellular populations growing in continuous
culture in a single chemostat. By exploiting the nonlinear
dynamics of the open-loop system we constructed two al-
ternative control strategies, a gain-scheduling state feedback
controller and a sliding controller. We showed that both are
effective in solving the problem while guaranteeing robust-
ness to uncertainties and parameter variations. A pressing
problem is that when such strategies are adopted, while the
desired reference ratio between the two populations can be
achieved, the convergence time is partially limited by the
populations own dynamics. Also, sliding controllers are not
easy to implement in this context and appropriate solutions
will have to be explored to make the switching frequency
compatible with the physical constraints on the control input
D(t). Moreover, real-time measurements of population den-
sities required to compute the feedback control inputs can be
challenging to obtain, due to noise and cell-to-cell variability
in the expression of the reporter proteins. To solve part of
these problems, ongoing work is aimed at modeling and
controlling multi-chamber chemostat design. For example,
in a three chamber setting, each population could be grown
in a separate vessel and a multi-input control strategy could
be devised to control their ratio in the third chamber where
they are mixed together.
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