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UNCERTAINTY QUANTIFICATION FOR FISHER-KOLMOGOROV EQUATION
ON GRAPHS WITH APPLICATION TO PATIENT-SPECIFIC ALZHEIMER’S
DISEASE*

MATTIA CORTIM™*®, FRANCESCA BONIZZONI!,
PaoLA F. ANTONIETTI'! AND ALFIO M. QUARTERONI"?

Abstract. The Fisher-Kolmogorov equation is a diffusion-reaction PDE that models the accumu-
lation of prionic proteins, which are responsible for many different neurological disorders. The most
important and studied misfolded protein in literature is the Amyloid-3, responsible for the onset of
Alzheimer’s disease. Moving from medical images we construct a reduced-order model based on a graph
brain connectome. The reaction coefficient of the proteins which can hardly be measured is modeled
as a stochastic random field, taking into account all the many different underlying physical processes.
Its probability distribution is inferred by means of the Monte Carlo Markov Chain method applied
to clinical data. The resulting model is patient-specific and can be employed for predicting the dis-
ease’s future development. Forward uncertainty quantification techniques (Monte Carlo and sparse
grid stochastic collocation) are applied with the aim of quantifying the impact of the variability of the
reaction coefficient on the progression of protein accumulation within the next 20 years.
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1. INTRODUCTION

Neurodegenerative disorders are neurological diseases that yield progressive damage to the neuronal tissue,
compromising the communication between cells and then the entire cell structure. Clinical evidence suggests that
a mechanism of spreading toxic misfolded prionic proteins stands at the base of neurodegenerative disorders [34].
One of the pathologies in this group is Alzheimer’s disease (AD), the most common form of dementia nowadays
[28]. In AD, the pathological onset is connected to the accumulation of two proteins, namely the Amyloid—g
and the tau protein. Their accumulation causes destruction of the synapses that mediate memory and cognition,
due to the inability of living neurons to maintain functional axons and dendrites, or to their death [3].

From a clinical point of view, the control of the disease progression is based on cognition exams and on
monitoring the value of some critical biomarkers. Amyloid-3 is the earliest hallmark of AD, for this reason,

Keywords and phrases. Fisher-Kolmogorov equation, Alzheimer disease, uncertainty quantification, brain connectome, graphs.
* Dedicated to the memory of Assyr Abdulle.
I MOX-Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan 20133, Italy.

2 Institute of Mathematics, Ecole Polytechnique Fédérale de Lausanne, Station 8, Av. Piccard, Lausanne 1015, Switzerland.
**Corresponding author: mattia.corti@polimi.it

© The authors. Published by EDP Sciences, SMAI 2024

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


https://doi.org/10.1051/m2an/2023095
https://www.esaim-m2an.org
https://orcid.org/0000-0002-7014-972X
mailto:mattia.corti@polimi.it
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0

2136 M. CORTI ET AL.

positron emission tomography (PET) is used to evaluate the concentration of the misfolded proteins. However,
being invasive and costly [33], PET scanners are often used only for diagnosis and not to monitor the progression
of the disease [14].

In this context, the numerical simulation of the misfolded protein concentrations can describe the chemical
nature of this type of disease. Several mathematical models for prion dynamics have been proposed in the past
few years, based on partial differential equations (PDEs). Oligomer coagulation and fragmentation, which are
the chemical processes to which Amyloid-4 undergoes, are typically described by means of the Smoluchowski
equation [10]. Although this model is able to describe in a detailed way the reality of chemical interactions,
solving it on three-dimensional meshes of the brain is difficult, due to the prohibitive computational complexity.
For this reason, suitable simplified methods have been proposed, based on graphs that represent the principal
connections between different brain regions, namely the connectograms. These networks can be derived starting
from Diffusion Weighted Images (DWI) and then used as a geometrically reduced order model to compute
a numerical solution of the PDEs [9, 12], upon including some patient-specific information inside the graph
structure itself.

The same approach is applied in this work: starting from DWI images we derive a brain connectome describing
our patient’s brain that we use as a discrete space domain for the Fisher-Kolmogorov (FK) equation [9, 35].
The latter can be derived as a simplified version of the complete Smoluchowski model, indeed it reduces to a
single nonlinear PDE. For this type of equation simulations of neurodegeneration on a complete brain geometry
are mostly based on finite element discretizations [24, 35]. Recently, in [5, 6] the authors proposed numerical
methods based on discontinuous Galerkin methods for the approximation of FK equation.

Concerning the simulation of the FK model on graphs, diffusion directions, and magnitude are derived from
medical imaging. However, no information about the parameter describing the protein reaction can be obtained
from clinical exams. Indeed, due to the simplified form of the equation, the reaction parameter encodes many
different physical processes at the same time: production, misfolding, aggregation and clearance [9]. Because
of that, some works describe the parameter as a random variable [26]. Indeed, in this work, our approach for
the calibration of the parameter makes use of the Amyloid-3 concentrations derived from two subsequent PET
medical images to estimate the probability distribution by means of an inverse uncertainty quantification (UQ)
algorithm.

