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Ice Shape Convergence in Multi-Step Ice Accretion Simulations
over Straight Wings

Donizetti A.∗, Bellosta T. †, Guardone A. ‡,
Politecnico di Milano, Milano, Italy, 20154

Local errors in the geometrical description of the ice front are amplified in multi-step
simulations over conformal meshes due to the coupling of aerodynamics, water impingement,
ice accretion, and grid deformation. Small perturbations in the initial phase of ice formation
possibly result in dramatically different ice shapes which can hinder the stability of the multi-step
procedure. This problem is analyzed by investigating the combined effects of space and time
discretization on the ice growth over airfoils and three-dimensional wings. We propose an
automatic procedure for selecting the time interval for the update of the aerodynamics and
particle impingement. A local growth limiter _ is introduced here to bound the local ice
thickness growth to be comparable to the local grid spacing on the surface, resulting in an
automatic adaptive time-step to be used in the multi-step simulation. Examples are provided
for three-dimensional cases under both rime and glaze conditions over straight wings. These
examples highlight the different accretion mechanisms of the two ice regimes and preliminary
indicate that ice-shape convergence can be achieved for low values of _.

I. Introduction
In aeronautical applications, ice formation during flight poses a significant threat, adversely impacting the aircraft’s

aerodynamics. To gain a deeper understanding of how ice accumulation affects aerodynamic performance and to
design efficient ice protection systems, numerical simulations and ice accretion tools [1–5] have gained increasing
importance in the last few years. These tools allow for the simulation of diverse and potentially extreme conditions
that complement experimental and in-flight studies, possibly saving significant costs in the aircraft design and icing
certification processes [6].

In-flight icing is a complex problem that involves various disciplines, including aerodynamics, multi-phase flows,
thermodynamics, and meshing capabilities. As ice progressively forms on the aircraft, it alters the surrounding
flow field, influencing the trajectories of cloud droplets and, ultimately, the ice shape. A multi-step—known as
multi-shot—approach can be implemented to consider this feedback effect and achieve accurate ice shape predictions[7].
The multi-step concept stems from the existence of two separate time scales: the aerodynamic one and the ice accretion
one. The former is proportional to the flow speed divided by a suitable characteristic length, e.g. the chord of the
profile. The latter governs the growth of ice and the associated phase-change problem. Given that the time scale of ice
accretion is significantly larger than that of aerodynamics and droplet fields, it is possible to compute the rate of ice
accumulation by solving the heat and mass balance on the surfaces while maintaining a constant aerodynamic solution,
namely, geometrical shape. Under this quasi-steady assumption, the total icing exposure time is divided into smaller
time steps. The aerodynamic flow field, the amount and distribution of the cloud water droplets impinging on the
selected surfaces, and the ice growth rate are computed in sequence at each step. At the end of each time step, the new
geometry and the corresponding surrounding computational mesh must be updated in response to the ice growth. This
operation is usually the most critical phase of the multi-step loop, especially if a fully automated procedure is desired.

A critical issue of multi-step methods is the coupling between geometry variation and collection efficiency. Geometry
perturbations of the surface (iced) geometry result in a non-uniform distribution of the collection efficiency exhibiting
multiple local peaks, ultimately leading to additional perturbations of the iced surface. As shown in Fig. 1a, this
results in an auto-amplifying phenomenon [8, 9], which can hinder the stability of the multi-step procedure or lead to
non-physical ice shape predictions.

The ambient conditions in the considered example result in the formation of so-called rime ice. Due to the extremely
low temperatures, all incoming water mass freezes upon impingement. Ten sequential accretion steps are performed,

∗PhD Student, Department of Aerospace Science and Technology, alessandro.donizetti@polimi.it
†Assistant Professor, Department of Aerospace Science and Technology, tommaso.bellosta@polimi.it
‡Full Professor, Department of Aerospace Science and Technology, alberto.guardone@polimi.it

1

8-



(a) 10 steps evolution of a rime ice shape. (b) Final volume mesh.

Fig. 1 Multi-step simulation over a NACA 23012 airfoil obtained with a mesh deformation approach for the
geometry update. Ice shape oscillations develop on the suction and pressure side of the airfoil.

with a total exposure time of 300 seconds. Concerning spatial discretization, the iced region is characterized by an initial
uniform distribution of ℎ𝑔𝑟𝑖𝑑/𝑐 = 5 · 10−4, where 𝑐 is the airfoil chord. Then, given the simplicity of the considered test
case and to avoid any interpolation error related to the remeshing process, the grids for the following time steps are
obtained with a grid deformation approach [10].

