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Bayesian calibration of a low order aerodynamic model for the

design of unconventional tail empennages

Giulio Gori� and Andrea Rausa† and Alex Zanotti‡ and Franco Auteri§ and Alberto Guardone¶

Department of Aerospace Science and Technology, Politecnico di Milano, Via La Masa 34, 20156, Milano, Italy.

In the frame of the MONNALISA Project of the Clean Sky 2 Joint Undertaking (CSJU),

we develop a calibration framework for improving the prediction accuracy of a low-order

aerodynamic model. The enhancement is sought with respect to a reference application

case, an unconventional “Advanced Rear End” component for the forthcoming generation of

ultra-efficient aircraft, which is a specific focus of the MONNALISA Project. The calibration

framework develops upon a classical Bayesian inference approach providing not only optimal

values for the model parameters, but also a probabilistic characterization in terms of their

peculiar probability distribution within well defined bounds. The reference data include

both numerical predictions from computational fluid dynamics simulations and experimental

measurements collected at the large wind-tunnel facility (GVPM) at Politecnico di Milano.

I. Nomenclature

'4 = Reynolds number
" = Mach number
⇠⇡ = Drag coefficient
⇠! = Lift coefficient
)1 = Freestream temperature
1 = Wing span
U = Wing angle of attack
X = Wing control deflection
_ = Wing aspect ratio
g = Wing taper ratio
� = Wing dihedral angle
⇤ = Wing sweep angle

II. Introduction

T�� mission of the Clean Sky 2 Joint Undertaking (CSJU) is to develop innovative technologies to improve the
sustainability of commercial air mobility [1]. The main goal is to achieve a significant reduction of harmful

pollutants released by the aviation industry. In particular, it is expected a cut of fuel burn and its related CO2 emissions
by 20-30%, reducing also the aeroacoustic footprint.

The MONNALISA Project [2] is funded in the frame of the CSJU and aims at developing a physics-based low-order
model to allow the fast and accurate prediction of the nonlinear aerodynamic characteristics of innovative tailplane
configurations for commercial aircraft. As such, the low-order model will contribute to the discovery of new concepts of
rear end for advanced and ultra-advanced long-range and short/medium-range aircraft, possibly leading to improved
aerodynamic performances of the future aircraft generation. In particular, the targeted application is a nonconventional
tailplane configuration with a deflecting control surface at the trailing edge, and the low-order model considered here is
expected to serve the optimal design process of such device.
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In order to achieve these goals, the MONNALISA project develops a multidisciplinary framework entailing three
different disciplines, strictly entwined for the purpose of improving prediction tools:

1) Experimental campaigns devoted to collecting data through a systematic series of wind tunnel tests covering a
wide range of tailplane configurations.

2) Computational Fluid Dynamics (CFD) simulations of unconventional tailplane configurations to increase the
resolution of the experimental database.

3) Bayesian calibration techniques for enhancing the predictions of low-order models based on the available data.

This paper deals specifically with the third item of the list. Namely, it develops a computational framework for calibrating
a low-order aerodynamic model, and it presents an assessment of the attained improvements.

In Sec. III we present the low-order aerodynamic model subject to calibration, which is implemented into a computer
code. In Sec. IV we present the application test case, for which reference data (employed in the calibration process) are
available from both experimental and high-fidelity CFD investigations. Section V presents the methodology underlying
the calibration framework. Section VI reports a verification of the framework and the results achieved by virtue of the
calibration of the low-order model, including a prediction comparison against the non-calibrated model.

III. The aerodynamic low-order model

The aerodynamic low-order model employed in this work is implemented within the DUST solver. DUST is a
flexible computational tool designed to obtain fast and reliable predictions concerning the aerodynamic performances of
aircraft. It is an open source software � resulting from a collaborative research effort between Politecnico di Milano and
A3 by Airbus LLC [3]. DUST particularly suits applications of great complexity because of its capability of accurately
simulating arbitrary aircraft configurations, e.g., multi-rotor machines including moving parts.

Several aerodynamic models based on the potential flow assumption are available within the DUST solver, e.g.,
surface panels, Vortex Lattice Methods, and the Lifting Line method. In this paper, we take advantage of a modified
Lifting Line (LL) approach which is briefly described in the following. According to the so-called �-method, the
circulation of the lifting line is determined by solving a nonlinear problem requiring the knowledge of the aerodynamic
coefficients characterizing each of the lifting sections. These aerodynamic coefficients are provided in the form of
tabulated data expressing the dependency of the performance from the local angle of attack, the local Reynolds number,
and the local Mach number. These tables can be either extracted from fully three-dimensional simulations of the
cantilever wing, or from purely two-dimensional simulations of the sectional airfoil †. In this latter case, a correction
must be implemented in order to retrieve three-dimensional flow effects. As mentioned, in this work we rely on a
modified LL model implementing the sweep-angle correction proposed by Goitia and Llamas in [5]. The reader is
referred to the original work for the details concerning the methodology. Here, we recall only the features necessary to
illustrate the purpose of this work.

