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A new scaling for the steady flow past
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A scaling law to predict the onset of the primary Hopf instability in the steady
flow past two-dimensional, symmetric bluff bodies is proposed. It uses a measure
of the spatial extent of the separation bubble as length scale and the largest
reverse-flow speed within it as velocity scale. The ensuing Reynolds number,
evaluated at the onset of the primary Hopf bifurcation, collapses quite nicely
for bodies of different shape and aspect ratio even when a small angle of attack
perturbs the symmetry; its relative variation is one order of magnitude smaller
than that of the usual Reynolds number defined with the free-stream velocity
and the cross-stream body size. With the new scaling, it can be roughly assessed
whether the steady flow past a two-dimensional bluff body is absolutely and
globally unstable to two-dimensional perturbations without a computationally
expensive stability analysis: only the inspection of the base flow is required.
More importantly, the scaling provides an insight into the flow mechanism that
produces the instability.
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1. Introduction
The nature of the incompressible flow past a two-dimensional symmetric bluff 
body changes with the Reynolds number, and ranges from a symmetric steady 
state to the chaotic and unsteady turbulent regime, depending on the relative 
importance of inertial and viscous forces. A complete description of the flow, 
therefore, includes the knowledge of the critical Reynolds numbers at which the 
flow changes regime, i.e. the Reynolds number corresponding to the first onset of 
the several instabilities the flow undergoes. For this type of flows, the Reynolds 
number usually employed is based on the body thickness D and on the free-stream 
velocity U∞ as length and velocity scales, and is thus defined as Re = U∞D/ν, 
where ν is the kinematic viscosity. These scales, however, could not always be best 
suited to describe the physics of the problem at hand, and alternative choices 
might be more appropriate to predict the onset of a new regime. deally, one
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would want the critical value of the associated Reynolds number to be the same
for bodies with different cross-sectional shape, as long as the physics remains the
same.
When the Reynolds number is large enough, the flow past a symmetric

two-dimensional bluff body undergoes a first two-dimensional instability —
known as primary instability — which usually corresponds to a Hopf bifurcation
from the symmetric steady state towards a time-periodic non-symmetric state
characterised by vortex shedding (Provansal et al. 1987; Monkewitz et al. 1993;
Noack & Eckelmann 1994). While the instability mechanism is ostensibly the
same for bodies of different shape, the critical Reynolds number Rec bears
a significant dependence on the geometry and flow configuration. Several
numerical studies and experiments found that, for a circular cylinder, the onset
of the primary instability occurs at Re = Rec ≈ 47 (Giannetti & Luchini 2007;
Marquet et al. 2008; Williamson 1996). Jackson (1987) studied the onset of the
primary instability for ellipses, flat plates and triangles varying the aspect ratio
A = L/D, where L and D are the streamwise and maximum cross-stream
dimensions of the bodies, and the incidence angle. He reported Rec ≈ 27.7 for
a normal flat plate, Rec ≈ 76.7 for an ellipse parallel to the incoming flow with
A = 2, and Rec ≈ 36 for an equilateral triangle oriented towards the flow. For all
these geometries, a large increase of Rec with A was observed. Thompson et al.
(2014) studied the wake past elliptic cylinders ranging from a normal flat plate
to the circular cylinder, finding a monotonic increase of Rec, from Rec ≈ 31.6
to Rec ≈ 47.2. Park & Yang (2016) determined how the primary instability is
affected by rounding the four corners of a square cylinder, exploring shapes
between the square cylinder with sharp edges and the circular cylinder. The
onset of the primary instability was found to change non-monotonically with
the corner curvature; the most stable configuration is intermediate between the
circular and square cylinders and has Rec ≈ 47.3. More recently, we have studied
the primary instability of the flow past rectangular cylinders by varying the
aspect ratio in the range 0.25 6 A 6 30, and by rounding the leading-edge
and/or trailing-edge corners (Chiarini et al. 2021a). Results indicated that Rec
increases monotonically with A from Rec ≈ 34.2 to Rec ≈ 140; its dependence
on the corner curvature is non-monotonic and changes with A.
The large variability of Rec suggests that D and U∞ might not be the most

