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DRIFT-DIFFUSION TRANSPORT IN A RANDOMLY
INHOMOGENEOUS ONE-DIMENSIONAL MEDIUM

STEFANO TURZI∗

Abstract. Organic semiconductors are intrinsic randomly inhomogeneous materials where
charge transport occurs by hopping of the carriers between localized sites having a distribution
of energy levels. However, the average carrier density seems to be accurately described by a simple
drift-diffusion equation. We investigate the reasons for the effectiveness of the drift-diffusion model
in a random material and show that the key assumption for its validity is that the correlation lengths
of the randomly perturbed coefficients are much smaller than any other characteristic length of the
problem. As a by product, we find how the effective drift and diffusion coefficients depend on the
randomness.
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1. Introduction. Modeling of electronic transport in thin-film solar cells or or-
ganic semiconductor devices is mostly based on the drift-diffusion model, which has
been the classical method to simulate the transport in silica electronic device since
decades [16, 28, 23]. However, in contrast to electronic conduction in metals, charge
transport in soft condensed matter and organic polymers mostly takes place via an
incoherent diffusion process. In disordered organic materials the deviation from a pe-
riodic crystalline structure makes the concept of band-transport inapplicable. Instead,
charges are spatially localized and charge transport occurs by transitions between lo-
calized states, a process termed as hopping [29, 18]. Furthermore, the hopping sites
are not characterized by a unique energy level, but rather by a distribution of possible
energy levels and the transition can occur, with different probabilities, between any
two of these levels. This makes the transport in organic semiconductors an intrinsi-
cally random phenomenon, where the important physical properties are not related
to the transport of a single carrier, but are measures of the average properties of the
carriers.

The most prominent theoretical method that tends to mimic the microscopic
transport mechanisms is based on the master equation of the hopping mechanism
with random transition rates [22, 30], suitably extended to include Pauli exclusion
principle [11, 12]. In the continuous case and for single-carrier systems, this is an
evolution equation for the probability p(x, t) that a carrier is in position x at time t

∂p(x, t)

∂t
=

∫ L

0

[
W (x|x′)

(
1− p(x, t)

)
p(x′, t)−W (x′|x)

(
1− p(x′, t)

)
p(x, t)

]
dx′,(1.1)

where L is the device length and W (x|x′) is the transition rate for hopping from site x′

to site x. A popular expression for the transition rate W (x|x′) is given by the Miller-
Abrahams formula [19, 22, 29] which rapidly decays to zero with distance and depends
on the energy difference ∆E = E(x)−E(x′). In a randomly inhomogeneous medium,
such as an organic semiconductor, ∆E (at fixed |x−x′|) is a random variable and site
energies are usually drawn randomly from a Gaussian distribution [22, 18]. Indeed,
charge transport occurs by transitions between localized sites that are distributed
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2 S. TURZI

according to the polymer chains. Such long chains are highly disordered and this
creates an non-homogeneous distribution of energy levels that can host charge and
enable a carrier to move across a device.

Monte Carlo or kinetic Monte Carlo simulations are often used to solve the master
equation in its stationary regime [26, 23]. However, these methods are still computa-
tionally intensive and most often for real device simulations the drift-diffusion model
is employed. Usually drift-diffusion type equations are used on the whole device scale
by both physicists [6, 1, 10, 5, 17, 33, 8] and mathematicians [4, 7, 24], whereas on
a microscopic scale, particularly around interfaces, stochastic models are preferred
[32, 21].

If we assume that the master equation approach is the most effective from a
microscopic point of view, the derivation of a macroscopic drift-diffusion model can be
justified in several ways. For example, a possible approach is to use a discrete master
equation to describe the motion of a particle in a quasi-periodic one dimensional
landscape, where at each instant of time there is a non-vanishing probability that the
particle jumps to a neighboring energy well. In a continuous limit, for a very large
number of lattice sites, it is possible to show [25] that the particle number density
satisfies a drift-diffusion equation.