This correction extends the limits of applicability for the LL approach by improving the modeling of three-dimensional
effects due to the sweep angle of the wing, which produces a spanwise boundary layer flow from the root to the tip if the
sweep is positive. Because of the sweep angle ⇤, the boundary layer is thinner at the root, introducing a delay of stall [6].
At the tip, the boundary layer is instead thicker causing an anticipation of the onset of stall. The classical sweep theory
for infinite wings, see for instance [7], claims that purely 2⇡ characteristics may be corrected and transformed into
2.5⇡ ones through the relations

⇠
2.5⇡
! = ⇠

2⇡
! cos2 ⇤, (1)

⇠
2.5⇡
⇡ = ⇠

2⇡
⇡ , (2)

U
2.5⇡ =

⇣
U

2⇡ � U0

⌘
cos⇤ + U0, (3)

(4)

being ⇠! and ⇠⇡ the lift and drag coefficients, respectively, and U0 the zero-lift angle for the 2D sectional airfoil. The
correction reported above is valid for infinite wings.

�https://www.dust-project.org/
†In our computational framework, these lookup tables are evaluated by means of SU2, using a two-dimensional RANS model of the sectional

profile coupled to an in-house mesh adaptation software named Darwin, see [4]. The sequential mesh adaptation strategy is based on local error
estimates of the pressure gradient.
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Fig. 1 Tail-plane model installed in the wind tunnel

The correction suggested in [5] consists in implementing a further empirical corrective function for finite wings. In
a finite swept wing, the aerodynamic characteristics of each section vary along the span coordinate H e.g., the maximum
lift coefficient is larger at the root than at the tip [6]. Because of this, an additional correction ^ = ^ (H) is designed to
vary along the spanwise direction. The two-dimensional polars are therefore assigned an effective sweep angle

⇤eff (H) = ⇤loc (H) · ^ (H) . (5)

The results from high-accuracy CFD simulations [8] suggest implementing ^ (H) as the superimposition of two
different and independent contributions which become active at the root and at the tip

^ (H) = 1 + ^root ([root) + ^tip
�
[tip

�
, (6)

noting the coordinate transformation occurring through the definition of non-dimensional coordinates [root and [tip,
see [5]. In the original paper, both the tip and the root functions are modeled using Bézier curves [9] defined as follows:

⌫(H) = ⇠1 (1 � H)3 + 3⇠2 (1 � H)2
H + 3⇠3 (1 � H) H2 + ⇠4 H

3
. (7)

Therefore, the two curves are parametrized by means of four coefficients each. A variation of these parameters
changes the shape of the spanwise correction accounting for three-dimensional effects associated to a finite swept
wing. Summarizing, the considered aerodynamic low-order model i.e., the corrected LL model, entails a total of 8 free
parameters which may be tuned to fit the available data at best. In the frame of this work, these parameters are indeed
unknown and subject to calibration.

IV. The application case and available data

The application test case consists of a cantilever wing mounted vertically on the floor of the wind tunnel test section,
see Fig. 1. In the frame of the MONNALISA Project, this wind-tunnel model underwent several investigations including
both experiments carried out at the Politecnico di Milano Wind Tunnel Laboratory (GVPM) [10] and high-fidelity CFD
analyses [11].

The parameters specifying the model geometry and the test conditions of the referenced works are summarized
in Tab. 1. As clear from the table, the aerodynamic investigation targets discrete points entailing variable operative
parameters namely, U, X and �, spanning specific ranges. In particular, only two dihedral angles are considered namely,
� = 0� and � = 45�. At the same time, the U range is investigated using a resolution of 2 angular degrees, whereas a
resolution of 5 (in CFD) or 10 (in experiments) angular degrees is employed to span the range of the control surface
deflection X. In our application case, the planform of the wing is fixed and equal for all the experiments (either physical
or numerical). The geometry of the airfoil defining the section of the wing, as well as the full data set, is available under
the ERCOFTAC community established on Zenodo [12]. Each folder contains the U sweep referred to a single tail
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Table 1 Test, geometric and operative parameters for the reference test case.

Test parameters Geometric parameters Operative parameters
Value Dimensions Value Dimensions Value Dimensions

'4 5.5 ⇥ 106 - _ 5 - U [0, 26] deg
" 0.147 - g 0.4 - X [�35, 35] deg
)1 300 K � [0, 45] deg

⇤ 30 deg
1 1.6 m

geometry, defined by the geometric parameters and the deflection of the control surface. The data available include the
flow solution in .vtu format, the computational mesh in CGNS format, CAD files in IGES, STEP and CATIAv5 formats,
and a table containing the aerodynamic coefficients for each value of U.