Bayesian inverse UQ algorithms in the context of neurodegenerative disorders have been used in [26], to
describe the diffusion and reaction of tau proteins, using the FK equation. In [27], the application of the Bayesian
framework is extended to a coupling between the tau protein accumulation and the induced atrophy. In this
work, we employ the Markov Chain Monte Carlo (MCMC) method [16,22] to calibrate the reaction parameter
of the FK equation modelling the spreading of Amyloid-3 protein. As a result, we obtain a patient-specific
model describing the disease development.

With the aim of predicting the disease development and assessing the impact of the reaction coefficient
variability on the random protein concentration, we apply forward UQ methods. In particular, we introduce
the quantity of interest (Qol) being the spatial average of the protein concentration at a set of time instances
(t = 5,10, 15,20 years), and we estimate its expectation and variance by means of the Monte Carlo (MC) [13]
as well as the sparse grid stochastic collocation (SC) method [1,20]. To the best of our knowledge, this is the
first time that the SC method is employed to infer the evolution of neurodegenerative diseases.

The paper is organized as follows. In Section 2, we introduce the FK mathematical model with stochastic
reaction parameter and discuss its application to neurodegeneration. Moreover, we introduce the space dis-
cretization of the problem on the reconstructed graph. In Section 3 we recall numerical methods for inverse
and forward UQ. Numerical results are presented in Section 4: we introduce the numerical discretization and
the PET imaging projection (Sect. 4.1), we show the results of the inverse UQ (Sect. 4.2), and we discuss the
results of the forward UQ simulations along 20 years (Sect. 4.3). Finally, in Section 5 we draw some conclusions
and discuss possible further developments.
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2. MATHEMATICAL MODEL

In this section, we present the FK equation to describe the reaction and diffusion of Amyloid-3 proteins.
Hence, the problem is dependent on time ¢ € (0, 7], with final time 7" > 0, and space € Q C R? (d = 2,3).
A typical assumption in the literature is that there exists a constant baseline concentration of healthy state
proteins. The problem at hand can be described by only one relative concentration of the misfolded protein c.
Indeed, the variable c is rescaled in the interval [0, 1], where 0 means the absence of misfolded proteins and 1 is
the high prevalence of them. For a detailed model derivation, we refer to [35].

We assume that the reaction parameter o = a(x,p) representing the local conversion rate of the proteins
from healthy to misfolded state depends on the parameter vector p = (pi,...,pn) randomly varying in the
hyperrectangle ' =T'; x ... x I'y € RY. In particular, we assume:

N
a(z,p) = ijxnj (z), (1)

where (Qj)j,v:l is a non-overlapping partition of the domain €2 and p; denotes the reaction parameter in the
region ), for all j = 1,..., N. In this work, €};, j =1,..., N refers to different regions of the brain and in the
considered application N = 7: frontal lobe, temporal lobe, parietal lobe, insular lobe, limbic lobe, occipital lobe,
and subcortical nuclei. As a consequence, the concentration ¢ depends on the space and time variables as well
as on the parameter vector p, namely, ¢ = c¢(x, t, p).

The differential model reads as follows: find ¢: Q x [0,7] x I' — R such that

O (et,p) = V- (D(@)V c(e,1,p) + oz p) cle, 1, p)(1 — c(.t,p) (2,1,p) € 2 x (0,T] x T,

ot
(D(2)V c(z, t,p)) - n(x) =0 (@,t,p) €90 x (0,T] xT, (2
C(:B,O,p) = CO(m) (ZB,p) e QxT.

The reaction parameter is assumed to be stochastic since its value is highly patient-specific and depends on
the production, misfolding and clearance processes [9,26]. In particular, the conversion factor models not only
the production and aggregation of misfolded protein [3], but also the reduced clearance that is connected with
the pathological functioning of the glymphatic system [4]. This variety of processes encoded in the parameter
alpha stems from the simplification of the more detailed Smoluchowski model [9] from which the FK equation is
derived. The diffusion tensor D = D(x) denotes the spreading of the misfolded protein inside the domain; the
latter represents the volume occupied by the whole brain parenchymal tissue. From a biological point of view,
most of the diffusion occurs along axonal directions; for this reason, we derive a graph, which connects brain
regions from DWTI [35]. This graph is typically known as brain connectome [7]. We denote the deterministic initial
condition with ¢y = ¢o(). Finally, at 02, we assume homogeneous Neumann boundary condition, n = n(x)
being the unit normal to 0S2.

2.1. Discrete formulation

Due to the nature of the prionic diffusion, which is mostly aligned along the axonal connections, we discretize
equation (2) on the brain connectome graph, following [2,9]. More in details, we introduce the graph G = (V, E)
representing a discretization of the domain Q, where V' = (x;)}., denotes the set of vertices (nodes) of the
graph and E denotes the set of edges, as it can be observed in Figure la. In the construction of the weighted
undirected graph, we associate a positive weight w;; > 0 to each couple of nodes (7,j) € V' x V. In particular,
w;; = 0 means that we do not have any connection between the two nodes.
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FIGURE 1. Schematic representation of graphs and Laplacina matrix. (a) Monomeric seeding
model. (b) Polymeric seeding model.

The graph G and its structure allow us to define the Laplacian matrix L = (L;;) _; [11,30] as:

ij=1
—wi; 1 F g,
Zwij =17
Jj=1

This definition applies to weighted and undirected graphs and defines a positive semidefinite symmetric
matrix [11]. The definition of L depends only on the topological structure of the graph.