Another popular approach is to use a Kramer-Moyal expansion [31, 9] of the
continuous master equation (1.1), in the limit of low carrier density, to derive the cor-
responding Fokker-Planck equation, which is a drift-diffusion equation for the carrier
density. This last method is particularly suited to the analysis of random media and
we will follow this approach in the present paper.

For a given realization of the random medium the Kramer-Moyal expansion yields
the drift and diffusion coefficients as first and second jump moments

m1(x) =

∫ L

0

(x′ − x)W (x′|x)dx′,(1.2)

m2(x) =
1

2

∫ L

0

(x′ − x)2W (x′|x)dx′,(1.3)

and, due to the randomness of the transition rate W (x′|x), m1(x) and m2(x) should
be considered as random functions.

Since we are interested in the average properties of the carriers, to what extent
the average carrier density still obeys a deterministic drift-diffusion equation? In
other words, since a large body of experimental and numerical analysis relies on the
classical drift-diffusion equation, what is the mathematical justification of its general
effectiveness, even in the presence of a random medium? Finally, what are the effective
drift and diffusion coefficients and how do they depend on randomness? These are
the key questions that we try to address in the paper.

An interesting, but difficult, related problem is how to express the macroscopic
transport coefficients in terms of the microscopic parameters describing random in-
homogeneities in the material. However, we do not try to address this question in the
present paper. Indeed, the Miller-Abrahams formula is not the only possible choice,
other choices of transition rates or energy level distributions are possible, which are
compatible with a macroscopic drift-diffusion transport [30]. Therefore, the answers
to our previous questions must be largely independent on the particular form of the
transition rate or density of states.

Hence, we assume from the beginning that m1 and m2 are random process, with
some given properties, and look for an equation that governs the evolution of the mean
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carrier density. We limit our analysis to the one-dimensional case. We are aware that
this may be a limitation as some essential physics may depend on the spatial dimension
of the system. However, this is a valid assumption in many cases because it has been
shown that the carriers flow mainly along filamentary structures in the presence of high
electric fields and material inhomogeneity [34, 15, 30]. Such filamentary structures in
the current distribution are believed to be caused by percolation effects [30].

Finally, it is worth noticing that the application of our results is not limited to
organic semiconductors, but may be generally useful to describe the average features
of carrier transport in any medium with spatial and energetic disorder.

The paper is organized as follows. In §2 we introduce the mathematical aspects
of the problem and perform a perturbation analysis for small random perturbations.
A complicated integro-differential equation is obtained for the average carrier density
q(x). In §3 we show that a small-correlation-length approximation is sufficient to
reduce the equation for q(x) to a simple drift-diffusion equation, with effective coeffi-
cients which depend on the random perturbation. A numerical comparison is reported
in §4, and the conclusions follow in §5. Some mathematical details are reported in
Appendix.

2. Mathematical formulation. The Kramer-Moyal expansion of Eq.(1.1) leads,
in the stationary case, to the following one-dimensional stationary Fokker-Planck
equation (which is a conservation law for the probability flux)

(2.1)
∂
(
m1(x)p(x)

)
∂x

−
∂2
(
m2(x)p(x)

)
∂x2

= 0,

where x is the space variable and p is the carrier number density. The coefficients
m1(x) and m2(x) are random processes, i.e., a collection of random variables defined
on a common probability space. If we denote with Ω the sample space, i.e, the
space of possible outcomes of a random experiment, mi are actually functions of two
variables, x ∈ [0, L] and ω ∈ Ω, where L is the length of the domain. Hence, for any
fixed x ∈ [0, L] it is possible to assign a probability to events such as {a < m1(x) < b},
which measures the probability that a random sample of the device has drift-coefficient
within (a, b) for all x. Naturally, the same holds for m2. When we observe a single
outcome of the random process for all x that is formed by taking a single possible value
of each random variable of the stochastic process we speak of a particular realization
(or sample path) of the process. In particular, numerical simulations are performed
by generating many realizations and then taking the sample average of the solutions.
The analysis of random functions can be approached in different ways, but for our
purposes that based on mean square convergence suffices [27, 3]. In an abstract
setting, we can think of mi as Ck[0, L]-valued random variables (k ≥ 2), that is, any
random experiment generates two Ck-functions of the position, m1(x) and m2(x),
that are a realization of the drift and diffusion coefficients in that particular sample.

