
1774 IEEE COMMUNICATIONS LETTERS, VOL. 27, NO. 7, JULY 2023

A Traffic Model Based Approach to Parameter Server
Design in Federated Learning Processes

Bernardo Camajori Tedeschini , Graduate Student Member, IEEE, Stefano Savazzi , Member, IEEE,
and Monica Nicoli , Senior Member, IEEE

Abstract— This letter proposes a model to describe the data
traffic generated by a Federated Learning (FL) process in
a wireless network with asynchronous Parameter Server (PS)
orchestration and heterogeneous clients. The model accounts for
the local update processes implemented by individual clients
and it is used to enforce requirements on the PS design,
namely to regulate the interval among consecutive global model
updates. PS requirements are validated on realistic pools of
resource-constrained wireless edge devices, typically found in
Internet-of-Things (IoT) setups. Numerical results show that
the proposed policy is effective when devices have unbalanced
resources, namely, different sample distributions and computa-
tional capabilities. It permits an accuracy gain of up to 15-17%
on average with respect to typical asynchronous PS designs.

Index Terms— Federated learning over networks, traffic mod-
elling, edge devices, computing.

I. INTRODUCTION

FEDERATED Learning (FL) enables resource-constrained
edge devices to cooperate over a network for training a

shared Machine Learning (ML) model. It protects data owner-
ship by ensuring that the observations used for training never
leave the device responsible for its production. As depicted in
Fig. 1, FL alternates the computation at each device of local
model parameters, i.e., the weights of deep neural network
layers, with the communication to a Parameter Server (PS)
that fuses the local models and returns a global model [1].
Different FL implementations [2] and enablers [3] emerged in
the past few years. Most applications call for geographically
distributed [4] and heterogeneous clients with different tempo-
ral alignments. In many cases, an asynchronous orchestration
of the FL process is also a prerequisite, especially in next
generation networks.

Current state-of-the-art on asynchronous FL strategies
mainly have the following limitations. First, in vanilla algo-
rithms, the PS updates the global model as soon as a local
model is received [5], with no regard to client-specific resource
constraints. This can lead, for example, to biased updates from
faster clients. Secondly, the update at the clients is not opti-
mized as the number of local epochs is usually fixed and not

Manuscript received 15 October 2022; revised 6 December 2022, 23 January
2023, and 14 March 2023; accepted 18 April 2023. Date of publication
3 May 2023; date of current version 12 July 2023. The associate editor
coordinating the review of this letter and approving it for publication was
Z. Yang. (Corresponding author: Bernardo Camajori Tedeschini.)

Bernardo Camajori Tedeschini is with the Dipartimento di Elettronica,
Informazione e Bioingegneria (DEIB), Politecnico di Milano, 20133 Milan,
Italy (e-mail: bernardo.camajori@polimi.it).

Stefano Savazzi is with IEIIT Institute, Consiglio Nazionale delle Ricerche
(CNR), 20133 Milan, Italy (e-mail: stefano.savazzi@ieiit.cnr.it).

Monica Nicoli is with the Dipartimento di Ingegneria Gestionale (DIG),
Politecnico di Milano, 20133 Milan, Italy (e-mail: monica.nicoli@polimi.it).

Digital Object Identifier 10.1109/LCOMM.2023.3272844

Fig. 1. FL system with heterogeneous and asynchronous clients. Optimized
TPS takes into account the local model update completion time of the clients.
Top-right corner: model composition for the experiments.

tuned according to the type of traffic or the quantity/quality of
the data [6]. The letter proposes a moment-matching approxi-
mation to represent the traffic generated by clients engaged in
an asynchronous FL process. The model is validated through
a real FL prototype consisting of physically separated clients
implementing distributed training over a wireless network,
using the Message Queuing Telemetry Transport (MQTT) pro-
tocol. Besides adapting and formalizing the moment matching
technique to the context of FL, the letter provides the necessary
requirements on the time interval among consecutive global
model updates, namely the server response time TPS . This is
used by the PS to decide whether to update the global model
or not, depending on the backlog of local models retained by
the clients. The proposed requirements account for the traffic
type, the local data size, quality, and the channel impairments
affecting the FL local round time.