This simple example highlights several crucial problems for multi-step simulations of in-flight ice accretion. The
first concerns the choice of the duration of the various time steps, especially when no experimental data is available, and
preliminary guesses about the ice shape must heavily rely on the user’s experience. The second one regards the formation
of the oscillations mentioned above and the importance of highly robust methods based, for instance, on remeshing
techiniques [11, 12], level-set methods [13, 14], or immersed boundary methods [15, 16] capable of overcoming mesh
entanglement and grid intersections, which typically occur with standard deformation techniques when dealing with
these complex ice shapes. Remeshing is also unavoidable to preserve the mesh quality even if no grid intersections
occur. Indeed, as ice accumulates over the surface, the mesh density begins to coarsen because the number of nodes
remains unchanged in the deformation process but they are spread over a larger surface area, as seen in Fig. 1b, where,
in the leading edge stagnation area, the local grid spacing has become five times larger than the initial one. Finally,
considering in addition the cascade effects in multi-step simulations, assessing the ice shape convergence of a multi-step
simulation effectively is an open challenge.

This work aims to investigate the combined effects of space and time discretization on the ice growth on airfoils and
suggests a simple, automatic technique for time-step selection based on a local growth limiter _ to bound the local ice
thickness growth. The parameter _ relates the local grid spacing in the tangential direction to the ice thickness, namely,
ℎ𝑖𝑐𝑒 = _ℎ𝑔𝑟𝑖𝑑 . Most of the icing tools compute the ice thickness on the generic element from the corresponding ice
growth rate per unit area ¤𝑚𝑖𝑐𝑒 as:

ℎ𝑖𝑐𝑒 =
¤𝑚𝑖𝑐𝑒

𝜌𝑖𝑐𝑒
Δ𝑡 (1)

where 𝜌𝑖𝑐𝑒 is the ice density. The combination of the above equations leads to a simple and automatic definition of the
duration of each step of the multi-step simulation:

Δ𝑡 = _min
(

ℎ𝑔𝑟𝑖𝑑

¤𝑚𝑖𝑐𝑒/𝜌𝑖𝑐𝑒

)
(2)

Note that independently from the parameter _ and the grid ice spacing ℎ𝑔𝑟𝑖𝑑 , which may be kept constant throughout
the simulation, the duration of each inner step may change depending on the computed growth rate, which is determined
by the current collection efficiency and by the mass and energy conservation equations. This work analyses different
spatial and temporal, i.e. _, discretization to assess their impact on the predicted ice shape. It is organized as follows.
The PoliMIce ice accretion software is first briefly introduced in the methodology section II, focusing on how ice shape
instabilities would cause mesh intersection in standard mesh deformation methods and how those are treated with the
level-set-based method implemented in PoliMIce. Section III includes numerical simulations of test cases selected from
the 1𝑠𝑡 Ice Prediction Workshop (IPW) [17] both in rime and glaze conditions. Final comments and future developments
of the proposed methodology are given in section IV.
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II. Methodology
The main building blocks of a multi-step ice accretion simulation are the computation of the aerodynamic flow field,

of the amount and distribution of the cloud water droplets impinging on the selected surfaces, of the ice growth rate, and
the updating of the geometry and corresponding surrounding mesh. The following sections describe these four steps
in more detail, focusing on the novel strategy proposed for the implicit representation of the iced boundary and the
automatic remeshing procedure required to generate the new CFD grid.

A. Aerodynamic solver
Aerodynamic simulations of the external airflow are performed here using SU2 [18]. A node-centered finite volume

method (FVM) is applied on arbitrary unstructured meshes using a standard edge-based data structure on a dual grid
with median-dual control volumes. Convective fluxes are discretized at each edge midpoint using an upwind scheme.
Discretization using Roe’s approximate Riemann solver [19] is coupled with a linear reconstruction via the MUSCL
approach to yield a second-order scheme in space. Viscous fluxes are discretized using a corrected average of gradients
approach. Source terms are approximated at each node using a piecewise constant reconstruction within each control
volume. Gradients are obtained via a weighted least-squares approach. The aerodynamic field is computed as a
solution to the Reynolds-averaged Navier-Stokes (RANS) equations, which is used in this study in tandem with the
Spalart–Allmaras (SA) [20] turbulence model. The system’s solution is obtained implicitly using a defect-correction
approach with pseudo-time continuation. The mean flow and turbulence systems are solved sequentially with the flexible
minimal residual method, and the ILU(0) factorization of the approximate jacobian is used as a preconditioner. A local
value of the time step coupled with an adaptive ramping strategy for the CFL is used to accelerate the convergence of
the steady-state solution [21].