In the following, we will omit the dependence on ω and it will be implicitly
assumed that m1(x) and m2(x) are random variables at x. As a consequence, also the
solution p is a random process p(x) and we are interested in the equation that governs
its expectation value

〈
p(x)

〉
. Angle brackets denote ensemble averaging with respect

to probability measure. For ease of notation, we denote with q(x) this expectation
value: q(x) :=

〈
p(x)

〉
.

It is interesting to observe that our final results will not depend crucially on the
boundary conditions. In other words, we will derive an approximate equation for the
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mean process that is valid regardless of the chosen boundary conditions, provided
that it is possible to find a Green function for the problem. For concreteness, we will
develop the theory using Dirichlet boundary conditions [6, 18].

The questions we would like to address are: (1) What is the equation that governs
the mean q(x) =

〈
p(x)

〉
when m1 and m2 in (2.1) are affected by slight random

perturbations? (2) Under what circumstances the expectation value q(x) still obeys
a drift-diffusion equation, commonly employed in the analysis of organic devices? (3)
In such a case, how are the drift and diffusion coefficients affected by the statistical
properties of the random processes?

2.1. Perturbative analysis. In order to find an approximate equation for q,
we employ a regular perturbation method originally developed to study the wave
propagation in random media [13]. A more comprehensive description of this method
can be found in [14, 27, 3].

We assume that the material parameter mi(x) (i = 1, 2) is the sum of a deter-
ministic term and a small random perturbation Ai(x), which, in general, depends on
the space variable x

m1(x) = m1(x) + εA1(x),(2.2)

m2(x) = D + εA2(x),(2.3)

where ε is a non-dimensional smallness parameter. We assume that m1(x) may vary
spatially in x, while we take a constant diffusion coefficient D to simplify the mathe-
matical derivation. In a typical physical context, the drift term m1(x) would be the
gradient of a potential and we would write m1(x) = −∂ψ∂x . The random processes A1

and A2 have vanishing mean and represent stochastic perturbation about the deter-
ministic mean:

〈
A1(x)

〉
= 0,

〈
A2(x)

〉
= 0. We look for a solution to (2.1) in the form

of an asymptotic expansion

(2.4) p(x) = p0(x) + εp1(x) + ε2p2(x) +O(ε3),

where the zeroth-order term is deterministic. The leading-order (deterministic) prob-
lem reads

(2.5) (m1(x) p0)′ −Dp′′0 = 0,

where, for shortness, we have used the primed notation instead of ∂
∂x . It is possible

to write the general solution of (2.5)

(2.6) p0(x) = e−ψ(x)/D

(
K1 +K2

∫ x

0

eψ(s)/D ds

)
,

where m1(x) = −ψ′(x) and K1, K2 are two integration constants. However, we will
not need to use the explicit solution (2.6) in the rest of the paper to derive an equation
for q(x).

A number of carriers are created instantaneously in the material at or very near
one electrode in the presence of an applied electric field which drives these carriers
toward a second electrode where they are removed from the material. In a physical
system at equilibrium one expects to have the same carrier density at the electrodes.
However, from a mathematical standpoint, we can allow for more general boundary
conditions and take Dirichlet conditions at the boundary p(0) = ζ0 and p(L) = ζ1.
This choice simplifies the mathematical presentation, but it is not essential for our
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analysis. What really counts is the existence of a Green function that allows us to
find unique solutions to inhomogeneous higher-order problems.