appropriate length and velocity scales to describe the primary Hopf bifurcation
and to predict its onset. In fact, in Chiarini et al. (2021a) we have shown that the
length of the separation bubble in the wake and the largest reverse-flow speed
measured in it are more suitable scales, for rectangular cylinders: the former
dictates the spatial extent of the absolute instability pocket (Chomaz 2005),
while the latter directly impacts the local amplification of the unstable wave
packets (Hammond & Redekopp 1997). For rectangular cylinders, the associated
Reynolds number evaluated at criticality was found to be (nearly) independent
on the aspect ratio and its variation to be one order of magnitude lower than
that of the conventional Reynolds number based on D and U∞. After all, the
body thickness D is not always the proper length scale to describe the flow past
bluff bodies also at larger Reynolds numbers. For example, Mat Ali et al. (2011)
observed that the half-width wake thickness (Pope 2000) is more appropriate for
predicting the Strouhal number of the unsteady flow past a square cylinder with
a splitter plate. In contrast, several authors observed that the cylinder length L is
the proper length scale for describing the periodic flow past elongated rectangular
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Figure 1: Sketch of the computational domain with the geometry of the
triangular, rectangular, elliptical and diamond cylinders.

cylinders at intermediate Reynolds numbers (see for example Okajima 1982;
Chiarini et al. 2021b) and that the Strouhal number based on it has an almost
stepwise dependence on A due to the interaction of the impinging-shear-layer
instability with the trailing-edge vortex shedding (Hourigan et al. 2001).
In this work, we assess the generality of the scaling presented in Chiarini et al.

(2021a) for the primary Hopf bifurcation, by considering four different geometries
(triangle, rectangle, ellipse and diamond), that yield a steady base flow with
different features due to the different placement of the corners (or lack thereof).
For each geometry the aspect ratio is varied in the range 1 6 A 6 8. We also
show that the new scaling works pretty well for small asymmetries of the flow
and when other wake-related length scales are used, provided that they are a
measure of the spatial extent of the separation bubble. The work is organised as
follows. After this introduction, the numerical approach is described in §2. The
results are presented in §3 and the validity of the proposed scaling is addressed
in §4. Finally, some concluding remarks are drawn is §5.

2. Methods

The incompressible flow over two-dimensional cylinders of different cross-sectional
shape with aspect ratio 1 6A 6 8 is considered. Figure 1 shows the geometries
and the notation. A Cartesian coordinate system with origin placed at the leading
edge of the cylinders is used, with the x and y axes denoting the streamwise
and vertical directions, respectively. The cylinders have length L and maximum
thickness D and are placed in a uniform flow with velocity U∞ with their
symmetry axis aligned with the free-stream velocity. The computational domain
extends for −25 6 x/D 6 75 and −40 6 y/D 6 40 in the two directions
corresponding to Lx = 100D and Ly = 80D; it has been shown (Chiarini et al.
2021a) that these dimensions are adequate to investigate the onset of the primary
instability of the flow past bluff bodies with aspect ratio up to A = 30. The
Reynolds number is based on U∞ and D and is thus defined as Re = U∞D/ν.
To obtain the base flow, the two-dimensional version of the steady Navier–

Stokes equations is solved using Newton’s iterations. The spatial discretisation is
based on a finite-element formulation using quadratic elements (P2) and linear
elements (P1) for velocity and pressure, respectively. The numerical method has
been implemented in the non-commercial software FreeFem++ (Hecht 2012)
and has been previously used and validated (Chiarini et al. 2021a). For each
configuration, a computational mesh that is perfectly symmetric with respect to
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Figure 2: Base flow for the triangular (top left), rectangular (top right),
elliptical (bottom left) and diamond (bottom right) cylinders for A = 4 at
Re = Rec. Streamlines are plotted on top of a vorticity map ωz , with the

symmetric blue-to-red colormap ranging in −10 6 ωz 6 10. The blue dashed
line is for U = 0.