B. Particle tracking module
The droplet solver computes the collection efficiency 𝛽 over the aircraft, which is proportional to the water mass

collected at a given location on the surface. It requires the computation of the two-phase flow of water and air. Due to
the scales at play in ice accretion and, in particular, the concentration of water droplets, their effects on the solution of
the airflow field can usually be neglected so that the computation of the aerodynamics can be performed independently
of the water droplets. This assumption leads to the so-called one-way coupled approach; only the airflow field can affect
the motion of water droplets. The in-house particle tracking code is based on a Lagrangian framework, and it is used to
simulate clouds containing supercooled water droplets [22, 23]. The Lagrangian framework allows straightforward
modeling of supercooled water droplets’ effects, such as splashing, aerodynamic breakup, and deformation, and can
deal with secondary particles.

The cloud impinging the aircraft surfaces is represented as a single front initially placed at an arbitrary distance
ahead of the aircraft. This distance is set so droplets are traced starting from an unperturbed region of the domain. As
the final result depends on the particle resolution, a strategy was developed to automatically refine the seeding region by
adding new particles where needed. The seeding front, initially uniform, is discretized as a structured mesh of linear (in
2D) or quadrilateral (in 3D) elements. Elements are incrementally split at each iteration, evolving the current cloud
front and computing the collection efficiency 𝛽 on the surface. The simulation stops when the difference in the 𝐿2 norm
between two consecutive collection efficiency calculations is below a user-supplied threshold. In the present work, the
chosen threshold is 1 · 10−6. In practical applications, clouds are poly-dispersed. A standard approach deals with this
problem by tracking a uniform cloud of droplets with a diameter equal to the Median Volume Diameter (MVD). This is
the median value of the particle diameter of the entire cloud. Half the mass comes from droplets of a diameter smaller
than the cloud MVD, and half from particles larger than the MVD. A more refined discretization of the particle size
distribution can be considered by subdividing the droplets’ size probability distribution function in a given number of
so-called bins. A simulation can be performed for each bin, and the final collection efficiency can be obtained as a
weighted sum of the bins’ 𝛽. In this work, unless otherwise specified, the droplets’ size distribution is divided into
seven bins, of which three are smaller and three are larger than the MVD. The relative percentage is set according to the
wind tunnel data. This is usually a good compromise between computational effort and the accuracy of the solution, in
particular concerning the impinging limits, which are determined by the larger droplets.
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C. Ice accretion module
The in-house code PoliMIce [24] is used for computing the ice accretion. Computing the thickness of the forming

ice layer amounts to solving a phase change problem over the body surface. Typically, surfaces are first discretized in
computational cells, and a one-dimensional Stefan problem [25] is solved for each control volume. Early icing tools rely
on the approximate solution of the Stefan problem proposed by Messinger in 1953 [26] for aeronautical applications.
The model reported in [27] embeds Messinger’s mass and energy balance in an iterative loop to determine the mass
inflow and outflow between elements. It allows the model to be suitable for complex 3D geometries, and it is widely
used in modern ice prediction tools, as is the PDE formulation of [28]. In 2001 Myers [29] proposed an improved
version of Messinger’s model, accounting for the temperature profile in the ice layer. A further modification to Myers’
model, based on the exact local solution of the unsteady Stefan problem, is implemented in PoliMIce [30]. It includes
models for mass fluxes related to sublimation, allows mass transfer from rime to glaze cells, and introduces a new
temperature profile, different from the linear one proposed by Myers to be consistent with the hypothesis of constant
wall temperature. The surface roughness is estimated a-priori with the empirical formula of Shin [31], as a function
of liquid water content (LWC), static air temperature, and freestream velocity. It provides an equivalent sand-grain
roughness, 𝑘𝑠 , which is needed by the Boeing extension for the SA turbulence model[32]. In this work, the heat transfer
coefficient is computed by employing two simulations of the flow field with two different boundary conditions for the
wall temperatures. Note that the ice accretion problem is assumed to be zero-dimensional and that a piecewise constant
representation of the solution is obtained over each cell. In the multi-step procedure, the water film distribution and all
the icing data are interpolated from the previous step through a nearest-neighbor search algorithm.