In the experimental campaign, different measurements has been carried out [10]. Namely, the wing integral forces
and moments were measured by a six-component balance, while the hinge moment acting on the tail-plane control
surface has been measured using a purposely built and calibrated strain-gauge torque meter. The boundary-layer
transition line was instead exposed by means of an infrared thermography technique. Particle Image Velocimetry (PIV)
surveys were also carried out for some selected test conditions with the movable surface oscillating. For the purposes of
this paper, we take advantage of load measurements concerning the lift generated by the half-wing.

Besides the experimental campaign, this test case was also investigated numerically using a high-fidelity CFD solver
based on the Reynolds-Averaged Navier-Stokes (RANS) model from the SU2 [13] open-source suite. An additional
database including CFD results from 420 simulations, carried out at different points spanning the ranges reported in
Tab 1, is also available for verification purposes [11].

V. Methodology

The Bayes rule is at the root of the methodology employed to calibrate the aerodynamic low-order model. In the
following, we denote q the vector of the parameters subject to calibration i.e., the 8 coefficients of the Bézier curves
detailed in Sec. III, and o the vector of the available observations. According to these definitions, Bayes’ rule can be
expressed

P (q | o) = P (o | q) P (q)
P (o) . (8)

In (8), we denote P (q | o) the so-called posterior probability distribution of the parameters vector q, P(q) the so-called
prior probability distribution of the parameters vector q, P(o) the evidence of the data, and P (o | q) the so-called
likelihood of the data.

The Bayesian approach requires the encoding of all the prior knowledge concerning q into P(q). This task
translates into shaping the prior probability distribution around specific values, according to what experience or previous
knowledge suggests. Having defined the prior, the Bayes rule provides a means to update the distribution of q after
including new data available from the observation of an event (o). We stress here that the explicit computation of
the evidence is not necessary for our purposes. Indeed, we are interested in obtaining calibrated values i.e., the most
probable values after including observations, whereas the evidence acts just as a scaling constant normalizing the
integral of the posterior distribution to 1. Obtaining the posterior distribution requires also the likelihood P (o | q) to
be specified. The likelihood is the probability of observing a particular datum o, according to the model and given a
specific choice of the q vector.

In our calibration framework, we assume a limited amount of prior knowledge concerning the model values providing
the best fit to data, being an upper and a lower bound the only information imposed by plausibility constraints. For this
reason, our priors are uniform distributions within a finite range &, disregarding any correlation or dependence between
the parameters in q. Namely, we assume that q 2 &, being & a list of ranges for the acceptable values for each of the
free parameters in the low-order model. According to this assumption, which is convenient from the computational
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point of view, the resulting posterior is practically proportional to the likelihood for q 2 & and vanishing for q 8 &‡:

P (q | o) /
(
P(o | q) q 2 &,

0 q 8 &.

(9)

Concerning the likelihood, we implement an approach coherent with the principle of maximum entropy [14],
assuming the likelihood to be a product of Gaussian distributions, each centered on a specific single observation >8 with
a known variance of f2

8 .

P(o | q) =
÷
8

1q
2cf2

8

exp

"
� |>8 � >̃(q) |2

2f2
8

#
. (10)

In practice, values of q yielding large discrepancies (between the o and their prediction õ(q) obtained by evaluating the
CFD model) are penalized. The primary hypothesis underlying Eq. (10) consists in assuming the independence of the
error on each of the components of o. The independent error model is justified in the case of experimental measurement
noise such as the one we are interested in.

The Bayes’ rule, therefore, reduces to a combination of the information available prior to the experiment, encoded
in P(q), with the newly collected data, through the likelihood P(o | q). Unfortunately, the computation of this
latter requires the evaluation of the full CFD model which, of course, is implemented into complex software. As a
consequence, there is no analytic approach for obtaining the posterior, which requires instead the application of brute
force approaches or efficient sampling methods. A brute force approach, or grid search method, consists in evaluating
the posterior numerically on a regularly spaced grid spanning the full prior probability space with the desired resolution.
As a drawback, the cost of this grid search explodes with the dimensions of the prior probability space. Markov Chain
Monte Carlo (MCMC) sampling methods provide instead a valid alternative when dealing with applications entailing
complex multi-variate probability distributions. Here, we rely on the popular Metropolis-Hastings (MH) algorithm [15]
which consists in drawing a large sequence of samples, typically tens to hundreds of thousands, from the posterior
distribution. Basically, the method implements an efficient random walk guided by an accept/reject criteria. Once a
sufficient number of samples has been collected, possibly less than what is required from a brute approach method, it is
then possible to reconstruct the whole distribution.