Since the boundary conditions are deterministic, they only enter the zeroth-order
problem. Therefore, higher-order problems have vanishing boundary conditions. To
this end, it is convenient to define two Banach spaces of continuous functions

X =
{
u ∈ C2[0, L] : u(0) = u(L) = 0

}
,(2.7)

Y =
{
u ∈ C0[0, L] : u(0) = u(L) = 0

}
,(2.8)

where Ck[0, L] is the space of k-times continuously differentiable functions in [0, L],
and we write L(X,Y ) for the space of linear maps X → Y . Next, we define the linear
operator T0 ∈ L(X,Y ) and the L(X,Y )-valued random variable T1 as (u ∈ X)

T0u = (m1(x)u)′ −Du′′,(2.9)

T1u = (A1(x)u)′ − (A2(x)u)′′.(2.10)

Thus, the substitution of (2.2), (2.3) and (2.4) into (2.1) yields the equations to order
O(ε) and O(ε2), and these can be simply written as

T0 p1 = −T1 p0,(2.11)

T0 p2 = −T1 p1,(2.12)

where we use the boundary conditions p1(0) = p1(L) = 0 and p2(0) = p2(L) = 0,
with probability one.

It is important to observe that T0 is an invertible operator and we denote with
T−1

0 ∈ L(Y,X) its inverse. In other words, there is a unique solution to the problem

(2.13)

{
(m1(x)u)′ −Du′′ = f

u(0) = u(L) = 0

for any continuous function f . This solution can be constructed using standard
Green’s function methods

(2.14) u(x) = T−1
0 f =

∫ L

0

G(x, s) f(s) ds.

where G(x, s) is the Green’s function. Its explicit expression depends on the function
m1(x). For instance, when the drift coefficient is constant m1(x) = m1, the Green
function is

(2.15) G(x, s) =


e−m1s/D

m1

(
em1L/D − 1

)(em1s/D − 1
)(

em1L/D − em1x/D
)

if s < x,

e−m1s/D

m1

(
em1L/D − 1

)(em1x/D − 1
)(

em1L/D − em1s/D
)

if s > x.

We can now use (2.11) and (2.12) to find p1 and p2, so that the asymptotic
approximation of the carrier density reads

(2.16) p(x) = p0 − εT−1
0 T1 p0 + ε2T−1

0 T1T
−1
0 T1 p0 +O(ε3).

However, we are not interested in the single realization of the process, but rather to the
expectation value q(x). Specifically, we wish to find an equation for q(x) :=

〈
p(x)

〉
,
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albeit approximate. To this end, we take the average of (2.16) and use the fact that〈
T1

〉
= 0 (by assumption

〈
Ai(x)

〉
= 0), to get

(2.17) q(x) =
(
I + ε2T−1

0

〈
T1T

−1
0 T1

〉)
p0 +O(ε3),

where I is the identity operator. This equation can be inverted to give

(2.18) p0 =
(
I − ε2T−1

0

〈
T1T

−1
0 T1

〉)
q(x) +O(ε3).

We now apply T0 to both sides of this equation and truncate the resulting expression
to order O(ε2) to get the equation for q(x)

(2.19) T0q(x)− ε2
〈
T1T

−1
0 T1

〉
q(x) = 0,

where we have used equations (2.5) and (2.9). Therefore, the associated problem for
the mean process is finally found to be

(2.20)

(m1(x) q)′ −D q′′ − ε2
〈
T1(x)T−1

0 T1(x)
〉
q = 0,

q(0) = ζ0, q(L) = ζ1.

In order to get a better insight into this equation, we need to find out how the
O(ε2)-term depends on the random coefficients

T1q =
(
A1(x)q

)
,x
−
(
A2(x)q

)
,xx

(2.21)

T−1
0 T1q =

∫ L

0

G(x, s)
[(
A1(s)q(s)

)
,s
−
(
A2(s)q(s)

)
,ss

]
ds(2.22)

T1T
−1
0 T1q =

∂

∂x

∫ L

0

A1(x)G(x, s)
[(
A1(s)q(s)

)
,s
−
(
A2(s)q(s)

)
,ss

]
ds

− ∂2

∂x2

∫ L

0

A2(x)G(x, s)
[(
A1(s)q(s)

)
,s
−
(
A2(s)q(s)

)
,ss

]
ds,(2.23)

where a comma denotes differentiation. We now introduce the correlation functions

(2.24) Γij(x, s) =
〈
Ai(x)Aj(s)

〉
, i, j = 1, 2

and take the expectation value〈
T1T

−1
0 T1

〉
q =

∂

∂x

∫ L

0

G(x, s)
[(

Γ11(x, s)q(s)
)
,s
−
(
Γ12(x, s)q(s)