D. Geometry updating module
In a multi-step ice accretion simulation, updating the geometry is often the most challenging task, especially when

simulating complex ice shapes. In fact, this process must be robust and automated so that no user intervention is required
throughout the process. Following the work proposed in [14], the new ice-air interface is represented as the zero-contour
level of a level-set function[33]. Given a 2D, or 3D, domain Ω ⊂ R2,3, a curve, or a surface, can be represented by a
certain level-set (or isocontour) of the auxiliary function 𝜙(x), with x ∈ Ω. Considering the accretion of ice over the
boundary of the computational domain otherwise empty, 𝜙(x) is an implicit function defined so that:

• 𝜙(x, 𝑡) < 0 in the portion of the domain occupied by material,
• 𝜙(x, 𝑡) > 0 in the portion of the domain not occupied by material,
• 𝜙(x, 𝑡) = 0 at the interface.
In [14], the discrete level-set field was built considering the ice thickness to be accreted at the airfoil boundary and

the distance of each grid node from it. This work defines the level-set scalar field with a novel algorithm, which can
accurately describe the new ice-air interface even for large displacements. The procedure can be briefly summarized as
follows:

1) Starting from the Lagrangian deformation of the iced surface, a triangular volume mesh, or tetrahedral mesh in
the 3D case, is built according to the computed ice thickness distribution.

2) Employing a nearest neighbor search algorithm with a kd-tree structure[34], each volume point is assigned a
value of 𝜙 of either +1 or -1, depending if it lies outside (+1) or within (-1) the deformed simplicial iced mesh.

3) To increase the accuracy of the reconstructed ice-air interface, the distance from the closest, Lagrangian-like
deformed boundary is computed for each node. In this way, the ice-air interface is described continuously in the
volume field and not only by means of constant values, and large displacements can be robustly reconstructed
through the level-set function, which was not ensured with the distance method due to the absence of directional
information when computing the distance values.

Once the nodal values for the level set function 𝜙(x) are defined over the discrete domain Ωℎ, one needs to extract
the zero level curve of 𝜙(x). The implicit domain meshing implemented in the open-source library Mmg [35] was used
to accomplish this task. It can be summarized in the following three steps:

1) Each simplex element intersected by the zero level curve of the level-set function 𝜙 is marked, considering the
relative signs of 𝜙 at the nodes of the grid element.

2) For each element, the edges intersected by the level-set are identified, and a new point is inserted along each
edge in the correspondence of the zero level curve. To locate the new point, a linear interpolation is performed
between the values at the nodes delimiting the edge.

3) Finally, local mesh refinement is performed, swapping edges and inserting, removing, and relocating mesh
vertices to improve the overall mesh quality.
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(a) Discrete definition of the level-set function over the
simplicial computation domain. The blue elements are
characterized by 𝜙 < 0, the white ones by 𝜙 > 0, and
the red curve represents the ice-air interface as the zero-
contour level of 𝜙.

(b) Zoom on a mesh entanglement in the lower side given by
a lagrangian deformation of the surface nodes, represented
in red. The actual geometry retrieved through the proposed
strategy is represented in black.

Fig. 2 Schematic representation of the implicit domain strategy adopted for the representation of the ice-air
interface, represented in red, during a generic step of a multi-step simulation, and avoidance of mesh entanglement
during the geometry update.

The reader is referred to [35] for the implementation details.
Fig. 2 represents a typical output of the depicted implicit domain strategy. In particular, the portion of the domain

occupied by ice is represented in blue, the portion occupied by air is represented in white, and the red line constitutes
the air-ice interface target. A similar result could also be obtained with a ray tracing algorithm, employing only the
deformed surface. However, the distinction between inside and outside points would be wrongly computed if mesh
entanglements occur. With the proposed algorithm instead, in case of overlap between the deformed elements, the
generic volume point defining the level-set function 𝜙 would be inside two, or more, elements, still providing the correct
sign of 𝜙.

One can extract separately each portion of the domain (for instance, in ice accretion problems, the part of the mesh
with negative 𝜙 can be used to investigate heat transfer properties or ice cracking patterns for shedding [36]), as well as
the set of edges connecting all points at 𝜙 = 0 which represents the target ice-air interface at the new time step.