In any case, the computation of the likelihood of a sample requires the evaluation of the full CFD model for obtaining
>̃(q). Unfortunately, even if the evaluation of the low-order computational model is still considered cheap from the
perspective of CFD (the evaluation for the considered problem requires simulations from the order of seconds to a few
minutes), the calibration task is still too demanding since it requires hundreds of thousands of evaluations. Therefore, a
surrogate of the CFD model is necessary and must be devised.

A. The surrogate model

To reduce the cost of the calibration process, we build a surrogate of the DUST computational model based on
a Polynomial Chaos (PC) expansion [16, 17]. Namely, we built a metamodel to mimic the mapping of the model
parameters (q) to the QoI (>̃ = >̃(q), a generic output of the full computational model corresponding to the observations
available later for the calibration).

Assuming q 2 ⌦3 , with @8 ⇠ U
�
@

min
8 , @

max
8

�
88 = 1, . . . , 3, the expansion corresponds to the orthogonal projection,

into the linear span, of a finite set of orthonormal polynomials  : (q)

>̃(q) ⌘
1’
:=0

2: : (q) , (11)

where 2: are unknown coefficients and where the index of summation : indicates the polynomial order. In particular, :
ranges from 0 to 1. In practice, an upper arbitrary value % must be set to truncate the expansion. In this paper, we rely
on the so-called hyperbolic truncation designed by Blatman and Sudret [18].

The polynomial basis  (q) is chosen such that the following orthogonality relation, corresponding to the inner
product in the !2 Hilbert space, is satisfied

h 8 (q), 9 (q)i =
π
 8 (q) 9 (q)?(q)3q = h 8 (q)2iX8 9 . (12)

‡we refer to the fact that, in the calibration process, we consider the logarithm of the posterior. In the logarithm form, the uniform prior assumption
results in an additive constant term which can be neglected.
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Recalling the assumption of that @8 ⇠ U
�
@

min
8 , @

max
8

�
88 = 1, . . . , 3, and according to the Askey scheme, see Ref. [19], the

polynomial basis can be generated by Legendre orthogonal polynomials. The projection coefficients c can be computed
according to different methodologies. In this work, the expansion coefficients are computed using a non-intrusive
regressive approach based on a least-square regression. Namely, once the truncation scheme has been selected, we solve
the discrete minimization problem

c = arg min
c2R

(
1
#

#’
==1

(>̃(q=) �
%’
:=0

2: : (q=))2

)
, (13)

where the q= with = = 1 . . . # is a set of training points generated using a Latin Hypercube Sampling (LHS) technique.
Once a sufficient amount of realizations is available, the expansion coefficients of the linear regression can be reasonably
approximated.

VI. Results

In this section, we present results concerning the calibration of the low-order model. First, we present the accuracy
assessment of the surrogates employed to hasten the calibration process and the verification of the calibration framework.
After, we present the results of the calibration procedure and the improvements achieved in terms of accuracy gain of
predictions from the DUST solver.

A. Code verification

We first produce an analysis of the accuracy of the surrogates models employed to hasten the calibration procedure.
After we assess the performances of the calibration algorithm w.r.t. a dummy test case, ensuring that the overall
framework is capable of retrieving a preset target solution q̂.

1. Surrogate assessment

In our framework, we deal with several configurations of the wing in the application case. Namely, we consider a
wide range of angles of attack and of deflection of the control surface. Since these configurations are treated as discrete
points within a well defined range of values of practical interest, the test campaign results in data associated to all
the possible combinations of the U � X points. Therefore, a dedicated surrogate is built for each combination of the
U � X angles, considering 8 input parameters corresponding to the unknown parameters to be inferred. Figure 2 reports
the analysis of the performance of the trained PC w.r.t. both the training data set (TRN), including 600 points, and
the verification data set (VER), including 100 points §. Namely, the two plots report the root mean squared deviation
(RMSD) and the maximum absolute discrepancy in between the surrogate prediction and the reference data point.

RMSD =

vut
1
#

#’
==1

|>̃(q=) �
%’
:=0

2: : (q=) |2, and MAX = max

 
|>̃(q=) �

%’
:=0

2: : (q=) |
!
, with = = 1, . . . , # .

Each plot features vertical shaded bands which help identifying the angle of attack corresponding to the surrogate
model. Moreover, within each band, the surrogates are ordered from the lowest (-35 degrees) to the largest (+35 degrees)
deflection of the control surface.

The accuracy assessment reveals a not very high quality of surrogates. Figure 2a shows that the trained surrogates
fail in reproducing all the training values. On average, the RMSD is notable but not too dramatic, being always smaller
than 0.1. On the other hand, the MAX discrepancy may achieve significant values of 0.2. A similar behavior is observed
considering the validation set, in Fig. 2b, from which we also note the poor quality of some surrogates corresponding to
particular wing configuration, or in other words combinations of the U � X values.