)
,ss

]
ds(2.25)

− ∂2

∂x2

∫ L

0

G(x, s)
[(

Γ21(x, s)q(s)
)
,s
−
(
Γ22(x, s)q(s)

)
,ss

]
ds,

where we have used the property (see Soong [27], p.98)〈
A(n)(t)B(m)(s)

〉
=

∂n+m

∂tn∂sm
ΓAB(t, s),(2.26)

for any mean square differentiable random processes A, B. Therefore, Eq.(2.20) turns
out to be the following integro-differential equation

(m1(x) q),x −D q,xx − ε2 ∂

∂x

∫ L

0

G(x, s)
[(

Γ11(x, s)q(s)
)
,s
−
(
Γ12(x, s)q(s)

)
,ss

]
ds

+ ε2 ∂
2

∂x2

∫ L

0

G(x, s)
[(

Γ21(x, s)q(s)
)
,s
−
(
Γ22(x, s)q(s)

)
,ss

]
ds = 0.(2.27)
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It is apparent from this equation that the correlation functions of A1 and A2

are the key statistical properties that determines the main difference between the
deterministic solution p0(x) and q(x). Thus, we do not need to know every detail of
the random processes A1 and A2, it is sufficient to know their correlation functions.

3. Small-correlation-length approximation. The final equation (2.27) shows
that q(x) is not in general governed by a simple drift-diffusion transport. Hence, what
is the origin of the general effectiveness of the drift-diffusion equation, even in the con-
text of randomly inhomogeneous media?

We now want to explore what possible approximation reduces (2.27) to a drift-
diffusion equation. There are essentially two characteristic lengths in the problem: one
is the domain length (i.e., the device length) L and the other is the diffusion-to-drift
ratio LD = D/max(m1) which becomes small in the small-diffusion limit.

We assume that the correlation functions are rapidly decaying functions of the
position and we posit the following approximate smooth behavior for Γij

(3.1) Γij(x, s) ≈ Rij e−(x−s)2/(2`2ij),

where Rij is a covariance and the correlation length, `ij , between the random variables
Ai and Aj is assumed to be much smaller than L and LD (`ij � max(L,LD)). For
simplicity, we assume thatRij and `ij are constants (do not depend on x). When `ij �
max(L,LD), the main contribution of the exponential to the integrals is concentrated
around x = s so that we can make use of the Laplace method [2, 20] to find the
asymptotic approximation of the integrals of the type∫ L

0

h(s)R e−(x−s)2/(2`2)︸ ︷︷ ︸
Γ(x,s)

ds ∼ R
√

2π ` h(x),(3.2)

where 0 < x < L and h(x) is an arbitrary continuous non-vanishing function. It is
worth noticing that the integrals are best approximated the smaller ` is and when x
is sufficiently away from the boundary. Furthermore, we observe that

∂Γ(x, s)

∂s
= −R

`2
(s− x)e−(x−s)2/(2`2)(3.3)

∂2Γ(x, s)

∂s2
=

(
R

`4
(x− s)2 − R

`2

)
e−(x−s)2/(2`2).(3.4)

Hence, Laplace method cannot be directly applied to integrals containing ∂Γ(x, s)/∂s
or ∂2Γ(x, s)/∂s2, since the corresponding function h(s) in (3.2) vanishes at s = x,
exactly the maximum point of the exponential function. However, it is shown in
Appendix A that the leading-order asymptotic approximations of such integrals, in
terms of the smallness parameter η = `2/L2 � 1, are∫ L

0

h(s)
∂Γ(x, s)

∂s
ds ∼ −R

√
π

2
`
(
h′+(x) + h′−(x)

)
(3.5) ∫ L

0

h(s)
∂2Γ(x, s)

∂s2
ds ∼ R

(
h′+(x)− h′−(x)

)
,(3.6)

where we have used (3.3), (3.4) and (A.10). Therefore, it is important to observe
that, in the limit of small `, the dominant contribution to the integrals comes only
from expressions of the form (3.6). In agreement with the notation employed in
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the Appendix, the derivative h′−(x) (h′+(x)) is the left-derivative (respectively, right-
derivative) of h(s) at s = x. In particular, h is of the form h(s) = G(x, s)q(s) so that
(3.6) reads