In the context of a multi-step procedure, when dealing with the 2D scenario, the selected points undergo a sequential
reordering, e.g., starting from the trailing edge in a counterclockwise direction, and given as input to the mesh generator
Pointwise [37]. For three-dimensional geometries, the remeshing procedure described in [38] is used. After the level-set
function is computed, the interface elements are extracted along with the remaining clean body elements. The new
interface elements are usually ill-shaped since they result from the splitting of the volume tetrahedra. Yet, interface
elements provide a conformal surface discretization of the ice-air interface. Finally, he ice-air interface is remeshed
using isotropic elements to obtain a body-fitted surface mesh with good-quality elements without changing the clean
body elements.

Depending on the chosen aerodynamic solver, either structured, unstructured, or hybrid meshes can be generated.
In this study, the aerodynamic flow field is computed using the Navier-Stokes solver of the open-source CFD solver
SU2 [18]. Hybrid body-fitted meshes are generated with Pointwise starting from the interface-compliant boundary
discretization. These meshes are designed to meet the requirements of 𝑦+ < 1 for the first layer, as required by
the Spalart-Allmaras turbulence model [20] employed in this work. Note that the mesh generated for the next CFD
computations is not necessarily related to the one adopted for defining the level-set function 𝜙 in the implicit domain
meshing strategy of Mmg.

III. Results
This section presents an analysis of the effect of spatial and temporal discretization on the final ice shape, both for

rime and glaze ice shapes over straight wings. The first two test cases considered are 2D cases, i.e., icing over a straight
wing, namely Case-241 and Case-242 from the 1𝑠𝑡 AIAA Ice Prediction Workshop (IPW) [17]. In both cases, the airfoil
is an 18-inches NACA 23012. Test conditions are reported in Table 1. For each case, four different _ values, namely 5,
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(a) Medium grid (b) Fine grid

Fig. 3 Rime ice over a NACA 23012 airfoil. Comparison between the ice shapes computed with a medium and
fine grid spacing for different values of the growth limiter _ and the experimental data from [17].

2, 1, and 0.5, are considered, along with two mesh sizes: the medium mesh is characterized by a boundary edge size for
the discretization of the iced surface of ℎ𝑔𝑟𝑖𝑑/𝑐 = 1 · 10−3, while the fine mesh by ℎ𝑔𝑟𝑖𝑑/𝑐 = 5 · 10−4, where 𝑐 is the
airfoil chord.

Then, the same two cases are reconsidered but simulating a real 3D straight wing to investigate the effect of the
growth parameter _ on three-dimensional ice shapes. For the 3D case, the minimum edge length for the discretization of
the iced surface is set to 1mm, and three different _ values are considered, namely 3, 2, and 1.

A. Case 241: Rime Ice
In rime ice conditions, usually occurring at temperatures well below the freezing point, all the water freezes upon

impingement, leading to the formation of relatively streamlined ice shapes. Fig. 3 shows the ice shape obtained for
different values of the growth limiter _, for each of the two spacing considered.

All the simulations overlap, regardless of the time step and the mesh size, and compare extremely well with the
experimental data. However, some oscillations show up in results on the fine grid for _ = 2 and _ = 5. For the medium
grid, the ice shape computed with _ = 5 is slightly less tapered than the others due to the fewer steps adopted for the
simulation. These oscillations may be mistaken for valid ice evolution, leading in some circumstances to match the
experimental data accurately. Instead, they result from the propagation of numerical inaccuracies. Fig. 4 and Fig.4
represent all the intermediate ice shapes of each combination of grid spacing and growth parameter, colored by the
collection efficiency. For rime ice, 𝛽 is proportional to the local ice growth rate. This way, it is possible to appreciate how
these oscillations do not appear immediately but progressively amplify themselves. Moreover, numerical oscillations
can be observed for the medium spacing with _ = 5 in both the upper and lower surface, although characterized by a
smaller amplitude. In order to trigger and amplify these oscillations, several time steps are required. This means that
holding the growth parameter constant and varying the grid spacing, the larger number of time steps to get to the final

Table 1 Test conditions: angle of attack (AoA), the freestream velocity 𝑣∞, the freestream temperature 𝑇∞, the
freestream pressure 𝑃∞, the liquid water content (LWC) of the cloud, i.e. the grams of water contained in a cubic
meter of air, the droplet median volume diameter (MVD) and the total icing exposure time.

Case AoA 𝑣∞ 𝑇∞ 𝑃∞ LWC MVD Time
[◦] [m/s] [K] [kPa] [g/m3] [`m] [s]

241 2.0 103 250 92.528 0.42 30 300
242 2.0 103 266 92.941 0.81 15 300
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(a) Ice shape evolution for _ = 5. (b) Ice shape evolution for _ = 2.