The reason for such not very satisfactory quality is to be found in the poor stability of the implemented sweep
correction with respect to very large variations considered for the parameters included in the q vector. This is surely a
key aspect, and future improvements should aim at solving this issue. Despite this fact, we will show later that the
calibration procedure succeeds at inferring q, leading to improving the predictions from the low order model.

§Actually, 600 TRN points and 100 VER points for each U � X configuration, for a total of 117’600 TRN points and 19’600 VER points.
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(a) (b)

Fig. 2 Assessment of the PC surrogates, reporting the root mean squared deviation (RMSD) and the maximum

of the squared error (MAX). (a) Assessment w.r.t. the training set TRN. (b) Assessment w.r.t. the training set

VER.

Table 2 Target values (q̂), and values inferred using the MLE (q"!⇢) and the MCMC (q"⇠"⇠ ) obtained for

the verification test case. The table reports also the prior search ranges.

TIP ROOT
@1 @2 @3 @4 @5 @6 @7 @8

[0.0, 2.0] [0.0, 2.0] [0.0, 2.0] [0.0, 2.0] [�2.0, 0.0] [0.0, 2.0] [0.0, 2.0] [0.0, 2.0]
q̂ 0.400 1.000 1.000 1.600 -1.000 0.600 0.000 0.200
q"!⇢ 0.399 1.000 1.000 1.599 -1.001 0.600 0.001 0.199
q"⇠"⇠ 0.312 1.024 1.076 1.560 -1.012 0.678 0.006 0.190

2. MCMC algorithm verification

This section verifies the implementation of the MCMC algorithm by assessing its capacity to correctly infer arbitrary
target coefficients q̂, see Tab. 2. In this context, the verification is carried out by exploiting a dummy test case entailing
data produced by evaluating the surrogate models at q̂. The target vector entries are reported in Tab. 2 together with
the results from the calibration algorithm. In particular, q"!⇢ (Maximum Likelihood Estimation) reports the values
obtained by the mere application of an optimization algorithm to the likelihood function, whereas q"⇠"⇠ reports the
maximum a posteriori values resulting from the deployment of the MCMC chain. As we are dealing with a dummy test
case, we selected an arbitrary f8 = 0.02, equal for all data points. Clearly, both the MLE and the MCMC approaches are
reasonably capable of returning the targeted values, supporting the verification of the calibration framework.

The specific set up of the MCMC algorithm considers a burn-in phase of 10’000 samples and a MCMC chain of
150’000 samples. The chain is endowed with a very good mixing and a very fast decay of all the auto-correlation
functions for all the eight parameters (not reported). Although the MCMC acceptance rate is quite low (about 4%), the
indicators assessing the convergence of the posteriors reach stationary values well within a few thousands of samples,
a number considerably lower than the overall MCMC chain length. These indicators are: the means of the marginal
posteriors, their standard deviation, and the L1 norm of the kernel density estimates obtained considering different chain
portions.

Figure 3 reports the resulting posterior marginal PDFs on the diagonal plots, showing that the calibration framework
leads to the identification of regions of very high likelihood for each of the eight unknown parameters, with the bulk of
the probability mass distributed in the proximity of the target values.. Moreover, Figure 3 reports also the joint marginal
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distributions, on the lower triangular side, and the sampled points projected on the 2D space with color proportional to
the likelihood, on the upper triangular side.

Fig. 3 Verification test case using dummy data. Picture reports the posterior marginal PDFs on the diagonal

plots. On the extra diagonal entries: on the lower side the joint marginal distributions are reported, whereas on

the upper side are the sampled points projected on the 2D space with color proportional to the likelihood.

Concerning the MLE approach, the optimization method is the Limited-memory Broyden–Fletcher–Goldfarb–Shanno
(L-BFGS-B) algorithm, a popular choice for parameter estimation problems in machine learning [20, 21]. Note that we
implemented an optimization procedure entailing 10 independent search processes, each based on a random initialization
point. Initializing the optimization from different random points reduces the risk of obtaining a solution associated to
a region of local minimum. Of 10 runs, we obtained the targeted solution (which is anyway the best solution) for 5
different and random initialization points.

B. Model calibration

In this Section, we present the results of the calibration procedure carried out considering three different data sets.
Hereinafter, we establish the following labeling for the identification of the considered data sets: RANS is the data set
including CFD data only, EXP is the data set including experimental data only, whereas MIXED is the merged set of
both CFD and experimental data. In any case, 20% of the data points are retained for validation purposes namely, to
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Table 3 Calibrated values (q) obtained w.r.t. the different data sets. The table reports also the prior search

ranges.

