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Abstract

Manufacturing systems for today’s products are complex systems requiring a variety of different processes in order to be able to manufacture all
necessary part features. This also applies to the production of rotating components, which have experienced increasing demand at the latest due
to the growth in mobility. As in almost every manufacturing process, quality-reducing defects can occur due to deviations for example tool wear,
which cannot always be avoided. Those, that have accumulated from previous process steps can cause the occurrence of superimposed defects.
This leads to complex relationships between quality defects in the end product and the numerous parameters of the manufacturing processes. To
remain competitive, production must be optimized in order to identify defects as early as possible, as well as their dependencies and variation
patterns. The paper presents an approach to identify and model part variations within multi-stage production systems. Subsequently, based on a
detected deviation, a downstream compensation strategy can be proposed at an early stage of the manufacturing process, which uses the capability

of the overall system to fundamentally eliminate rejects.
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1. Introduction

Increasing digitization in today’s industry and society is
driving a shift towards data-driven production. At the same
time, the demands on companies are increasing in terms of in-
dividuality and the efficient and resource-saving production of
high-quality and complex products. On the one hand, this in-
creasing market and customer orientation is changing the un-
derstanding of quality, and on the other hand, it is also increas-
ing the demand for quality in production [14].

Manufacturing facilities for today’s products are complex
systems, often multi-stage production systems, that require a
variety of different processes in order to be able to create the
product with all the required features This also applies to the
production of rotating parts, which have experienced an in-
crease in demand due to the rise in new mobility [13]. Rotat-
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ing components are particularly necessary in the aerospace sec-
tor, in rail transport, and for drive units in the automotive sec-
tor. The requirements for the components are primarily deter-
mined by the intended use. In the aerospace sector in particular,
enormously high requirements have to be met in terms of prod-
uct quality, functionality (lightweight construction), and safety.
The multi-stage production process for a turbine shaft is corre-
spondingly complex, see Fig. 1 showing the relevant production
steps of such a shaft.

From an internal study, it is known that for the example com-
ponent, the net production time is 60h to 90h [4]. In reality,
the component passes through 13 machines with up to 30 ma-
chining processes in which first the inner contour and then the
outer contour is produced [5]. This is followed by the end-of-
line quality control (EOL), which is widely used for rotating
parts as confirmation of the requirements. Thus, correctness is
only checked at the end of the entire production chain. This
special quality control involves, among other things, setting the
component to the critical speed of about 5500 rpm, to check the
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Fig. 1. Demonstration case: manufacturing process of a hollow turbine shaft (dark gray is work piece material, light gray is removed material of the inner contour) [5].

shaft for imbalances. Even if the component has ideal exter-
nal dimensions within the tolerance zones, this often does not
mean that the component is free of unbalance. Defects that lead
to unbalance and thus to scrap are not uncommon, and late de-
tection of defects results in unnecessary waste of time, material,
and energy during production. In many cases, however, the un-
balance lies within a tolerance in which the component can be
reworked at defined stages. However, rework i.e., material re-
moval based on the measurement results, is an iterative process
of up to 15h which means up to 25 % of the total production
time.

The fact that dimensional defects cannot always be avoided
or detected directly in the process is described by Westkdmper
[15], Jiao and Djurdjanovic [9], Zhang et al. [16], Abell4n-
Nebot et al. [1], and more recently by Reiff et al. [12], Mag-
nanini et al. [10] on the basis of different multi-stage production
systems. Zhang et al. see this as a fundamental problem and un-
derpin the need for modern, even individual solutions in some
cases. Defects mainly occur in the form of dimensional and
shape deviations due to e.g., tool wear, frequent re-clamping, as
well as vibrations on the workpiece caused by the high machin-
ing forces. Deviations that have accumulated undetected from
previous processes can cause the occurrence of new defects.
This leads to complex relationships between quality defects in
the final product and the numerous parameters of the manufac-
turing processes.