The letter is organized as follows. Sect. II introduces the
proposed traffic model for asynchronous FL. The model uses
the moment-matching approximation and permits to categorize
the traffic of each client using the dispersion index (D) metric.
Requirements in Sect. III exploit the proposed model to define
operational points that regulate the clients and the PS behavior,
while Sec. IV describes a practical policy for TPS selection
that fulfills the proposed requirements. The policy is validated
through a real-time FL platform prototype.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-2953-0481
https://orcid.org/0000-0002-9865-6512
https://orcid.org/0000-0001-7104-7015

CAMAJORI TEDESCHINI et al.: TRAFFIC MODEL BASED APPROACH TO PS DESIGN IN FL PROCESSES 1775

II. FL DATA TRAFFIC MODEL

We consider a FL system composed of one PS and a set of
K clients K = {1, . . . ,K}, each with its own private dataset
Sk of size Sk = |Sk|. As depicted in Fig. 1, the aim of the
FL process is to obtain a global ML model, of size G, that
minimizes a loss function wG = argminw L(w) with L =
1
K

∑K
k=1 Lk(w,Sk) and Lk being the local costs measured

by clients using the data batches Sk. The FL process requires
the clients to produce local models through optimization,
typically via supervised and gradient-based methods. Each
client k performs M(k) local epochs before exchanging the
local model with the PS, which is in charge of the global
model update.

In asynchronous FL, the PS produces a new instance of the
global model wG,t at time t = nTPS , n = 1, . . . , NFL [4]:

wG,t = (1− ϵt)wG,t−TP S
+

ϵt∑K
l=1 Sl

K∑
k=1

Skwk,t−Tk
, (1)

where wk,t−Tk
represents the k-th local model available at

time t−Tk, Tk ≥ 0 is the time interval required by the client k
to produce an updated local model, while TPS regulates the
time span between two global model updates. n ≤ NFL is the
index of the federated rounds. Finally, ϵt controls the stability
of the update. Considering that clients may have different
computing capabilities and datasets, the associated network
traffic can vary significantly depending on Tk. A client-specific
characterization is thus proposed to model the local model
update process and identify the corresponding traffic pattern.

For the exchange of the NN model parameters among
the clients and the PS, we propose to employ the MQTT
protocol [7] as it enables a real-time exchange of the model
parameters and allows the monitoring of the client training
time required for TPS tuning. The time required by a client k
to implement a local round can be broken down into the
time span to download the weights (Tdown), train the new
model for M(k) epochs using local data batches (Ttrain),
encrypt, compress and upload the weights, i.e., to the MQTT
broker, (Tup):

Tk = Tdown(k) + M(k) · Ttrain(k) + Tup(k). (2)

These quantities can be computed locally by each client,
through standard time measurement functions, and permit
to separate the contribution of computing capabilities (Ttrain)
from possible channel disturbances affecting uplink (UL) and
downlink (DL) communications (Tup, Tdown).

Based on the above assumption, we introduce a model to
approximate the probability density function pTk

(Tk) of the
traffic pattern generated by each client k. A moment-matching
approximation is employed which divides the process into
three categories: Bernoulli, Poisson, and Pascal [8]. We clas-
sify the traffic into one of these categories by matching the
first two moments defined respectively as:

A(k) = En[Tk],
σ2(k) = En[(Tk −A(k))2], n ∈ {1, . . . , NFL}. (3)

The Dispersion Index (D), also called Variance to Mean Ratio
(VMR), is:

D(k) =
σ2(k)
A(k)

, ∀k ∈ K. (4)

According to the moment-matching technique, we can obtain
a Poisson traffic by setting D(k) = 1, i.e., by imposing
a regular traffic pattern. On the contrary, burst-traffic, i.e.,
Pascal, and smooth traffic, i.e., Bernoulli, are obtained with
D(k) > 1 and D(k) < 1, respectively. Based on the above
metrics, in the following, we give upper and lower bounds on
the characteristics of the PS, especially regarding the TPS .