TIP ROOT
@1 @2 @3 @4 @5 @6 @7 @8

[0.0, 2.0] [0.0, 2.0] [0.0, 2.0] [0.0, 2.0] [�2.0, 0.0] [0.0, 2.0] [0.0, 2.0] [0.0, 2.0]
RANS 1.272 0.093 0.172 0.029 -1.988 1.091 0.278 0.018
EXP 1.549 0.293 1.856 0.129 -0.106 0.176 0.035 1.644
MIXED 0.182 0.074 0.011 0.399 -1.990 0.863 0.098 0.091

assess the accuracy of the low-order model after calibration.
For all the considered cases, the calibration process entails a burn-in phase of 10’000 samples and a total length of

the MCMC chain of 150’000 samples. We also consider a f8 = 0.2, equal for all points, irrespective of the data source.
Note that, in general, this latter assumption may be changed if one desires to assign a different weight to data produced
from a specific source.

Table 3 reports the values of the model parameter after calibration w.r.t. the different data sets. A first comparison
reveals that results change significantly, depending on the considered data source. In the following, we provide a deeper
analysis of the results obtained for each data set.

1. Calibration using RANS data

Data are provided from [11]. Three-dimensional CFD simulations of the cantilever wing in a free stream were
carried out employing the RANS model from the SU2 open-source suite [13] coupled to the Spalart-Allmaras (SA) [22]
closure. SU2 is a computational tool for solving Partial Differential Equations (PDEs) on unstructured grids and it
implements a Finite Volume Method using a standard edge-based data structure on a vertex-based dual grid.

Steady-state simulations are performed using an implicit Euler time-marching scheme. The convergence to a
steady-state solution is assessed by evaluating the steadiness of the predicted lift (⇠!) and drag (⇠⇡) coefficients.
The convective fluxes are discretized using an upwind Roe scheme with a Monotonic Upstream-centered Scheme for
Conservation Laws (MUSCL) for achieving a second-order accuracy. The Venkatakrishnan flux limiter is employed to
damp local solution oscillation that may possibly arise in domain regions characterized by strong gradients.

Because of the large number of different geometries subject to analysis, an automatic meshing procedure has been
devised. Starting from the specification of the parameters defining the specific configuration of the wing, a parametric
CAD model is built using the software CATIA V5. After, a set of dedicated scripts is used to transfer the CAD model to
the meshing software Pointwise [23]. For the surface mesh, highly-anisotropic triangular cells are used to increase
resolution in high-curvature regions, such as the leading edge and the tail-rudder junction surface. For the volume mesh,
a hex-dominant, octree-based mesh is built to limit numerical dissipation. Both the surface and the volume meshes
are augmented through mesh refinement in regions where complex flow patterns are expected e.g., the portion of the
surface in close proximity to the tip region. An U-adaptive wake refinement is also performed in the direction of the
freestream flow, to better capture the wake developing past the wing.

The original data set consists of 420 simulation points spanning the experimental conditions reported in Sec. IV. In
this Section, we consider only the data corresponding to a null dihedral angle (� = 0) deg, thus reducing the number
of available data points. In total, we consider a subset including 206 points. Namely, 164 points are employed for
the calibration procedure, whereas 42 points are employed for the a posteriori accuracy assessment of the calibrated
low-order model.

Table 3 reports the values inferred using our calibration framework (q), and the search intervals for each parameter.
The chain shows a good mixing and a fast decay, within about 1000 samples, of the auto-correlation function associated
with each parameter (not reported for brevity), therefore confirming the suitable setting of the sampling algorithm. The
acceptance rate of the chain after discarding the burn-in portion is about 2.5%, therefore a quite low value. Anyways,
the resulting posteriors are converged w.r.t. the number of chain samples, achieving a stationary distribution after about
80’000 samples. Instead, the mean and the standard deviation of marginal posteriors are stationary after about 40’000
samples.

Figure 4 reports the posterior marginal PDFs on the diagonal plots, the joint marginal distributions on the lower
triangular side, and the sampled points projected on the 2D space with color proportional to the likelihood on the upper
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triangular side. All posteriors show a concentration of probability mass in specific regions of the admissible range.
Moreover, some correlation may be observed among of parameter pairs e.g., @7 � @8. Practically, only the posterior

Fig. 4 Calibration test case using RANS data. Picture reports the posterior marginal PDFs on the diagonal

plots. On the extra diagonal entries: on the lower side the joint marginal distributions are reported, whereas on

the upper side are the sampled points projected on the 2D space with color proportional to the likelihood.

associated to the @6 parameter presents a peak well included between the prior range. The remaining parameters present
the bulk of the posterior probability distribution backed against either the upper or the lower prior bound, indicating
that the selected prior bounds are likely too narrow. Unfortunately, such a narrow priors had to be selected in order to
ensure the stability of the numerical solver implemented in DUST, and therefore to guarantee the reliability of low-order
simulations and, additionally, to achieve surrogates of acceptable quality. Nonetheless, the calibration process succeeds,
ultimately leading to an improvement of the low-order model predictions.