(3.7)

∫ L

0

G(x, s)q(s)
∂2Γ(x, s)

∂s2
ds ∼ R

(
G+,s(x, s)−G−,s(x, s)

)∣∣
s=x

q(x),

while (3.2) and (3.5) are higher order. In order to simplify the difference
(
G+,s(x, s)−

G−,s(x, s)
)∣∣
s=x

we can use the Green function (2.15), written for constant m1

(3.8)
(
G+,s(x, s)−G−,s(x, s)

)∣∣
s=x

= − 1

D
em1(x−s)/D∣∣

s=x
= − 1

D
.

It should be noted, however, that the identity (3.8) is not specific to (2.15). It is only
a consequence of the fact that G(x, s) is a fundamental solution of (2.13). Therefore
(3.8) holds for any Green function, with possibly space-dependent drift coefficients,
m1(x), or different boundary conditions.

Hence, we have the simple asymptotic approximation

(3.9)

∫ L

0

G(x, s)q(s)
∂2Γ(x, s)

∂s2
ds ∼ −R

D
q(x),

while the integrals containing the correlation function or its first derivative are of
higher order O(η). As a result, to leading order, we can consider only the integrals
that contain a second-order derivative of the correlation functions.

We can now simplify the integrals in (2.27). For example, to leading order O(1),
we find ∫ L

0

G(x, s)
(
Γ12(x, s)q(s)

)
,ss

ds =

∫ L

0

G(x, s)
(
Γ12(x, s),ss q(s)(3.10)

+2 Γ12(x, s),s q
′(s) + Γ12(x, s) q′′(s)

)
ds ∼ −R12

D
q(x),

and similarly for the other integrals. Therefore, we obtain the following approximation
for the O(ε2)-term

(3.11)
〈
T1 T

−1
0 T1

〉
q ∼ R12

D
q′(x)− R22

D
q′′(x).

Dropping the ε2 (or absorbing it in the definition of the Rij), the equation for the
average density q(x) =

〈
p(x)

〉
is finally found to be

(3.12)
∂

∂x

[
m1(x)

(
1− R12

m1(x)D

)
q(x)

]
−D

(
1− R22

D2

)
∂2q(x)

∂x2
= 0.

This equation is in the form of a drift-diffusion equation with effective coefficients

meff
1 (x) = m1(x)

(
1− R12

m1(x)D

)
,(3.13)

Deff = D

(
1− R22

D2

)
.(3.14)

This shows that, under broad assumptions, the average density still follows an
approximate drift-diffusion equation with effective drift and diffusion coefficients that
depend on the amplitude of the correlation functions. Of course, higher order correc-
tions are possible and these are more or less important depending on the value of the
smallness parameters, ε and η.
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Fig. 1: (a) Unperturbed drift profiles as given in Eqs. (4.2) and (4.3). (b) Typical
drift and diffusion coefficients after a uniform perturbation, as described in (4.1), with
amplitudes c1 = 0.5, c2 = 0.5. There are 50 evenly-spaced perturbation nodes in [0, L]
and the functions m1(x), m2(x) are then calculated using a spline interpolation over
these nodes. The unperturbed drift and diffusion coefficients are those reported in
(4.2).

4. Numerical simulations. We believe that the greatest merit of our analysis
lies in giving a theoretical basis to the use of drift-diffusion model to study the average
distribution of carriers, under reasonable assumptions. However, in order to check the
accuracy of our approximation, in this section we compare the numerical solution of
(3.12) with the averaged density profile obtained from the sampling of many spatially
dependent problems of the type (2.1). To this end, we perturb m1(x) and D, in
50 evenly-spaced nodes, xk, with a uniform probability density. More precisely, we
generate a perturbation of node values of the form

m1(xk) = m1(xk)(1 + c1ξk), m2(xk) = D (1 + c2ξk),(4.1)