Competitive production must be optimized to detect defects,
their dependencies and development patterns as early as pos-
sible. This was the goal of ForZDM, an EU-funded research
project that has fundamentally rethought previous approaches
to production planning and also existing manufacturing pro-
cesses between 2016-2021 [4]. In addition, a cost-effective and
flexible design of manufacturing systems has been created us-
ing state-of-the-art methods and technologies, with the aim of
realizing production that can detect defects at an early stage
and does not allow defect propagation, as well as does not re-
quire time-consuming rework or even produce rejects — Zero
Defect Manufacturing (ZDM). Multi-stage production systems
are predestined for this; due to the multitude of processes and
their complexity, they provide a high probability of error occur-
rence, but on the other hand also the possibility of being able to

compensate for these in the further production process through
the capabilities of the overall system.

To exploit this potential, this paper presents a method to
identify and model part variations along the material flow that
lead to scrap or rework, and then to enable the right strategies
for inline compensation or prediction based on specific inci-
dents. In our case different geometrical and dimensional devi-
ations and their combination at the shaft lead to time and cost
intensive and not sustainable rework. Each of these combina-
tions forms a PVM mode that must be avoided in the future.
The paper is structured as follows: In Section 2, the state of
the art is presented. Section 3 describes the developed method
and is completed by a final verification with a validation on the
demonstration case described in Section 4. In Section 5, con-
clusions are drawn and an outlook is given regarding further
potentials of the presented method.

2. State of the Art

In the past, the focus in optimization of multi-stage produc-
tion systems (MPS) laid on consideration of individual and sep-
arate processes using static process control systems. The poten-
tial inherent in the inter-stage relationships, which among other
things are the cause of defect generation, but can also be used
to compensate for defects, remains unexploited. Moreover, tra-
ditional approaches consider the aspects of product quality and
process capability separately [11]. The interplay, however, is
seen by Colledani et al. [2] as the most recent paradigm and
the basis for implementing ZDM. As early as 1998, Fong and
Lawless [7] explicitly derived mathematical models capable of
capturing and describing component variations along a MPS
in order to subsequently apply compensation strategies. Based
on this, the stream-of-variation (SoV) theory was established,
which additionally includes multivariate analyses for failure di-
agnosis and prediction [8]. Magnanini et al. [10] extended the
SoV theory and implemented a control model which allows de-
fect compensation in downstream processes for MPS.

However, previous approaches do not take into account the
characteristics of a manufacturing process of rotating compo-
nents. In addition to dimensional deviations, geometric devia-
tions must also be taken into account. These can be described
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with the help of a parametric model for rotating components
established by Eger et al. [6]. This model was also the funda-
mental part for developing two individual compensation meth-
ods for geometric and dimensional deviations previously pre-
sented by Reiff et al. [12] and Eger et al. [5], respectively. The
method presented in this paper is a combination of both meth-
ods i.e., modeling and identification of part variation models
and their compensation in terms of geometric and dimensional
deviations.

Further, existing approaches are limited if the description of
the component’s variability, which among other things also con-
tains information about the defect origin as well as the inter-
stage relationships, is missing [3]. For the practical implemen-
tation of a ZDM and the associated part variation modeling in
MPS, so-called Part Variation Modes (PVModes) are developed
here in this paper, which describe certain part variations of ro-
tating parts as described in the following chapters.

3. Identification and Modeling of Part Variations

In order to avoid rework and scrap parts it is necessary to
prevent the production of defective parts at an early stage. How-
ever, this is not always caused by exceeding individual toler-
ance limits, but can also be induced by accumulated devia-
tions or non-obvious dependencies in multi-stage production.
For this reason, it is important to identify patterns in produc-
tion and thus determine dependencies in the production of de-
fective components. Based on the identified patterns, PVModes
can then be defined. By early recognition of an occurring or an
occurred PVM, it is possible to initiate countermeasures in the
form of compensation strategies and to avoid the production of
a otherwise defective part.

For the definition of PVMs, a distinction is first made based
on the type of deviation that has occurred: geometric or dimen-
sional. A geometric deviation refers to a discrepancy between
the axis of rotation of the part and the actual axis of symmetry.
If these two axes do not align, it results in imbalances and errors
in subsequent production due to dependencies of the component
radii and the actual angle of the clamped component. Geometric
deviation are further divided for solid and hollow shafts.