In Fig. 5a, we report the comparison of predictions from the standard DUST solver (STD), prediction from the
DUST solver implementing the correction with calibrated values (COR"⇠"⇠ ), and the validation data set (Data). The
plot gathers the validation points corresponding to the same value of the angle of attack U, but with a different value of
the control surface deflection X. As shown in the figure, there exists a gap between the predictions from the standard
solver and the RANS data. This gap is due to the differences inherent the low-order model and the fully 3D RANS
model. Thanks to the implementation of the sweep angle correction, and its subsequent calibration, the gap is reduced
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and this is evident in particular in the region of large U, namely U > 8 degrees.
This fact is highlighted in Fig. 5b, where we plot the gain/loss attained in terms of discrepancy w.r.t. the validation

data points. Namely, we compute the quantity |⇠()⇡
! � ⇠

⇡0C0
! | � |⇠⇠$'

! � ⇠
⇡0C0
! | which is positive (green) if the

calibrated correction provides a reduction of the discrepancy, and therefore the corrected model performs better than the
standard one, negative otherwise (red). As clear from the plot, the calibrated corrected model leads to a significant
improvement of the prediction accuracy throughout the whole span of the U � X domain, with just a couple of points
revealing a degradation.

2. Calibration using EXP data

The experimental data set was generated through two experimental test campaigns carried out at the "Galleria del
Vento del Politecnico di Milano" (GVPM), a closed-circuit wind tunnel, arranged in a vertical layout with two test
sections located on the opposite sides of the loop. The considered test campaigns were performed in the Low-Turbulence
Test Section, capable of reaching a maximum wind speed of 55 m/s and a turbulence level less than 0.1%, see Ref. [24].
The specific set up of the experiment and its details can be found in Ref. [10].

From the full experimental database, we select the measurements corresponding to a null dihedral angle for a total
of 51 points. Again, we retain 20% of points (11) for validation purposes and use the remaining 80% (40) to carry out
the calibration.

Table 3 reports the values inferred using our calibration framework (q), and the search intervals for each parameter.
The setting of the calibration process is the same employed in RANS case. Though the chain shows a fair mixing, it fails
in clearly identifying a region of very high likelihood for the eight unknown parameters. The prior domain is thoroughly
and continuously explored, resulting in quite poorly informative posteriors. The auto-correlation functions associated
with the parameters show a very fast decay (in the order of a few hundreds samples, with an acceptance rate of about
6%. Anyways, the indicators considered for assessing the convergence of the posteriors namely, the posterior means,
standard deviations, and the L1 norm of the kernel density estimates obtained considering different chain portions, reach
stationary values well within a few thousands of samples, a number considerably lower than the overall MCMC chain
length.

Figure 6 plots the posterior marginal PDFs on the diagonal. Clearly, posteriors are in general poorly informative,
except for @5, @7, and perhaps @8. In particular, the posteriors associated to @1, @2 and @4 are very flat, indicating an
uniform probability distribution of such parameters. At the same time, this facts are reflected onto the joint marginal
distributions reported on the lower triangular side, or by looking at the sampled points projected on the 2D space,
with color proportional to the likelihood, reported on the upper triangular side. Practically, the amount of information
extracted by the reference data set is not sufficient for clearly identifying a particular value of many of the unknown
parameters, except indeed @5, @7. Nonetheless, we select the maximum a posterior point from the chain, and carry out
the validation which is reported in Fig. 7a. Again, we compare predictions from the standard DUST solver (STD) with
prediction from the corrected DUST solver exploiting this new calibrated values (COR"⇠"⇠ ), and the validation data
set (Data).

Despite the scarcity of information brought by the EXP data set, the prediction gap is varied thanks to the calibrated
sweep angle correction. Improvements are surely limited to well specific regions and, differently than the RANS
case, are now counterbalanced by a significant loss of accuracy for some test configurations. This fact can be better
appreciated in Fig. 7b, where we plot the gain/loss attained in terms of discrepancy w.r.t. the validation data points.

3. Calibration using MIXED data

The MIXED reference data set is composed by the merging of both the RANS and the EXP data set. Namely, a total
of 257 points is now available, with 205 reserved for the calibration and 52 for validation of the results.

The inferred values are reported in Tab. 3, and show some similarity w.r.t. the values obtained using the RANS data
set. This was expected since the MIXED data set contains a large majority of CFD data. In particular, @2, @5 and @8 are
quite similar to the values obtained using the RANS data set only. On the other hand, the inferred @1 and @4 are quite
different, whereas more contained discrepancies remains for the remaining parameters, indicating that the contribution
of the information encoded in the EXP data is not negligible.