The Laplacian matrix in equation (3) can be used to represent a discretization of the continuous Laplacian
operator [30]. Indeed, the discretization proposed for the Laplacian of a generic function g = g(x) in the j-th
node is:

M M
V- (D@)Vg(@;) = 3 wilola;) — g(@) = 3 Lyg(as), (4)

2 =
where the Laplacian matrix L represents the weighted diffusion modeled in the continuous limit by the tensor
D, indeed the weights are connected to the axonal diffusion as explained in Section 4.1. This descends from
the discretization of the Laplace operator by means of the finite difference method, on cartesian grids, which
can be associated with a lattice, i.e. a regular unweighted graph [11], as shown in Figure 1b. In particular, a
graph vertex represents a grid point and its local connectivity determines the finite difference approximation
stencil of the grid point. Concerning the boundary condition, following the duality with the finite difference
paradigm, the fact that we do not apply any constraint to the grid points. The interpretation of this fact is the
application of a homogeneous Neumann boundary condition to the continuous problem [30]. For information
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about the application of this discretization to the FK equation, we refer to [9,12], while concerning the general
parabolic semilinear equation, we refer to [18].

Applying the theory of discretization of PDEs on graphs [18] to the model problem (2), we find the following
semi-discretized formulation:

Je;

o7 (t.p) = ZLnCztP)+04(%7P)Cg(tP)(l—cj(tp)) (tp) € (0TI T j=1,...M,

= ®)
¢j(0,p) = co; pel j=1,...,M.

Equation (5) is a system of networked ordinary differential equations (ODEs), where c¢;(t,p) =~
c(xj,t,p): [0,T] x ' — R is the approximated solution at the j-th node x; of the graph G. The solution
evaluated at the set of nodes x; € V' is collected into the vector ¢ = (¢; )J 1:[0,T] xT' — RM. In the same way,
the values of the initial condition ¢o(x) at V' are encoded by the vector ¢y = (co; )j:1 € RM, with cp; = co(z;)
forall j=1,..., M.

To discretize in time, we apply the Crank-Nicolson scheme, with a second-order extrapolation for a semi-
implicit treatment of the nonlinear reactive term. In particular, let {tg}évzto be the uniform partition of the time

interval [0,7] into N, intervals with length At = N,’ namely, 0 =ty < t; < ... <ty, =T and &y = éT for
£=0,...,N;. The fully discrete formulation of problem (2) reads: give the 1n1t1al conditions ¢y and ¢_1, ﬁnd
cFtl = ck*+1(p), such that
k41 k
c —c 1 3 1
- = — _CL(! k cktt 1—(ZcF— =t k=0,....,N;— 1
A 5 (" + )+ a0 3¢ +2c ® 5C ~ 3¢ peees N — 1,
(6)
c® = ¢y, cl=c_y,

where for each node of the graph G « is the vector containing the corresponding value of the reaction parameter
a, 1 is a vector of ones and the symbol ® denotes the (component-by-component) Hadamard product.

3. UQ METHODS FOR FK WITH STOCHASTIC REACTION ON GRAPHS

In this section, we describe inverse and forward uncertainty quantification algorithms, which we apply in
Section 4. In particular, in Section 3.1, we introduce the MCMC method, and in Section 3.2, we introduce the
MC and the SC methods.

3.1. Inverse Uncertainty Quantification

As seen in Section 2, the FK equation (2) depends on the reaction parameter a(x, p) defined in equation (1),
is a stochastic variable depending on the random vector p, encoding several physical processes that cannot be
directly estimated. However, due to the patient-specificity of the neurodegeneration, it is difficult to determine
a distribution of the components (p1,...,py) that can be used for every patient [26]. For this reason, in this
work, we propose to estimate specific distributions of the parameters, starting from the PET medical images
and using the MCMC method.

Let us denote with Q@ € R the Qol, or output, of the fully-discrete FK formulation (6). It can be seen as a
function of the N uncertain parameters, namely Q: I' — R, even though generalizations to the vector-valued
case are straightforward. Possible examples are the spatial average of the solution at the final time

p) = (A)(T.p) MzclTp 7

(see Sect. 4) or the solution at one specific node ;- at the final time (Q(p) = ¢;« (T, p)).
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In order to determine the distribution of the parameter vector p = (p1,...,pn) € I', we construct a Markov
chain, by extracting at every iteration a step from a Gaussian distribution § ~ A/(0, f)) totally independent
from the previous one, where we assume that S = 521, with & a scalar value that we assume constant for
each component of the vector p. The idea of the Metropolis-Hastings algorithm is to construct a posterior
distribution of the parameter 7o (p) starting from some suitable assumptions on the prior distributions mp, (p)
of the parameters. In particular, in this work, we assume a uniform prior distribution of the parameters, with
bounds a; and b, for the /-th component of the parameters vector p.