(c) Ice shape evolution for _ = 1. (d) Ice shape evolution for _ = 0.5.

Fig. 4 Rime ice over a NACA 23012 airfoil. The evolution in time of the ice shape is colored with the local
collection efficiency for different values of the growth parameter _ over the medium grid, characterized by
ℎ𝑔𝑟𝑖𝑑/𝑐 = 0.001.

exposure time associated with the fine grid will contribute to the development of these instabilities. Another possible
reason for which significant oscillations are observed for the finest grid discretization is that, during the remeshing
process, larger elements tend to mitigate the appearance of these instabilities due to reduced geometrical resolution.

The considered numerical experiments suggest that selecting values of _ ≤ 1 might help avoid the emergence of
instabilities during multi-step simulation. This is possibly due to the amount of ice to be accreted being less or equal
than the surface edge length, and/or the trajectories of the droplets are recomputed so often that any perturbation can
be filled immediately. Regarding this filling effect, the more significant contribution is from the larger bins of the
poly-dispersed cloud, which is discretized, according to the data provided in the IPW [17], in 7 different bins. To
confirm this hypothesis, Fig. 6 represents a comparison between the ice shape evolution computed on the fine grid
with _ = 1 with a multi-bin approach for the computation of the collection efficiency against its counterpart where the
cloud is assumed to be monodispersed. In addition to an expected lack of ice mass near the impinging limits due to
the absence of the larger and heavier droplets visible on the upper side of the airfoil, is evident also the presence of
oscillations in the surface geometry on both the upper and lower side of the airfoil.
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(a) Ice shape evolution for _ = 5. (b) Ice shape evolution for _ = 2.

(c) Ice shape evolution for _ = 1. (d) Ice shape evolution for _ = 0.5.

Fig. 5 Rime ice over a NACA 23012 airfoil. The evolution in time of the ice shape is colored with the local
collection efficiency for different values of the growth parameter _ over the fine grid, characterized by ℎ𝑔𝑟𝑖𝑑/
𝑐 = 0.0005.

B. Case-242: Glaze Ice
Higher static temperature and liquid water content, and smaller MVD characterize this second test case. In particular,

the relatively high temperature allows for water runback after the impinging point, leading to the formation of glaze
ice, characterized by the typical double horn shape. Fig. 7 represent the ice shape obtained for different values of the
growth limiter _, for each of the two spacing considered. Differently from the previous case, the scatter of the different
simulations is now much more evident. However, the ice thickness predicted at the stagnation point is the same for
all the considered simulations, and it matches the experimental data very well. This result is in accordance with a
previous analysis that highlighted the higher sensitivity of the horn region than that of the stagnation point [39, 40].
It is hence convenient to distinguish two kinds of convergence: the temporal one and the spatial one. Keeping the
grid discretization fixed and looking at the results obtained for the different values of growth parameters, it can be
seen the ice shapes obtained for _ = 0.5 and _ = 1, i.e. those associated with the larger number of time steps, are very
close to each other. Looking now at these two values of _ and changing the grid discretization, all ice shapes compare
reasonably well with the experimental data, especially in terms of the position of the two ice horns, with the horns
associated with the fine grid forming narrower angles than the medium grid ones. On the other hand, larger values of
_ generate completely different ice shapes, suggesting that this kind of ice regime requires a frequent update of the
geometry to take into account the coupling between aerodynamics, water impingement, and the consequent runback
water phenomenon, which is responsible for generating the horn-like structure.
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(a) Collection efficiency computed with a 7-bins distribution. (b) Collection efficiency computed with a single-bin distri-
bution (MVD).

Fig. 6 Influence of the multi-bin distribution against the single-bin distribution when computing the collection
efficiency in a multi-step simulation over the fine grid with growth parameter _.

Analogously to what was done for the rime ice, Fig.8 and Fig. 9 represent all the intermediate ice shapes of each
combination of grid spacing and growth parameter, colored by the collection efficiency. This time, the local peaks of
collection efficiency do not result in uneven ice accretion in the same spot—something that was observed for the rime
ice. Indeed, given the aerodynamic heating and the relatively high temperatures on the surface, the water film flows into
the adjacent cells, driven by pressure and shear stresses. No oscillations in the airfoil surface are hence formed since the
runback water can fill minor surface irregularities. However, as discussed earlier, choosing an adequate time interval, or
equivalently _, is crucial to determine a consistent growth direction of the ice horns. Finally, Fig.10 represents the
duration of each time-step, automatically calculated for a given growth parameter _, for the rime case and glaze with the
medium grid. While in the rime case, the duration of each time step is practically constant throughout the simulation
because it depends on the maximum value of 𝛽, in the glaze case, the time step length is slightly more irregular since it
depends on the mass and energy balances, influenced by the local HTC, which in turns depends on the flow solution
around the changing geometry. Note that the number of time steps for e.g., _ = 0.5 is not exactly double that for _ = 1,
both in the rime and the glaze case, due to the Δ𝑡 being constrained to be an integer number.