where c1 and c2 are two constants that set the amplitude of the perturbation and ξk
(k = 1, 2, . . . , 50) are sample points extracted from a uniform distribution U [−1/2, 1/2].
In particular, we consider the following drift profiles (see Fig.1(a))

m1(x) = 1− 4

(
x

L
− 1

2

)2

, D = Lm1(L/2),(4.2)

m1(x) =
√

1− x/L, D = Lm1(0),(4.3)

where (4.3) mimics the electric field in a Au/MEH-PPV/Au device [6].
The randomly perturbed functions m1(x) and m2(x) are then obtained by in-

terpolating the random values with a cubic spline to generate a Monte Carlo (MC)
sample. A typical profile is drawn in Fig. 1(b). In the examples below, the unit of
length is fixed by choosing L = 1. Finally, the corresponding Fokker-Plank equation
is solved using a simple finite difference scheme with N = 300 nodes, for each of
the generated m1(x) and m2(x). We compare the average carrier density with the
solution of (3.12), where the effective coefficients are obtained by fitting the average
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Fig. 2: Carrier density profile (red solid line), calculated as the average of 2000 Monte
Carlo samples, with c1 = c2 = 0.25 (left) and with c1 = c2 = 0.5 (right). The values
at the boundary are p(0) = 1, and p(L) = 1. A fitting of the average density yields
R12/L ≈ 0.27 and R22/D ≈ 0.013 (left); R12/D ≈ 1.2 and R22/D ≈ 0.047 (right).
The corresponding solutions of (3.12) are shown as blue solid lines. For comparison,
dashed blue lines depict the solution of the zeroth-order problem, with m1(x) = m1(x)
and m2(x) = D, as given in Eq.(4.2).

MC solution, and the corrections of the unperturbed coefficients, namely R12/D and
R22/D, are then calculated.

Fig. 2 reports the density profiles for 2000 Monte Carlo samples and, respectively,
c1 = c2 = 0.25 (left) and c1 = c2 = 0.5 (right). The drift and diffusion coefficients
are those as in (4.2). The numerical solution of (3.12) is shown as a blue solid line,
and the corresponding corrections to the coefficients are reported in the caption. As
discussed in the text, Laplace approximation is not particularly accurate close to the
boundary, and this is visible from Fig.2(b).

An analogous analysis is shown in Fig.3, where the drift profile is now given as
in (4.3). A more refined simulation, with 20000 MC samples (instead of 2000 as in
Fig.3), is reported in Fig.4.

5. Conclusions. Organic semiconductors are randomly inhomogeneous media:
different carriers may undertake very different paths to go across an organic device.
Only average properties of the carriers are measured and even if the evolution of one
particle could be accurately described, the same evolution would not apply, in general,
to a different particle. Transport cannot be described adequately by carriers moving
freely in conduction and valence bands, but rather by stochastic hopping between
energy levels on different molecules.

However, on a macroscopic level, i.e., on a scale much larger than the molecular
structure, transport is commonly described using a simple drift-diffusion model for
the average density of the carriers. We have shown that it is possible to provide a
mathematical justification for the effectiveness of the drift-diffusion model, that has
a natural physical interpretation.

The main approximation is that the random drift and diffusion coefficients, ob-
tained for instance as jump moments of the corresponding master equation, have
exponentially decaying correlation functions. This means that the random perturba-
tion at one site is nearly independent of the random perturbation of the neighboring
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Fig. 3: Carrier density profile (red solid line), calculated as the average of 2000 Monte
Carlo samples, with c1 = c2 = 0.25 (left) and with c1 = c2 = 0.5 (right). The values
at the boundary are p(0) = 1, and p(L) = 1. A fitting of the average density yields
R12/D ≈ 0.16 and R22/D ≈ 0.072 (left); R12/D ≈ 0.42 and R22/D ≈ 0.18 (right).
The corresponding solutions of (3.12) are shown as blue solid lines. For comparison,
dashed blue lines depict the solution of the zeroth-order problem, with m1(x) = m1(x)
and m2(x) = D, as given in Eq.(4.3).
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Fig. 4: As in Fig.3, but with 20000 Monte Carlo samples and c1 = c2 = 0.5. The
numerical fitting yields R12/D ≈ 0.41 and R22/D ≈ 0.20.

sites.