the y = 0 axis is used, to avoid the introduction of spurious asymmetries in the
flow. The number and distribution of the triangular elements has been chosen to 
properly refine the region around the cylinders, by paying specific attention to
the near-corner regions and to the wake. The number of triangles varies between
60 × 103 and 90 × 103 depending on the body shape and aspect ratio.
The global stability analysis of the flow is carried out by solving the eigenvalue 

problem stemming from the Navier–Stokes equations linearised with respect to
the steady base flow. The solution is obtained by the implicitly-restarted Arnoldi 
iterative algorithm implemented in the ARPACK package (Lehoucq et al. 1998). 
When only one eigenvalue is required, a simple shift-invert method (Saad 2011)
is used.

3. Results

3.1. Base flow
The steady base flow for the four geometries considered in this work is shown
in figure 2 for A = 4 at a Reynolds number corresponding to the onset of the primary 
instability, i.e. Re = 68.8, Re = 89.1, Re = 140.1 and Re = 151.1 for the triangle, 
rectangle, ellipse and diamond, respectively. Being a pseudoscalar, the spatial 
distribution of the nonzero vorticity component ωz = ∂V/∂x − ∂U/∂y is antisymmetric 
with respect to the y = 0 axis, with the largest values observed in
the fore part of the cylinders. Two shear layers displaying vorticity of opposite sign 
separate from the rear part of each cylinder, delimiting a symmetric separation 
bubble. For all cases, the vorticity is maximum at the leading edge; for triangles, 
rectangles and diamonds the peak is localised near the sharp corners, while
for ellipses, which lacks corners, the peak is smeared. A second localised and 
weaker peak is observed near the sharp trailing-edge corners only for triangles
and rectangles. In contrast, for ellipses and diamonds, the vorticity map features a wide 
region with large values extending from the leading-edge stagnation point to
the point where the shear layers detach. For triangles, rectangles and diamonds,
the point where the boundary layer separates is geometrically fixed at the trailing-edge, 
leading-edge and top/bottom corners, respectively. For ellipses, instead,

the separation point changes with Re and A. On the other hand, for rectangles
and triangles the streamline delimiting the separation bubble originates at the
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Figure 3: As figure 2, but for the pressure field P . The blue-to-red symmetric
colormap ranges in −0.5 6 P 6 0.5.
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Figure 4: Dependence of Rec (left) and R̂ec = (Urevℓr/ν)|c (right) on A and on
the cylinder geometry.

trailing-edge corners at all A, while for ellipses and diamonds its origin depends
on Re and A.
Figure 3 plots pressure maps P . Unlike vorticity, pressure is symmetric with

respect to the y = 0 axis. For all geometries, the largest values are reached
at the leading-edge stagnation point, as expected, while the lowest values are
observed close to the point where the shear layers separate, i.e. after the trailing-
edge corners for triangles, just after the leading-edge corners for rectangles, after
the top/bottom corners for diamonds and upstream of the position of maximum
thickness for ellipses. As expected, the positive peak of the pressure is more
intense for the rectangular and elliptic cylinders as their leading edge is blunt. The
pressure distribution over the cylinder largely depends on the cylinder geometry.
For triangles, starting from the leading edge and moving downstream, the pressure
progressively decreases and eventually reaches its minimum at the trailing-edge
corners: the pressure gradient is favourable everywhere. For rectangles, instead,
the longitudinal sides feature an adverse pressure gradient as the minimum of the
pressure is placed just after the leading-edge corners. The ellipses and diamonds
show a different distribution, with a favourable pressure gradient in the fore part
of the cylinder followed by an adverse pressure gradient in the aft part.