At each iteration, we either accept or reject the new value of the chain, according to a Bernoulli distribution
of parameter p, computed using the application of Bayes’ theorem and defined by:

_ Tpost(p*|QPET) _ 7.‘,(QPET|p*) . Wpr(P*) (8)
P 71-post(p(i_l)‘QPET) W(QPET|p(i)) Wpr(p(i))’

where 7(Q|p) is the conditioned distribution of the quantity of interest, with respect to the parameters’ realiza-
tion. The computation of this quantity requires that we assume a model for the uncertainty in the measuring
errors. In particular, we can assume that the errors are distributed as a vectorial Gaussian distribution (0, o*I).
In this way, we can obtain a formula for the likelihood distribution:

Q¥ |p = N(Q(p), o°1). 9)

The MCMC algorithm is reported in Algorithm 1. At the end of the iterations, we compute the vector of the
mean g, and variance o7 of the realizations of the p, parameter. However, we neglect the first M realizations,
to eliminate the dependency on the initial point of the chain. More on MCMC methods can be found in [22].

3.2. Forward Uncertainty Quantification

The FK equation (2) depends on the vector of parameters p = (p1,...,pn) € I', whose random distribution
can be determined following the procedure presented in Section 3.1. In particular, as an output of the inverse UQ
problem, we have the set of pairs {(u¢, 07)}),, where each (¢, 0;) denotes the mean and standard deviation of
the normal-distributed parameter p, ~ N (j¢, 0¢). Note that each p, takes values in the entire real axes, namely,
Iy = R, whence I' = RY. Moreover, we denote with p: I' — R, the joint probability density function (pdf) of
p. If the entries of p are independent, then p = Hévzl pe, where py: I'y — R, denotes the pdf of a Gaussian

random variable p;(y) = \/%w exp (y;a o
4

In this framework, we are interested in quantifying how the uncertainty in the input parameter vector p
affects the Qol, by computing its statistical moments, like expectation and variance, respectively given by

E[Q] = / Q(p)p(p) dp,
p (10)

V[Q] = / (Q(p) - E[Q)(p))*0(p) dp.

In particular, in our medical application, we aim at quantifying the impact of varying piecewise constant
reaction coefficients of prionic proteins on the onset and progression of Alzheimer’s disease.

3.2.1. MC method

The easiest and most popular approach to compute approximations to the statistical moments defined in
equation (10) is the MC method. The MC algorithm (in its plain formulation) computes the estimators for the
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Algorithm 1 MCMC estimation of the distribution of p

Require: Initial value of input parameter p(®
Ensure: Samples of the distribution p)
fori=1: M do
Extract the white noise value §* ~ A(0,%,)
Compute p* = pt~b + §*
Compute ¢* = ¢*(z, t,p") by solving equation (6)
Evaluate the Qol Q" at ¢*

Tpost (P” ‘ QPET)
Tpost (U~ 1| QPET)
Extract from the Bernoulli the choice of accepting or not y ~ Be(p)

Compute the acceptance rate p =

if y =1 then
p" =p
else ' _
p(l) — p(z—l)
end if
end for

Discard the first M realization of the Markov chain
Compute the mean of the parameters’ realizations:

1 M
()
e = —= p
M—M Z ‘
j=M+1
Compute the variance of the parameters’ realizations:

M

of = 7]\47}\271 > ((pﬁz”)z —ui)

j=M+1

see also Algorithm 2. Standard analysis results show that the MC error is O(Q~'/?), namely it decays as the
number of samples () increases, with rate —%.

3.2.2. Sparse grid SC method

A successful alternative approach to performing forward UQ is the SC method based on sparse grids. It
can be informally described as an approximation technique, obtained as a linear combination of several tensor
product interpolation operators I', each formed by a limited number of points. The underlying idea is the so-
called sparsification principle: while none of these tensor product interpolation operators will be very accurate,
an overall good approximation can be recovered by carefully combining many of them. This comes at a much
lower cost than that required by considering a full tensor product approach over the entire parameter space I'.
Indeed, such an approach would involve a number of grid points exponential in N hence it would be affected
by the so-called curse of dimensionality. Consequently, the full tensor product approach is unfeasible, even for
moderately small N.
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Algorithm 2 MC estimators for expectation and variance

Require: Q
Ensure: MC estimators pq, aé
Set pg =0,v9 =0
Generate @ i.i.d. samples of the input parameter p, {p(")}qQ:1
for g=1:Q do
Compute ¢@ = 9 (, t,p(‘J)) by solving equation (6)
Evaluate the Qol at ¢(®
ne = no + Qc!?)
v = vg + Q(c'?)?

end for

2 _ 1 2
0Q = o1 (vo — 1d)
1Q = GHQ

One-dimensional Stochastic Collocation

The starting point for the construction of the sparse grid approximation to the Qol relies on the introduction

of one-dimensional Lagrange interpolation operators ™) : CO(T,,) — Poy—1(Ty) foralln =1,..., N, given
by
_ m(in) ' _
um(zn)[u](pn) = Z U(p%]n))éj(pgn)) Vpn € I'n, (12)
Jn=1

where Hy, (i) = {pS;")};?:,“") and {/;, }jmn(i") denote the set of Lagrange abscissas (or collocation points) and
Lagrange polynomials of degree m(i,, ), respectively. Here i,, > 1 is an integer denoting the level of approximation
and m(i,) is the number of collocation points used to build the interpolation at level i,. The choice of the
collocation points depends on the distribution of the random parameter p,. In the particular case where p,
follows a Gaussian distribution (as in the present paper), possible choices are Gauss-Hermite points, GenzKeister
points or Leja points. As i, varies, we get a sequence of Lagrange interpolation operators {Z/{m(i")}inzl. As
a function of i,, the (level-to-knot) function m(i,) has to fulfill: m(0) = 0 (and U° = 0), m(1) = 1 and
m(in) < m(in, + 1) for i, > 1.