In the case of a hollow shaft, the deviation can thus relate to
the outer as well as the inner contour and is defined based on
the resulting shape. For example, the deviation can describe a
parabolic, exponential or sinusoidal shape. Dimensional devia-
tions, on the other hand, refer to a difference between nominal
and actual values of the manufactured dimensions (e.g., diam-
eters and lengths). In this case the assignment to one (or more)
PVM is made on the basis of the previously identified pat-
terns in e.g., the multi-level dependencies. Here, it is checked
whether the deviation that has occurred is part of such a pattern
that has previously led to the production of faulty parts.

For comprehensive identification and modeling, possible
correlations between dimensional and geometric deviations
must also be taken into account. Only then can a holistic state-
ment be made about the dependencies in multi-stage produc-
tion. For example, a certain form of geometric deviation can

lead to dimensional deviations due to eccentricity in very spe-
cific production steps. It is thus necessary to consider the identi-
fied geometric deviation as additional information for the mod-
eling of PVMs as well as the subsequent determination of
downstream compensation strategies.

3.1. Method Requirements

The identification of these PVMs for the subsequent mod-
eling of the PVModes requires the use of suitable algorithms
from the field of machine learning. Due to different types and
specifications of variations described before, different require-
ments for the algorithm arise. A fundamental requirement for
the choice of algorithm is the ability to detect dependencies
across multiple stages of production. Only then is it possible
to reliably predict the effect of accumulated deviations. For
training the algorithm recognize these dependencies, or pat-
terns, production data from the described use case are available.
This includes measurements of various sensors at all process-
ing steps as well as measurements of the end of line control and
thus also the information whether a good or faulty part has been
produced. Accordingly, labeled data sets are available, which
makes an algorithm from the field of supervised learning suit-
able.

Another requirement for the algorithm is the handling of dif-
ferent data types. The reason for this is the consideration of di-
mensional as well as geometric deviations. Dimensional devia-
tions are characterized by a single measured value of a sensor,
whereas geometric deviations are described by several single
values that have to be considered coherently.

3.2. Identification and Modeling Method

Taking into account the requirements for the algorithm as
well as the goal of identifying part variation patterns, a multi-
step procedure was designed. This can be roughly divided into
the two steps of data preprocessing and model building shown
in Fig. 2. Data preprocessing has the goal to increase the predic-
tion accuracy as well as the reliability of the algorithm before it
is learned based on the data.

In the method used here, the first step is to classify the ge-
ometrical shape of the part. Here, a shape is assigned on the
basis of interrelated measurements along the axis of rotation,
depending on the extend of the deviation from the centre axis
After that, data preprocessing consists of transforming the sen-
sor values, eliminating data sets with insufficient entropy, fill-
ing in missing values, adjusting the ratio of good and faulty
parts in the data set, and finally converting the data into cate-
gorical values. The initial transformation of the sensor values
serves to be able to account for tolerance violations of the sen-
sor values in the analysis. The resulting normalized sensor val-
ues thus describe the degree of deviation from their respective
nominal values, or for geometric deviations, the characteristic
of the assigned shape. For dimensional data a normalized value
of 0 means, set-point and actual value of the sensor value match
while a value of +1 indicates production directly at the upper,
respectively lower, tolerance limit. If the absolute amount of
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Fig. 2. Procedure of the developed method.

the normalized value is greater than 1, this corresponds to an
exceeded tolerance.

If there are too many data sets with insufficient information
i.e., too many missing sensor values, this can lead to deteriora-
tion of the expressiveness of the algorithm. For this reason, data
rows with too little informative value are removed. Another ex-
ecuted step is the addition of values that are still missing after-
wards. Otherwise, the choice of possible algorithms would be
limited, since many machine learning algorithms require fully
populated data sets. Equally problematic for algorithms can be
a too unbalanced ratio of positive and negative examples during
learning. In an actual production setting, however, the number
of good parts produced outweighs the number of faulty parts.
In order for the algorithm to not be affected by this in its effi-
ciency, random data series of produced faulty parts are dupli-
cated and thus the ratio is adjusted. Since the majority of algo-
rithms cannot be applied to continuous values, the (normalized)
sensor data x are discretized. Here, these are divided into a total
of eight discrete categories on the basis of the respective mean
value (X) and the standard deviation (o).