C. Case 241: 3D Rime Ice
To investigate the effect of the growth parameter on three-dimensional ice shapes, case 241 from the 1𝑠𝑡 Ice

Prediction Workshop [17] is considered now for three different _ values, namely 3, 2, and 1. Differently from the 2D
cases, local geometrical instabilities could also lead to highly irregular ice shapes in the spanwise direction.

Fig. 11 shows the ice shape evolution at the midspan location and the comparison between the corresponding final
iced geometries and the experimental results. As shown in Fig. 12, all three ice shapes almost overlap each other, proving
a temporal ice-shape convergence, with slightly more tapered ice shapes as _ is decreased, i.e., the number of time steps
is increased. Differently from the 2D case, only single-bin (MVD) simulations are performed when computing the
collection efficiency. This explains the lower mass deposition near the impingement limits and the slight overprediction
of the total thickness at the stagnation point.

For this simple test case of icing over a straight wing, no relevant instabilities are observed even for the largest
values of _. However, as mentioned earlier, for all the 3D cases considered in this work, the minimum edge length
for the ice discretization is set to 1 mm, similarly to what is usually done in the literature to compromise between
accuracy and computational costs. This leads to a ℎ𝑔𝑟𝑖𝑑/𝑐 of 0.002, which is a coarse-level mesh if compared to the
mesh discretization strategy adopted for the pure 2D 241 case. This is thus coherent with what was found earlier in the
2D case, that is, the onset of geometrical instabilities requires a fine discretization and large values of _.
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(a) Medium grid (b) Fine grid

Fig. 7 Glaze ice over a NACA 23012 airfoil. Comparison between the ice shapes computed with a medium and
fine grid spacing for different values of the growth limiter _ and the experimental data from [17].

D. Case 242: 3D Glaze Ice
As previously done for case 241, case 242 is considered here as a three-dimensional straight wing. Simulations

are run with three different _ values, namely 3, 2, and 1. Differently from the rime case, the growth of geometrical
instabilities does not come exclusively from local perturbations of the surface geometry, and hence of the collection
efficiency, but the ice growth rate is determined by the mass and energy balance over the surface. Thus, this case aims to
investigate the role of water runback and HTC distribution in the formation of irregular ice shapes, which can hinder the
stability of the multi-step process.

Fig. 13 represents the ice shape evolution at the midspan location and the comparison between the corresponding
final iced geometries and the experimental results. As shown in Fig. 14, the three ice shapes show a similar trend with
the desired double horn behavior, characterized by slightly narrower angles as _ is decreased. As in the 2D case, the
total ice thickness at the stagnation point matches the experimental data extremely well, while the position of the horns
is further back compared to the experiments. Considering that the minimum edge length for the ice discretization is set
to 1 mm, and therefore ℎ𝑔𝑟𝑖𝑑/𝑐 is around 0.002, the 3D shapes are closer to the 2D results of the medium grid rather
than to the fine grid ones, as expected.

Additional investigations are required to ascertain whether this deviation from experimental results stems from an
excessively coarse grid discretization of the ice shape or it may be linked to the uniform equivalent sand grain roughness
employed in the CFD simulations. Indeed, the roughness value determines the calculation of heat transfer coefficients
(HTC) and, consequently, influences the development of ice horns.

Differently from the rime ice case, instabilities are observed in the spanwise direction for larger values of _. In
particular, the ice shapes associated with the highest values of _ show a wavier behavior. Moreover, the height of the
upper horn is not exactly constant in the spanwise direction for each of the _ considered. Looking at the evolution of the
ice shape, it can be seen that local perturbations of the geometry are immediately reflected in the HTC computation,
which determines a non-uniform ice growth rate. It should be noted that this effect is not strictly related to the choice of
a uniform sand grain roughness, but the same problems are expected even for more sophisticated roughness models.
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(a) Ice shape evolution for _ = 5. (b) Ice shape evolution for _ = 2.

(c) Ice shape evolution for _ = 1. (d) Ice shape evolution for _ = 0.5.