3.2. Neutral curve

The left panel of figure 4 plots how the critical Reynolds number Rec of the
primary instability, consisting in the Hopf bifurcation that produces the von
Kàrmàn wake for all cases, varies with A for the four shapes. For validation
purpose, table 1 reports the results of our calculations for some geometries
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Present Rec Rec from other references in literature
Triangle (A = 1) 42.1 41 (Prhashanna et al. 2011), 40.45 (Ng et al. 2016)
Rectangle (A = 1) 44.6 45 (Yoon et al. 2010), 44.7 (Park & Yang 2016)
Ellipse (A = 1) 46.5 46.7 (Giannetti & Luchini 2007), 46.8 (Marquet et al. 2008)
Ellipse (A = 2) 75.5 76.7 (Jackson 1987)
Diamond (A = 1) 39.05 39 (Yoon et al. 2010)

Table 1: Comparison of Rec for some geometries with results from literature.

together with those from other references in literature and shows that they
compare pretty well. The slight discrepancy for the triangular cylinder with
respect to the critical values reported in literature may be probably ascribed
to the different calculation methods adopted For all cases, Rec increases withA:
an increase of the aspect ratio leads to stabilisation regardless of the cylinder
geometry. Indeed, by increasing A the pockets of instability placed on the two
sides of the separation bubble move downstream with respect to the point where
the flow separates, so that the two shear layers that produce the instability
become thicker in the instability region. This results in an increased diffusion
of the shear layers and, therefore, in a weaker instability or, equivalently, in an
increase of Rec, as already observed by Chiarini et al. (2021a) for rectangles.
For triangles and rectangles, the function Rec(A) increases with decreasing

rate, reaching a value that is larger for the latter geometry, being Rec(8) ≈ 90 for
triangles and Rec(8) ≈ 120 for rectangles. For triangles, the trend is accurately
described by a power law. For triangles, this increasing trend is also related to
the changes of the pressure distribution over the longitudinal sides. By plotting
the pressure over a line just above or below the triangles, the favourable pressure
gradient is seen to slightly decrease asA increases. This contributes to a weaker
blockage, highlighted by the decrease of the maximum speed above/below the
trailing-edge corners, and to less intense shear layers detaching from the trailing
edge, therefore resulting in a weaker instability. On the other hand, for ellipses and
diamonds Rec increases more than linearly with A, with diamonds showing the
fastest rate of change. Quantitatively, for ellipses and diamonds Rec respectively
increases from Rec ≈ 46.5 and Rec ≈ 39.1 forA = 1 to Rec ≈ 310 and Rec ≈ 540
for A = 8. For ellipses, the curve seems to approach an oblique asymptote,
that instead is not observed for diamonds. For these geometries, as for triangles,
the increase of Rec appears to be ascribed to a combination of the two effects
discussed above, notwithstanding the variable position of the separation point.
The superlinear growth observed for diamonds shows that the flow progressively
approaches that past a flat plate asA increases, since the separation point moves
downstream and the vertical size of the separation bubble decreases.

4. A new scaling

Chiarini et al. (2021a) observed that, for rectangular cylinders, the absolute
value of the largest reverse-flow speed within the separation bubble (Urev),
and the length (ℓr) of the bubble itself are the most important scales in the
first Hopf bifurcation. They also verified that the associated Reynolds number
R̂e = Urevℓr/ν predicts fairly well the onset of the instability being nearly
independent on A. In this section, we show that this result is quite general
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Figure 5: Effect of A on the length of the separation bubble ℓr (left) and on
magnitude of the largest reverse-flow speed Urev (right).

and holds for two-dimensional cylinders of different shapes for which the primary
instability corresponds to a Hopf bifurcation producing the von Kàrmàn wake.

4.1. The reverse-flow speed

The largest reverse-flow speed Urev has a strong impact on the growth rate of the
unstable mode (Hammond & Redekopp 1997). The right panel of figure 5 shows
how this quantity changes with A at Re = Rec. In all cases, Urev decreases to
approach a horizontal asymptote forA→ ∞, because the instability mechanism
becomes less intense for increasingA, consistently with the increase of Rec shown
in the left panel of figure 4. For small A, Urev is maximum for triangles and
minimum for rectangles: the opposite happens for ℓr. Interestingly, the largest
decrease of |Umin| for largeA is observed for ellipses and diamonds: asA ranges
from A = 1 to A = 8, |Umin| drops by 69% and 74% for diamonds and ellipses
and by about 42% and 53% for rectangles and triangles. This is consistent with
the largest increase of Rec observed for diamonds and ellipses in the left panel of
figure 4.
The reverse-flow speed is relevant for two reasons: firstly, being the flow speed

outside the recirculation bubble approximately constant, increasing Urev increases
the strength of the shear layer and therefore the amplification of the disturbances;
secondly, increasing Urev increases the feedback due to recirculation, the stronger
the feedback the stronger the instability.