Smolyak sparse grids

Let i = (i1,...,in) € Nf be the multi-index with entries representing the approximation level along each
direction n, for n = 1,..., N. Given the N-dimensional set of collocation points

N
Hm@) = H Hrm(in)
n=1

being the Cartesian product of the one-dimensional sets of collocation points Hy y,(iy)s - - - s HN,m(in), We intro-
duce the tensor product interpolation operator Y™ = f™(11) @ ... @ Y™(~) given by

m(i1)  m(in)

U (p) = 3 o > w?, . p8) (€, @@ 4,) () (13)

Jj1i=1 in=1

for all u € CY(T"). Note that the set Hom(s) contains #H, ) = Hf:[:l m(iy) collocation points. Hence, the tensor
product interpolation operator U™(® requires #Hm(s) evaluations of u. For example, when taking v = Q as in
equation (7) being the spatial average of the FK solution at final time T, we get

Q(p) ~ U™ [Q](p)
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The Smolyak sparse grid approximation to the Qol @ is the combination technique:

Si[Ql(p) = Y U™V [Q)(p), (14)

il
where

— {~i}ier are the combination technique coefficients, given by ~; = Zje{O,I}N (—1)l91. Note that some ¢; might
i+jel
be null, in which case U™® does not enter in the final approximation;

- IC Nf is a set of multi-indices that specifies which tensor interpolation operators enter in the sparse grid
construction. It should be chosen according to the sparsification principle, namely, whenever one entry of
¢ is large, the others should be kept as small as possible. Moreover, it is required to be downward-closed,
namely, if ¢ € I, then i —e, € I, for alln =1,..., N, where e, denotes the vector with all zeros expect the
k-th component, that is equal to 1.

Note that equation (14) requires to solve equation (6) at all the collocation points p in the sparse grid

H[ = U Hm(i).
iel
Moreover, it becomes operative as far as we specify the three basic “ingredients” of the sparse grid construction,
namely, the set I, the level-to-knot function m(-), and the one-dimensional knots used along each direction
n=1,...,N. In Section 4 we will detail our choices.

Sparse grids for forward UQ

Associated with the Smolyak sparse grid approximant (14) we introduce the sparse grid quadrature formula

Q119 =) Qi[9 (15)

el
where (Q; denotes the tensor product quadrature rule

m(i1) m(in)

/ Ap)p(p)dp ~ Qi[Q = > -+ > Q.. p{M g g
r A=l jn=1
and ¢ = Jr, 4. (Pn)pn(pn) dp, for all n =1,...,N.
Applying (15), we obtain the sparse grid approximations of the expectation and variance of the Qol:

E[Q] ~ Q:[Q], V9] ~ Qr[Q% — (QsQ)°.
4. NUMERICAL RESULTS

The numerical results presented in this section concern a patient-specific test case. In particular, we are
considering a patient affected by Alzheimer’s disease, with a calibration phase that goes from the age of 61
years to 68 years. Indeed, the computational domain is reconstructed from medical images (see Sect. 4.1), and
the distribution of the reaction parameters in the different regions of the brain is recovered by solving an inverse
UQ problem (see Sect. 4.2). As the last step of our numerical study, we perform a forward UQ analysis (see
Sect. 4.3), with the aim of determining the evolution of the Amyloid-3 protein for the next twenty years, taking
as initial condition the data provided from the corresponding PET image. We mention that all the medical
images we use in this section are provided by the OASIS-3 database (a freely available neuroimaging data set
of the brain) [19]. In particular, the specific brain geometry considered in this work is displayed in Figure 2a.
The numerical solver used for space discretization is based on a built-in MATLAB code, whereas for the SC
method we employ the Sparse Grids Matlab kit [21]. The time discretization step is set equal to At = 2 x 107!
years in all the simulations.
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== Frontal Lobe == Temporal Lobe == Limbic Lobe == Occipital Lobe

Parietal Lobe == Insular Lobe == Subcortical Nuclei
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FIGURE 2. Graph discretization of the brain (each colour in Figures (¢) and (d) denotes a
different brain’s region).

4.1. Graph reconstruction and PET projection

To generate the graph modelling the brain network we employ DWI, a Magnetic Resonance Imaging (MRI)
technique, which determines the Brownian motion of the water molecules; indeed the axonal nature of the
neuronal connections creates directional paths for the motion. By using DSI studio [7], we can determine the
brain’s tractography, highlighting the axons’ principal direction at every point of the brain [36], as we can
observe in Figure 2b.