The data preprocessing is followed by the actual modeling
of the algorithm. In a first step, the available data is divided into

a training and a validation data set. The algorithm is trained
on the basis of the training data set i.e., it attempts to identify
relationships and dependencies in the data independently. In the
case of already classified (labeled) data, the algorithm is able to
correct itself in the case of false statements and thus optimize
its expressiveness.

After the training phase is completed, the learned model is
validated using the data set that was previously unknown to it.
From the predictions made by the algorithm, metrics can be
determined about its predictive capability and accuracy. To in-
crease these metrics, two additional steps were performed in
the applied method: hyperparameter optimization and cross-
validation.

In hyperparameter optimization, all combinations of possi-
ble parameters are used for the predictions to determine the best
parameter combination. Cross-validation, on the other hand,
is intended to prevent overfitting of the algorithm to the data
set used. Here, the training data set is divided into equal-sized
parts, one part of each of which is used for internal valida-
tion during training. These two methods thus allow for an ex-
ploratory analysis of the possible solution space of the parame-
ters and an increase in the generality of the algorithm.

The final model is ultimately used not only to make predic-
tions about current production, but also to model part variation
modes. These represent the dependencies and interrelationships
of the multi-stage production identified by the algorithm. This
means that potential production errors can be pointed out at an
early stage and preventive countermeasures and compensation
strategies can be initiated accordingly.

3.3. Evaluation Based on Real Data

The selection of a particular algorithm for model building
was done by evaluation. For this purpose, various possible al-
gorithms were compared with each other on the basis of dif-
ferent criteria. In addition, the following variants of the proce-
dure were applied for each algorithm, resulting in eight possible
combinations in each case:

1. With and without transformation of sensor values to a nor-
malized value (T),

2. Replace missing values with the mean value / nominal
value (M),

3. With and without discretization (D).

The metrics used for evaluation are, on the one hand, the
achieved prediction accuracy and, on the other hand, the so-
called F1 score. This provides information about the precision
and robustness of a model.

For our evaluation, real data from a production line is avail-
able comprising measurements of the component from various
data sources in production. Such data are manual and inline
measurements as well as the unbalance determination in the
EOL control. In total, the data set used contains 141 columns
i.e., measurements at the stages (a data series denotes a sin-
gle component in each case).In the data preprocessing, mea-
surements with insufficient information content were first elim-
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Table 1. Results of the evaluation.

Algorithm Variant Accuracy  F1-Score
T M D % %
Random Fores No  Mean No 81.48 80.23
Decision Tree Yes  Mean Yes 81.48 79.77
RuleFit No  Mean No 80.95 78.31
K-Nearest Neighbor ~ Yes  Nominal No 80.95 77.78
SVM No  Nominal Yes 80.42 83.70
Neural Network Yes Nominal No 78.31 77.60
Logistic Regression ~ Yes  Mean Yes 74.07 72.32
Naive Bayes Yes  Mean Yes 70.37 65.85

inated. As limits for the minimum number of rows with val-
ues 75 % was set. Furthermore, the number of rows classified
as faulty parts was doubled by duplicating randomly selected
ones to finally obtain a ratio of 315 good parts to 314 faulty
parts. In this way, more balanced training data is available to the
algorithm. In addition, hyperparameter optimization was per-
formed for each algorithm with appropriate algorithm-specific
parameters in each case, as well as cross-validation with a split
into 5 equally sized data sets. A total of 8 different algorithms
were compared for the evaluation. The best result of each algo-
rithm depending on the combination of options of the method is
shown in Table 1. Based on the comparison, it can be seen that
the Random Forest and Decision Tree algorithms achieve the
best results in terms of prediction accuracy. Whereas the SVM
(Support Vector Machine) algorithm has the highest F1 score.
In addition, five of the eight algorithms achieved their respec-
tive best results when the transformation of the sensor data to a
normalized value was performed. This ratio also applies to the
mean value as a variant for filling missing values. In the end,
the decision tree was chosen due to the fact that the desired
part variation patterns can be extracted directly from the deci-
sion tree model. The patterns here correspond to the individual
paths along the tree from the root to a predicted faulty part. The
paths thus describe the dependencies of the multi-stage produc-
tion based on their respective rules.