4.2. The length of the separation bubble

The left panel of figure 5 shows how the length of the separation bubble changes
with A at Re = Rec. ℓr, defined as the distance between trailing edge of the
cylinder and the stagnation point that closes the separation bubble, is found
to generally decrease with A. This decreasing trend is explained by the same
phenomena responsible for the increase of Rec, namely the increasing diffusion
of the separated shear layers and the weakening pressure gradient over the
longitudinal sides. For rectangles, ℓr is non-monotonic for small A, due to the
interaction of the shear layers separating from the leading-edge with the trailing-
edge corners (Chiarini et al. 2021a). For triangles, ℓr first decreases and reaches
its minimum for A = 5 and then slightly increases again. This (small) increase
of ℓr is due to the slight enlargement of the streamlines at the trailing-edge
corners, where the shear layers separate, associated with the progressive increase
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of the boundary layer thickness. For small A this effect is not appreciated, as
the phenomena yielding the aforementioned decreasing trend dominate.
The size of the separation bubble is important in the onset of instability, since

it is directly related to the size of the absolute instability region, the larger this
region the more unstable the flow.

4.3. The new scaling

Figure 4 plots the evolution of R̂ec = (Urevℓr/ν)|c with A, i.e. R̂e evaluated at
the onset of the primary instability, and compares it with changes of Rec. For
all geometries, the relative variation of R̂ec with A is much smaller than that of
Rec, and the values of R̂e at criticality collapse quite neatly on an average value
of R̂ec ≈ 20, the minimum value being R̂ec ≈ 14 for the diamond with A = 8
and the largest value being R̂ec ≈ 35 for the ellipse with A = 1. The collapse is
not perfect, yet the relative variation is almost one order of magnitude less with
the present scaling than with the standard form of the Reynolds number, whose
minimum and maximum values are Rec ≈ 39 and Re ≈ 530 for the diamond
withA = 1 andA = 8 respectively. It is worth noting that the proposed scaling
works quite well up to the highest A tested for all shapes. Indeed, the value of
R̂ec seems to start deviating for the diamond cylinders at the largest A only.
This is consistent with the fact that, as observed in §3.2, in the diamond case
as A increases the base flow approaches that past a flat plate that displays an
instability of a different nature, for which this scaling does not work.

The newly defined R̂e, based on the magnitude of the largest reverse-flow speed
Urev and on the length of the separation bubble ℓr, is far more capable than that
based on the free-stream velocity U∞ and cylinder thicknessD to predict the onset
of the primary instability for the steady flow past symmetric two-dimensional bluff
bodies. The implied scaling is not trivial, since ℓr and Urev depend on A quite
differently for the considered geometries. It allows one to determine if the flow
is linearly unstable to two-dimensional perturbations with rather good accuracy
by just evaluating Urev and ℓr and examining whether R̂e is larger or lower than
R̂ec ≈ 20. Computing R̂e only requires the knowledge of the base flow, whose
computational cost is much smaller than that of a linear stability analysis.

4.4. Other wake-related length scales

In this section we show that the new scaling works well when other wake-related
length scales are used instead of ℓr, provided that they are a measure of the
spatial extent of the separation bubble. We keep considering Urev as velocity scale
and, following the idea that this instability is promoted by the base flow shear
layer along the dividing streamline of the body, we consider four different length
scales that are a measure of the width of the separation bubble. The new length
scales are the width of both the dividing streamline (dr,1) and the U = 0 line
(dr,2) at the streamwise position corresponding to the location of Umin, and the
vertical distance between the maxima of the two structural sensitivity pockets
(dr,3) (Giannetti & Luchini 2007). Based on these length scales we define the
following Reynolds numbers:

R̂e
d,1

c =
Urevdr,1

ν
, R̂e

d,2

c =
Urevdr,2

ν
, and R̂e

d,3

c =
Urevdr,3

ν
. (4.1)
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Figure 6 shows that at criticality all the new proposed Reynolds numbers collapse
pretty well for all the aspect ratios and the geometries considered. For all cases the
maximum variation from the average value is within 75%, that is by far smaller
than the maximum variation of Rec that is ≈ 290%. This is expected as all these
length scales are a good measure of the spatial extent of the separation bubble, as
witnessed by their dependence on bothA and the body shape that is qualitatively
the same to what shown for ℓr in figure 5. Among the different proposed Reynolds
numbers, those based on the width of the dividing streamline (dr,1) and of the
reverse flow region (dr,2) show the best collapse, and their maximum relative
variation is within 40%.

4.5. Flow asymmetry

Figure 7 deals with the robustness of the proposed scaling on asymmetries of
the flow. For all the four geometries we have fixed the aspect ratio to A =
5 and repeated the calculations by changing the incidence angle in the range
0◦ 6 α 6 8◦. For all geometries but for the triangle, an increase of α leads to
a monotonic decrease of Rec, that goes from Rec = 98.8, 183.3, 207.0 for α = 0◦

to Rec = 50.6, 115.1, 167.1 for α = 8◦ for the rectangular, elliptical and diamond



10

cylinder respectively. For the triangular cylinder, instead, Rec only marginally 
changes in the considered range of incidence angles, as observed by Jackson (1987) 
for the A = 1 case. The right panel shows that the proposed scaling is robust 
to moderate asymmetries of the flow. Indeed, in this range of α the variation 
of R̂ec is much smaller than that of Rec and its value collapse quite well for all 
the body shapes: the average values is R̂ec = 19.48, while the minimum and 
maximum values are R̂ec = 17.32 and R̂ec = 28.69 for the triangle at α = 1◦ and 
the diamond at α = 8◦ respectively.

5. Conclusion

Depending on the Reynolds number, the incompressible flow past symmetric, two-
dimensional bluff bodies ranges from a symmetric steady state to the turbulent 
regime. For this class of flows, Re is usually defined with the cross-stream size of 
the body D and the free-stream velocity U∞ as Re = U∞D/ν. When Re is large 
enough, i.e. Re > Rec, the flow undergoes a first two-dimensional instability, the 
primary instability, usually corresponding to a Hopf bifurcation leading to a time-
periodic flow with vortex shedding. Although the physical mechanism behind the 
primary Hopf instability remains the same, the numerical value of Rec strongly 
varies when the cross-section and the aspect ratio of the body are varied (Jackson 
1987). In this work, an alternative scaling has been proposed for the prediction 
of the primary Hopf instability, where the length of the separation bubble ℓr 
and the largest reverse-flow speed within it are the length and velocity scales, 
respectively. The appropriateness of these scales descends from their direct link 
to the local amplification of the unstable wave packets, and to the extension of 
the absolute instability region (Hammond & Redekopp 1997; Chomaz 2005). At
criticality, the associated Reynolds number R̂e = Urevℓr/ν has been shown to 
collapse quite nicely across geometries and aspect ratios: its relative variation is 
one order of magnitude smaller than that of the conventional Rec. Hence this 
scaling, although still not ideal, is far more appropriate for predicting the onset 
of the primary instability than the one based on D and U∞. Moreover, we have 
shown that this scaling is robust to small asymmetries of the flow and that it 
works well even if other wake-related length scales are used, provided that they 
are a measure of the spatial extent of the separation bubble.
This observation has a significant theoretical value, inasmuch as it sheds new 

light on the instability mechanism leading to the von Kàrmàn vortex street. 
Moreover, there is practical value in the ability to readily estimate whether 
the two-dimensional steady flow past a bluff body is absolutely unstable to 
two-dimensional perturbations by avoiding a computationally expensive stability 
analysis.
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