III. MINIMAL REQUIREMENTS ON CLIENTS AND TPS

The choice of the server response time TPS is underpinned
by the local model update process running on each client,
therefore by the number M(k) of epochs that directly reflects
on the dispersion index D(k) in (4). Low values of M(k)
correspond to frequent contributions of the clients to the
global model, at the expense of an increased communication
overhead, and possibly non-informative local model updates.
Conversely, large M(k) forces the client to implement many
local epochs and possibly produce a biased local model
(penalized by overfitting).

Optimal M(k) should be bounded as ML(k) < M(k) <
MU (k). The lower bound ML(k) sets the minimum M(k)
such that the client local model can improve the FL process
while satisfying the communication overhead constraints. The
upper bound MU (k) is the maximum M(k) before the client
starts overfitting. Note also that ML(k) is limited by UL
and DL maximal communication efficiency ηMAX [bit/sec/Hz]
dedicated to the link between the PS and the clients, with band-
width B. Being TFL = NFLTPS the FL training duration,
it is:

TFL

A(k)
G ≤ ηMAXBTFL. (5)

This leads to the following:

ML(k) = En

[
1

Ttrain(k)

(
G

ηMAXB
− (Tdown(k)+Tup(k))

)]
.

(6)

Note that MU (k) depends mainly on the size of training data
and the local model, since more data (or small sized models)
require more local epochs for overfitting. For client k, and
wk,m being the local model observed at local epoch m ∈
{1, . . . ,M(k)}, MU (k) is assigned as:

MU (k) = argmin
m

Lk(wk,m,Sval
k), (7)

where Lk(wk,m,Sval
k) is the validation loss computed by

client k on the validation dataset Sval
k at epoch m.

As shown in the next section, the choice of M(k) affects
TPS and can be used to set practical bounds on global model
updates. On one hand, small M(k) such that M(k)≪ML(k)
might result in TPS ≫ A(k) thus exceeding the constraint
on the spectral efficiency, with negligible effect on the FL
process and accuracy. On the other hand, performing sporadic

1776 IEEE COMMUNICATIONS LETTERS, VOL. 27, NO. 7, JULY 2023

Fig. 2. In orange, red and green the probability density function
pTk

(Tk) of a client with hardware ARM-Cortex-A57 SoC, GPU: 128-core
Maxwell (Jetson Nano model, i), ARM-Cortex-A72 SoC (Raspberry pi4,
ii), ARMv8-Cortex-A53 SoC (Raspberry pi3, iii), respectively. With dotted
black line we represent the log-normal distribution that fits the real probability
density function of Tk . M(k) is set to 2 and the model size S is 51 KB.

global model updates, namely M(k) > MU (k), might produce
biased local models when TPS ≪ A(k). These could nega-
tively contribute to the FL process by either slowing down
convergence, reducing the accuracy [9] or possibly preventing
the device to complete the local round [10].

IV. PS DESIGN PRINCIPLES AND VALIDATION

This section proposes a policy to regulate the PS response
time TPS based on the knowledge of the client dispersion
index D(k), the dataset Sk size and possible conditions
on local overfitting. The proposed policy is validated in
two scenarios where clients are characterized by different
traffic patterns, namely varying computing capabilities, and
non Independent and Identical Distributed (non-IID) datasets.
Validation is based on a FL platform prototype.