Fig. 8 Glaze ice over a NACA 23012 airfoil. The evolution in time of the ice shape is colored with the local
collection efficiency for different values of the growth parameter _ over the medium grid, characterized by
ℎ𝑔𝑟𝑖𝑑/𝑐 = 0.001.
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(a) Ice shape evolution for _ = 5. (b) Ice shape evolution for _ = 2.

(c) Ice shape evolution for _ = 1. (d) Ice shape evolution for _ = 0.5.

Fig. 9 Glaze ice over a NACA 23012 airfoil. The evolution in time of the ice shape is colored with the local
collection efficiency for different values of the growth parameter _ over the fine grid, characterized by ℎ𝑔𝑟𝑖𝑑/
𝑐 = 0.0005.

 = 5

 = 2

 = 1

 = 0.5

(a) Case-241, rime ice.

 = 5

 = 2

 = 1

 = 0.5

(b) Case-242, glaze ice.

Fig. 10 Time steps duration at different _ values for Case-241 and Case-242.
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(a) Ice shape evolution for _ = 3. (b) Ice shape evolution for _ = 2.

(c) Ice shape evolution for _ = 1.

MCCS

 = 3

 = 2

 = 1

Clean

(d) Comparison of the final ice shapes.

Fig. 11 Rime ice over a NACA 23012 straight wing. The evolution in time of the ice shape is colored with the
local collection efficiency for different values of the growth parameter _.
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(a) Final ice shape with _ = 3.

(b) Final ice shape with _ = 2.

(c) Final ice shape with _ = 1.

Fig. 12 Rime ice over a NACA 23012 straight wing. The left half represents the initial and final geometry, with
the iced region represented in blue, while the right one shows the collection efficiency at the final and initial time.
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(a) Ice shape evolution for _ = 3. (b) Ice shape evolution for _ = 2.

(c) Ice shape evolution for _ = 1.

MCCS

 = 3

 = 2

 = 1

Clean

(d) Comparison of the final ice shapes.

Fig. 13 Glaze ice over a NACA 23012 straight wing. The evolution in time of the ice shape is colored with the
local collection efficiency for different values of the growth parameter _.
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(a) Final ice shape with _ = 3.

(b) Final ice shape with _ = 2.

(c) Final ice shape with _ = 1.

Fig. 14 Glaze ice over a NACA 23012 straight wing. The left half represents the initial and final geometry, with
the iced region represented in blue, while the right one shows the HTC distribution at the final and initial time.
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IV. Conclusions
This work presented multi-step numerical simulations of in-flight ice accretion around airfoils and wings, focusing

on the effects of spatial and temporal discretization on the final ice shape. In particular, a growth parameter _ was
introduced to describe the origin and the evolution of geometrical irregularities. In this way, the duration of each
intermediate step can be computed automatically within the thermodynamic module, without the need for a-priori
guesses from the user. The strategy adopted for the definition of the discrete level-set field to track the updating of the
evolving ice-air interface has been improved to deal with arbitrary large displacements, and its robustness has been
key to complete all the simulations in an automatic way, especially those that would have lead to grid intersections if
performed with standard mesh deformation techniques.

The time evolution of the ice shapes obtained for different values of _ exposed the numerical mechanisms leading
to geometrical oscillations on the iced surface, highlighting the different ice accretion mechanisms between rime ice
and glaze ice and their effect on such irregularities, including the importance of multi-bin simulations to describe the
physics of the process better. The grid spacing analysis clearly showed that a fine grid discretization, although capable
of describing more accurately the ice features, promotes the development of geometrical oscillations if compared tothe
corresponding coarser grid with the same value of growth parameter _.

Ice shape convergence has been widely verified for the rime ice, despite the appearance of geometrical oscillations.
Convergence is unfortunately more difficult to assess in the presence of large horn-like shapes as those associated with
the glaze ice. Another key factor that promotes the insurgence of such oscillations is the heat transfer coefficient, which
determines the local ice accretion rate. The analysis showed that very short time steps are required to have a consistent
prediction of the horns’ angles and that the surface discretization strongly influences their location.

Numerical simulations highlighted how a simple comparison between single slices is of limited use due to the high
irregularity of the ice shape in the spanwise direction. In future investigations, other quantities such as the overall ice
mass, locally computed mean ice shapes, and possibly also the time evolution of the experimental ice shape would
provide valuable insights into this complex formation mechanism, helping the modeling and developing of in-flight
icing simulations.
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