The tractography is used to derive a weighted graph G, where the nodes in V' are associated with a parcellation
of the brain regions and the connecting edges E are weighted taking into account both the number of connections
and the length of the paths. Starting from the tractography, the graph is reconstructed by counting the number
of tracts n;; that connect two brain regions associated with different nodes ¢ and j and the mean value of the
lengths of these tracts l;;. Finally the weights w;; of the graph are computed as follows:

Tij

’U)ij:k‘ i,j:L...,M, (16)

where k is a scaling parameter adopted to reach a diffusivity value coherent to the literature values in similar
works [9,25]. In this work, we use parcellation based on the Brainnetome Atlas [8] and we group the nodes in
7 regions: frontal lobe, temporal lobe, parietal lobe, insular lobe, limbic lobe, occipital lobe, and subcortical
nuclei. In Figure 2c we report the 246 nodes of the graph coloured according to the corresponding regions, and
the edges of the graph are visible in Figure 2d. We report the local graphs of each region in Figure 3. Moreover,
we display the connectogram representing the principal connections between different regions. For readability,
the connectogram shows only the principal connections. More specifically, we show the ones associated with
weights that are larger than a threshold, which we fix to be equal to the 5% of the maximum weight detected.
We underline that the structure of the regions and the graph discretization have a large impact on the parameter
calibration and then on the final output of the simulation, as it will be detailed in Section 4.2.

In order to estimate the reaction parameters as well as to set up the initial conditions for the (patient-specific)
FK problem, we estimate the concentration ¢ of Amyloid-3 protein at two different time instances. The medical
data used are Positron Emission Tomography images with Pittsburgh compound B (PET-PiB) [33], which uses
a radioligand able to identify the presence of Amyloid-£ plaques (more information on the acquisition techniques
of the specific images used in this work can be found in [19]). The medical images are processed by means of
the PET Unified Pipeline (PUP), to obtain a rescaling Standardized Uptake Value Ratio (SUVR). This scale
is typically used in medical literature, to compare the images of different patients, and a value of the Amyloid
positivity cutoff is estimated to be around 1.31 [19,31]. The choice we make is to fit the value of positivity for
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Insular Lobe Limbic Lobe Occipital Lobe Subcortical Nuclei

¥z

FIGURE 3. Local graphs of the seven regions of the brain and brain connectogram between
different regions (excluding the connections with weight lower than 5% of the principal one).
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FIGURE 4. Data extracted from PET medical images. The first PET is acquired at 61 years,
and the second one is acquired at 68 years. (a) Scatter plot of projected values from the PET
in the nodes of the graph. The point color represents the region, the size is proportional to the
volume of the node. (b) Projection of PET-PiB images on the reconstructed graph (first PET
above and second one under). The color map refers to the level of proteins concentration.

the simulated concentration of FK equation to 0.75, and so make a rescale fixing ¢ = 1 as 1.74 of SUVR values
in the PET image.

After having rescaled the values detected by the imaging so that they are between 0 and 1, we average the
concentration on the parcellation reconstructed by DSI. Due to the fact that any region of the parcellation is
associated with a single node in the brain connectome graph, we are obtaining the values of the concentration
¢; at any node j. The output of the process is the projection of the medical images (at 61 and 68 years of the
patient) on the reconstructed graph: see Figure 4b.

By comparing the two images in Figure 4b, we notice that the concentration of Amyloid-5 has increased
in the majority of the graph nodes. A more precise comparison is provided in Figure 4a, where we plot the
concentration of the second PET (at 68 years) versus that of the first (at 61 years). Each bullet is coloured
according to the region it belongs to (the same color code as in Fig. 3 is employed) and its size is proportional
to the volume of the represented brain section in the parcellation. The scatter plot confirms the increase of the
concentration in most of the nodes. However, it seems that a few nodes exhibit a decrease in the concentration of
misfolded proteins. This behaviour, which is mainly located in the subcortical lobe, is unexpected in the progress
of the disease, that typically features an increase of the pathological proteins concentration. We attribute this
inconsistency to the atrophy of the region, which can be observed in the MRI images around the ventricles, and
which is typical of AD [33]. Indeed, a reduction of the tissue can affect the projection of the medical data on the
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TABLE 1. Bounds of the prior uniform distributions of the parameters and mean and variance
of the estimated distributions.

Prior Distribution [ Estimated Distribution

Brain Lobe (Index) Parameter 5

ay be j274 Oy
Frontal Lobe (1) p1 —0.0700 0.4300 0.1801 0.0077
Temporal Lobe (2) D2 —0.1100 0.3900  0.1421 0.0079
Parietal Lobe (3) D3 —0.1900 0.3100  0.0627  0.0060
Insular Lobe (4) Da —0.1500 0.3500  0.1005 0.0070
Limbic Lobe (5) Ds —0.1200 0.3800  0.1351 0.0075
Occipital Lobe (6) D6 —0.1900 0.3100  0.0545 0.0086
Subcortical Nuclei (7) pr —0.1500 0.3500  0.1147  0.0093

graph, due to the fact that the same pixel of PET image catches a larger part of the domain without neuronal
tissue.

4.2. Estimation of parameter distributions

In this section, we compute the distributions of the reaction parameters in the 7 regions of the graph by
means of the inverse UQ process illustrated in Section 3.1. To better calibrate the distributions, we need to
take into account the existence of some outliers in the PET measurements, as explained in Section 4.1. When
calibrating the reaction parameters, we will not take into account those nodes at which the concentration in the
second PET is lower than in the first one of more than 10%. This choice of cutoff is empirical and it is based on
the literature evidence according to which, in general, the concentration of Amyloid-G does not decrease over
time [17,29]. The choice of this cutoff at —10% preserves nodes in which we have a constant concentration of
protein, but in which we register a small decrease due to some noise in the medical images.