4. Practical Validation

Data from approximately 600 turbine shafts, each with
about 140 component descriptive parameters, were available for
analysis. For confidentiality reasons, units are scaled and data
abstracted, but they reflect the real scenario. The analyses show
that deviations occurring along the manufacturing process can
be limited to geometric, dimensional and surface defects. As
shown in Fig. 3, it is the combinations of deviations that lead
to component rejects at the end of the line. In addition, the con-
sideration of geometric and dimensional deviations and their
combination make up a large part of the PVModes. In the fig-
ure only a small part of the identified PVModes is illustrated in
order to show the success of the Part Variation Modeling.

Already in the early machining steps (inner contour), unde-
sired deviations are introduced into the component, based on
the results from Eger et al. [5], which are directly related to im-
balances detected during EOL and thus reject components. For

the purpose of this paper, the dimensional deviations are clus-
tered as patterns as mentioned earlier to allow for analysis with
the dimensional deviations. These deviations are than clustered
into exponential and linear deviations and their expression.

If one of these patterns occurs, the compensation of the ec-
centricity can be done in the following CNC machine based on
different algorithms to achieve an unbalance-free part at the end
of the MPS. However, this procedure does not guarantee that
deviations will occur in the subsequent machining steps, which
will continue to affect the compensated problem.

Based on 600 test shafts, the dimensional deviations can be
related and modeled within the decision tree as PVModes. Blue
circles in Fig. 3 show that such an influence is not exclusively
due to a deviation, but can also be caused by the inter-stage ac-
cumulation of parameters within given tolerances. The example
causes a large imbalance in the EOL and too much rework. Such
correlations can only be identified from historical data and must
subsequently be controlled for both error prevention and error
compensation in the future.

A pattern that has already been detected must never reap-
pear in its entirety in the production process, as it would, in the
worst case, mean a scrap part. For this reason, all component
variation patterns are described as a model by means of influ-
encing and to-be-influenced parameters and monitored on-line
accordingly. If a pattern or PVMode now appears, preventive
measures, which result from the feature tree and the inter re-
lationships, must be initiated. In addition to PVModes that de-
pend on several processes, there are also individual modes as
marked with green triangles in Fig. 3. If a value outside the
upper tolerance occurs, the MPP usually offers the possibility
to compensate the deviation along the material flow. The ex-
ample of a diameter that is too large is used to see where the
feature can be corrected by adjusting process parameters. Such
parameters may be CAD parameters or machine code (G-Code)
used during machining of the component (where applicable).
The models describing the PVModes are adapted in a regular
cycle of ten components in order to be able to react quickly
to new conditions. In addition, the system is also analyzed and
improved across components by transferring and examining the
knowledge gained to other component variants. This also makes
it possible to significantly shorten the start-up phase for a new
component variant. Also with regard to optimization, or param-
eter adjustment, so-called part-to-part optimization is carried
out in order to improve and control critical processes in the cy-
cle of a component.

5. Conclusion and Outlook

The present paper describes a methodology which allows
identification of inter-stage dependencies (PVMs) using ma-
chine learning algorithms to capture part variation modes with
different aspects. By pooling geometric deviations, which oc-
cur very frequently in rotating components, it is now possible
to model PVModes between geometric and dimensional devia-
tions. By assigning the current production to a PVM, counter-
measures in the form of downstream compensation strategies
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can be initiated at an early stage. The developed method was
also evaluated on the basis of real production data and its func-
tionality was demonstrated. The method thus represents a step
towards achieving zero-defect manufacturing within the field of
rotating parts.

In the future, the method will be used in compensating faulty
production of other rotating parts e.g., electrical motors where
number of parts is higher and production time is lower. We fur-
ther extend the method and use it on a digital twin after the pro-
duction line’s virtual commissioning, performed in the project
SDMA4FZI. By adding disturbances on the digital manufactur-
ing process, dependencies can be already identified on the dig-
ital twin and can be than validated within the ramp-up phase of
the physical manufacturing system.
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