Appendix A. Asymptotic approximation of the integrals. We first recall
Watson’s lemma [2, 20]

Lemma A.1. Consider the integral

(A.1) I(M) =

∫ b

0

f(t)e−Mtdt ,

where b > 0, the function f(t) is continuous and has an asymptotic expansion at the
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origin

(A.2) f(t) ∼ tα
+∞∑
n=0

ant
β n , t→ 0+ ,

with α > −1 and β > 0. Then, the integral I(M) has an asymptotic approximation
for M → +∞ given by

(A.3) I(M) ∼
+∞∑
n=0

an
Mα+βn+1

Γ(α+ βn+ 1) , M → +∞ ,

where Γ is the gamma function.

It is important to remark that only the asymptotic behavior of f(t) at t = 0
contributes to the integral I(M). Indeed the exponential function e−Mt in [0, b] has
a steep maximum at t = 0 and vanishes quickly away from 0, in the limit of large
M . Thus, changing the upper limit of integration introduces only exponentially small
errors and b can even be replaced with +∞.

Let us now apply this lemma to the evaluation of the integrals of the type

(A.4) I(M) =

∫ b

−a
f(t)e−Mt2dt, a > 0, b > 0,

which is the case of our interest after the substitution t = s− x. The function f(t) is
continuous, but contains the Green function G(x, s) so that, in general, it only has a
piecewise definition:

(A.5) f(t) =

{
f−(t) t < 0,

f+(t) t ≥ 0.

However, we can assume that, separately, f±(t) have asymptotic expansions of the
form (A.2)

f±(t) ∼ tλ
(
a±0 + a±1 t+ a±2 t

2 + . . .
)
, t→ 0± ,(A.6)

where we denote with a−n and a+
n the coefficients of the series of f−(t) and f+(t),

respectively, and λ is a non-negative integer. We are interested in the case a−0 = a+
0 =

a0 6= 0. Of course, the asymptotic assumption (A.6) is not the most general, but it is
sufficient to simplify the integrals (3.2)-(3.6).

The integral (A.4) can be split into two integrals

(A.7) I(M) =

∫ 0

−a
f−(t)e−Mt2dt+

∫ b

0

f+(t)e−Mt2dt.

We then change variable t = −
√
τ in the first integral and t =

√
τ in the second so

that (A.7) becomes

(A.8) I(M) =
1

2

∫ a2

0

τ−1/2f−(−
√
τ)e−M τdτ +

1

2

∫ b2

0

τ−1/2f+(
√
τ)e−M τdτ.

Therefore, we can apply Watson’s lemma to both integrals.
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When f(0) 6= 0 (i.e., λ = 0) we have α = −1/2, β = 1/2, so that to leading order
we obtain (3.2). More generally, when λ ≥ 0 (see equation (3.5) and the quadratic
term in (3.6)), we have α = (λ− 1)/2, β = 1/2, so that we get

(A.9) I(M) ∼
+∞∑
n=0

(
a+
n + (−1)n+λa−n

2

)
Γ
(
(λ+ n+ 1)/2

)
M (λ+n+1)/2

, M → +∞ .

In particular, the approximations for the integrals (3.2), (3.5) and (3.6) are ob-
tained by truncating (A.9) in the following way

(A.10) I(M) ∼



a0
Γ(1/2)

M1/2
+

1

2
(a+

1 − a
−
1 )

Γ(1)

M
if λ = 0,

1

2
(a+

1 + a−1 )
Γ(3/2)

M3/2
if λ = 1,

a0
Γ(3/2)

M3/2
+

1

2
(a+

1 − a
−
1 )

Γ(2)

M2
if λ = 2,

where we recall that Γ(1/2) =
√
π, Γ(1) = 1, Γ(3/2) =

√
π/2, and Γ(2) = 1. In order

to simplify (3.2)-(3.6) we substitute M = 1/2`2.

Acknowledgments. I wish to thank Carlo De Falco for introducing me to the
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