According to (1), the reaction coefficient ¢ is modelled as a piecewise Gaussian random field, namely, «
is a Gaussian random variable whenever restricted to any of the seven brain regions. To model the reaction
parameter as a Gaussian distribution is a typical choice in the literature of prionic proteins spreading [26,27].
The complexity of the described underlying processes does not guarantee any bound on the values that the
parameter can assume; in particular, it can be also negative (in case of high clearance in a specific region).
However, the natural choice is a distribution with a positive mean value, as in [26]. Indeed, our choices are made
to have a low probability of having negative values of the parameter. In particular, we optimize the average
concentration of the protein in each region of the graph as follows:

M;

Q= (en),(T) =3 MM jo1.T (17)

()
k;=1 tot

In equation (17) we are computing a weighted average on the j-th region of the graph (containing M; nodes),
for j =1,...,7. The concentration at each node cgj‘ is weighted by the volume of the k;-th node vy; and divided
by the total volume wviot. The corresponding index for each brain region is reported in Table 1.

The Metropolis-Hastings algorithm (see Algorithm 1) is initialized by using a step with standard deviation
¢ = 1072. Moreover, we adopt a likelihood with standard deviation ¢ = 0.1. Finally, we choose the prior
distribution for the 7 parameters as p, ~ U(ay, by), where ay and b, are calibrated according to the available
medical data (see Tab. 1).This mean value is also used to initialize the Markov chain, namely p(®) = %(a +b),
where a = (ag)¢ and b = (by)g. To neglect the impact of the initial choice, we eliminate from the mean and
variance computation the first M = 10000 steps out of the M = 100000 we perform in this simulation.

The output values for u, and a? are reported in Table 1. We can observe that the mean values feature
high variability inside the different regions, and this result justifies the choice of using a non-homogeneous
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FIGURE 5. Results of the MCMC algorithm. Histogram and Gaussian distribution associated
with each lobe of the brain and comparison between the medical data and the numerical results
(T = 20).

spatial description of the corresponding parameter. Moreover, in Figure 5 we display the 7 different estimated
distributions with the histograms associated with the Markov chain realizations. We can observe coherence
between the result of the MCMC algorithm and the resulting Gaussian probability distributions, that we use in
the following section. Finally, in Figure 5 we report the comparison between the Q computed starting from the
numerical solution, obtained using the mean values of the parameters and the corresponding Q derived from
the medical images, neglecting the outliers as explained in Section 4.1. In the results reported in Figure 5 the
size of the bullets is proportional to the volume of the lobes. The accuracy of the estimating algorithm for the
parameters can be measured by the distance from the bisecting line, in which the numerical predicted value
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would be exactly equal to the medical data from PET images. Finally, we report the numerical solution on the
graph and the medical data at the final time. In both cases, we observe a higher concentration of misfolded
proteins inside the parietal and frontal lobes, coherently to what we expect from the medical literature [15].
This shows that our numerical method is able to reproduce the disease progression.

4.3. Prediction of disease development

In this section, we simulate future scenarios of the development of the Amyloid-G concentration inside the
brain, by following the two approaches presented in Section 3.2, namely MC and SC.

In this simulation, we fix the final time at T = 20years and we discretize the time interval [0,7] with a
timestep At = 0.02years (we denote the set of all considered time instances as Zr). As Qol we choose the
spatial average of the concentration inside the seven lobes of the brain graph, evaluated at all time instances
t € ZIp. In particular, at every t € Zp, we have a vectorial Qol Q = (Q1,...,Q7), where the j-th component
is Q; = (cp);(t) for j =1,...,7. We aim at approximating the expected value and the variance of each of the
Qol.

The reference expectation and variance are computed using the SC method on a Smolyak sparse grid of level
9 with Leja points (in total, there are 224 143 collocation nodes). The reference expectation and variance are
denoted by pg and 0'2Q, respectively, and they are both vectors of length 7: their different components correspond
to the regions of the brain graph. In Figure 6a, we report the computed results in terms of the volume-weighted
mean value over the different lobes (pg) and a range of standard deviation [(ug) — (0¢); (ko) + (@)]. We
observe a global increase of prionic concentration in time, coherently to what expected by the disease progression
[15]. Moreover, the stochastic description yields an increasing uncertainty over the years, which allows for
obtaining a range of future possible scenarios after many years.

We carry out a convergence analysis, with the aim of assessing the approximation properties of Smolyak
sparse grids with increasing level w = 3,4,5,6,7,8. The errors are reported in Table 2. We can notice that both
for (pg) and <02Q>, we have a monotone decrease of the error as the number of collocation points increases. We
can also notice, that the accuracy of the approximation deteriorates as time advances. Indeed, it is reasonable
that it is necessary to use a larger number of points, to approximate phenomena with larger variance, such
as the concentration after 15-20 years. The convergence results for the SC method are also displayed in Fig-
ures 6a and 6b, where the errors at time instances ¢t = 5, 10, 15, 20 are reported versus the number of collocation
points. For the sake of comparison, we also report the convergence of the MC error versus the number of MC
samples (note that the MC error decays with the predicted rate M /2, M being the number of samples). We
notice that, with a comparable number of evaluations of the differential problem, the SC method provides a
more accurate solution. This is particularly pronounced for smaller time instances.