The calibration results are reported in Tab. 3. For this test case, the autocorrelation decays quickly along the chain
and a good mixing of the eight parameters is detected, with a poor acceptance rate of about 2.3%. Anyways, the
indicators considered for assessing the convergence of the posteriors reach stationary values well within the overall
length of the MCMC chain.
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(a) RANS data set. Predictions comparison.

(b) Gain/loss plot.

Fig. 5 Calibration test case using RANS data. (a) Comparison of predictions from the standard DUST solver

(STD), prediction from the DUST solver implementing the correction with calibrated values (COR"⇠"⇠ ), and

the validation data set (Data). (b) Accuracy gain/loss plot highlighting the improvements achieved using the

calibrated correction, in terms of �⇠! w.r.t. the validation data set.

Figure 8 reports the usual table plot concerning the calibration procedure. Similarly to the RANS case, there are
regions of high likelihood which are clearly identified as the chain explores the prior probability space. For almost all
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Fig. 6 Calibration test case using EXP data. Picture reports the posterior marginal PDFs on the diagonal plots.

On the extra diagonal entries: on the lower side the joint marginal distributions are reported, whereas on the

upper side are the sampled points projected on the 2D space with color proportional to the likelihood.

parameters, the bulk of the posterior probability distribution is backed against one of the prior bounds, stressing out
again that the selected prior bounds are too narrow and that better results may be achieved if one considers a wider
prior range. As mentioned, this is currently not feasible since it entails a loss of numerical stability concerning the
computation of the aerodynamic solution by means of the DUST solver.

Despite the narrow priors, we select the maximum a posterior point and use the corresponding parameter values to
carry out the model accuracy assessment, in Fig. 9a. Not surprisingly, and because of the composition of the MIXED
data set, conclusions are similar to the ones drawn from the RANS case. The noticeable difference, which is clear from
Fig. 9b, is that the attained gain is larger (about 0.4 in place of about 0.3 achieve using RANS data only). At the same
time, we also note the occurrence of additional regions in which there is actually a loss of accuracy, although limited.

VII. Conclusions

A Bayesian calibration framework was devised to improve numerical predictions from an aerodynamic low-order
model with regards to a specific application case of interest for the MONNALISA project, which develops in the frame of
the CS2 Joint Undertaking. Namely, a cantilever trapezoidal wing in a free stream flow, which represents the horizontal
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(a) EXP data set. Predictions comparison.

(b) Gain/loss plot.

Fig. 7 Calibration test case using EXP data. (a) Comparison of predictions from the standard DUST solver

(STD), prediction from the DUST solver implementing the correction with calibrated values (COR"⇠"⇠ ), and

the validation data set (Data). (b) Accuracy gain/loss plot highlighting the improvements achieved using the

calibrated correction, in terms of �⇠! w.r.t. the validation data set.

component of the rear end of a commercial airplane. Since the goal of the MONNALISA project is to devise tools and
knowledge to support the development of an unconventional “Advanced Rear End” component for the forthcoming
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Fig. 8 Calibration test case using MIXED data. Picture reports the posterior marginal PDFs on the diagonal

plots. On the extra diagonal entries: on the lower side the joint marginal distributions are reported, whereas on

the upper side are the sampled points projected on the 2D space with color proportional to the likelihood.

generation of ultra-efficient aircraft, the application case is investigated considering a multitude of operating conditions.
Namely, high incidence angles resulting into a stalled flow, or different dihedral and sweep angles and taper ratios.

In this work, it is shown that the formulation of the calibration procedure, its implementation into a computer code,
and its setting, are suitable for achieving a significant improvement of predictions from the aerodynamic low-order
model, including also predictions concerning the post-stalled regime. After, it is reported that substantial improvements
were obtained with respect to the data available from RANS simulations, from experiments, and also for a mixed data
set. The improvements are shown for a number of different operating conditions entailing a large variation of the angle
of attack and of the deflection of the control surface, but limited to a null dihedral angle, a back-sweep of 30 degrees,
and fixed taper ratio, and fixed Mach and Reynolds number.

Nonetheless, there remain regions of the operative conditions domain for which further improvements may be
possible and necessary. Future work may be devoted to enriching the calibration data set with the inclusion of data
obtained with a diverse operating conditions e.g., a non null dihedral. Moreover, a possible future development may
consist in substituting the cubic Bézier curves (appearing in the sweep angle correction to the low order model) with
more flexible functionals.
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(a) MIXED data set. Predictions comparison.

(b) Gain/loss plot.

Fig. 9 Calibration test case using MIXED data. (a) Comparison of predictions from the standard DUST solver

(STD), prediction from the DUST solver implementing the correction with calibrated values (COR"⇠"⇠ ), and

the validation data set (Data). (b) Accuracy gain/loss plot highlighting the improvements achieved using the

calibrated correction, in terms of �⇠! w.r.t. the validation data set.
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