In Table 3 we report the expectation and variance of the averaged concentration inside every single region
at time instances t = 5,10,15,20. As we can notice, the expectation is increasing in time within each lobe,
coherently with what we expect from the progression of the pathology. However, we can also notice that the
variance is increasing only for the initial times, and when the expectation becomes larger than 0.8 it starts
decreasing due to the impossibility of the solution to overcome 1, for the structure of FK equation [23]. For
example, concerning the frontal lobe, we can observe a reduction in the variance, associated with the high
values of protein concentration. In Figure 7 each row corresponds to a different lobe of the brain. In the first
column, we display the evolution of the average protein concentration with the relative standard deviation
ranges; in the second column we report the error convergence for SC versus the number of collocation points;
in the third column the report the MC error versus the number of samples. We notice that also considering
the regional average concentrations the SC method allows for reaching a more precise solution than MC, with
a comparable number of evaluations of the differential problem. However, in this case, the SC error does not
decrease monotonically (this is likely due to the nonlinearity of the PDE). Finally, we notice that, compared with
the global solution in Figure 6, we have a larger variability of the solution in the different regions, particularly
after 20 years.
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TABLE 2. Bounds of the prior uniform distributions of the parameters and expectation and
variance of the estimated distributions.

Grid level 3 4 5 6 7 8
Collocation Points 375 2241 7183 19825 48639 108 545
Collocation errors on approximation of (u)

Time: t =5 3.81x 1077 215x107% 454x107° 1.34x107° 1.37x107' 3.82x107'?
Time: t = 10 144 x10™° 1.77x10°% 869 x 1077 623x1077 1.79x10°% 1.61 x 10~°
Time: t = 15 1.17x 107% 298 x 107> 217x107° 1.70x10°° 4.48x 1077 4.55x 10~ "
Time: t = 20 429%x107F 135x107%F 1.01x107% 821 x107° 4.22x10°% 217x10°°
Collocation errors on approximation of (ag)

Time: t =5 569x107° 420x10°° 1.26x10°° 534x1077 6.42x10° 337x107°
Time: t = 10 224 x107° 432x107% 236x10°%7 150x 1077 4.43x10°° 203 x10°°
Time: t = 15 8.06 x 107° 221x107° 1.40x10~° 1.03x 10~ 9.59x 107> 278 x 107°
Time: t = 20 1.62x 1072 556 x 1072 4.68x 1072 3.94x 107° 4.99x 10~*  1.56 x 1077

TABLE 3. Expectation and variance of the solution distributions inside the brain regions.

Brain Lobe (Index) t=5 > t=10 5 t=15 5 t =20 5

HQ 9Q HQ 9Q HQ 9Q HQ 9Q
Frontal Lobe (1) 0.7527 0.0049 0.8486 0.0078 0.9000 0.0077 0.9289 0.0069
Temporal Lobe (2) 0.6515 0.0063 0.7598 0.0117 0.8277 0.0128 0.8699 0.0122
Parietal Lobe (3) 0.6018 0.0060 0.6729 0.0156 0.7303 0.0226 0.7738 0.0265
Insular Lobe (4) 0.6417 0.0061 0.7405 0.0123 0.8096 0.0142 0.8558 0.0138
Limbic Lobe (5) 0.6914 0.0051 0.7892 0.0095 0.8514 0.0102 0.8905 0.0093
Occipital Lobe (6) 0.5121 0.0073 0.6043 0.0194 0.6782 0.0275 0.7336 0.0314

Subcortical Nuclei (7) 0.5822 0.0067 0.7066 0.0147 0.7891 0.0176 0.8413 0.0175
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5. CONCLUSIONS

In this work, we have proposed an approach to predict the progression of the accumulation of misfolded
Amyloid—f proteins by means of a Fisher-Kolmogorov model in Alzheimers disease. In order to model the
reaction coefficients, which cannot be measured and whose values depend on many different physical processes,
we adopted a stochastic model. The evaluation of the distributions has been made by means of an inverse
uncertainty quantification algorithm and then applied to the prediction of the disease development in the next
20 years.

To keep the computational cost affordable, a reduced-order model, based on a graph discretization of the brain
connectome, is used. The derivation of the graph from medical images and the calibration of the parameter
distributions by means of clinical data yielded a complete patient-specific model for the simulation of the
progression of Alzheimer’s disease. In the numerical results, we presented a comparison in applying the Monte
Carlo algorithm with respect to a stochastic collocation, for estimating proteins’ concentration. The tests confirm
that the application of collocation on sparse grids yields a more precise approximation of the final solution, in
particular for smaller time frames (5-10 years), with the same number of evaluations of the PDE solution.

Some future developments of this work could concern the extension of the uncertainty quantification analysis
to the three-dimensional models, for example, applying the study to discontinuous Galerkin methods on real
brain geometries. Another possible development is using a white noise description for the weights of the graphs
that are computed starting from medical images and could be affected by measuring errors. In this context, a
sensitivity analysis between the relative importance of diffusion and reaction in network modelling can be an
interesting future development. Moreover, complete validation of the diffusion values by computing the values
from medical images [32] is not performed in this work, but it could improve the procedure. Finally, it can be
interesting to perform a complete analysis on a large number of different patients, to highlight the differences
in the computed values among them.
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