A. FL Network Platform and Traffic Modelling

Fig. 2 provides a validation of the proposed client-specific
traffic modelling approach based on moment matching.
We consider a realistic pool of resource-constrained devices
equipped with: i) CPU ARM-Cortex-A57 and GPU 128-core
Maxwell (Jetson Nano model [11], orange), ii) CPU ARM-
Cortex-A72 SoC (Raspberry pi4, red) and iii) CPU ARMv8-
Cortex-A53 SoC (Raspberry pi3, green). For each client,
we collected measurements of local round times Tk to obtain
the sample probability functions pTk

(Tk). Notice that each
client is connected via WLAN to a router which forwards
the MQTT packets to the PS. The traffic parameters Tk and
D(k), are computed directly by clients at the end of each
local round and then sent through a dedicated connection to
the PS. The measured statistics pTk

(Tk) are thus reliable and
realistic as they are independent from the PS hardware or
from the FL processing. As evident from Fig. 2, the local
round time distributions are well approximated by log-normal
(dashed lines) with mean and standard deviation of 1/0.07,
3.4/0.2 and 10/0.3 for clients i), ii) and iii), respectively.

The goal of the following tests is to analyze the impact
of client heterogeneity on PS response time TPS . Based on
experiments in Fig. 2, we simulate different execution times
of the local rounds according to the log-normal model.

Algorithm 1 TPS Policy
1: procedure POLICY(S train

k ,Sval
k) ▷ Run on client k

2: Initialize wk,0, M(k)← 1 ▷ Epoch 0
3: Train local model using S train

k

4: Compute D(k) with (4)
5: Compute ML(k) with (6), MU (k) with (7)
6: Compute performance metric: P = P(wk,MU (k),Sval

k)
7: M∗(k)← max(F [D(k), P], ML(k))
8: T ∗

k ← Tdown(k) + M∗(k)Ttrain(k)+Tup(k)
9: Return T ∗

PS(k)← A∗(k) = En[T ∗
k]

10: end procedure

B. Client-Specific Policy for the PS Response Time

The choice of the PS response time TPS must take into
account both the traffic model of Sec. II and the requirements
of Sec. III. The optimal server time T ∗

PS corresponds to a
value M∗(k) bounded by ML(k) and MU (k). The main idea,
shown in Algorithm 1, is that each client computes its own
optimal M∗(k):

M∗(k) = max(F [D(k), P], ML(k)), (8)

where F is a policy function. Function F takes as input the
local accuracy P and the traffic type D(k). It can be written
analytically as:

F [D(k), P] = Qk(γP)− C ·D(k), (9)

where Qk(γP) =
{
m : P(wk,m,Sval

k) = γP
}

is the num-
ber of epochs that corresponds to a validation accuracy of
γP , and P(.) is the cross-entropy accuracy function. P =
P(wk,MU (k),Sval

k) is obtained at local epoch MU (k), C > 0 is
a constant (see Sec. IV-C) and 0 < γ < 1 is a hyper-parameter.
Optimal M∗(k) is bounded as M∗(k) ≥ ML(k) from (8),
and M∗(k) ≤MU (k) which follows from (9), since C ·D(k)
is a positive term and Qk ≤MU (k) as γP < P .

By replacing M∗(k) in (2), each client derives the PS time
T ∗

PS(k) = A∗(k) using the device-specific parameters MU (k),
ML(k) and D(k), as well as the training S train

k and validation
datasets Sval

k , respectively, as inputs. The device returns the
T ∗

PS(k) value to the PS which makes a final decision for TPS .
The traffic statistics, the upper and lower bounds, MU (k) and
ML(k), are obtained independently by each client during an
initial training stage using M(k) = 1. The log-normal model
parameters (3) are computed by means of consecutive time
measurements Tk, that account for global model download,
local training and model upload steps as in (2). After the
training stage, we obtain the performance metric P and apply
the policy function F in (8) using P and VMR D(k).

Fig. 3 shows an example of local training, with loss and
validation accuracy P for varying local epochs. Notice that
few epochs are typically sufficient to improve the local model
without incurring in overfitting. Cross-entropy function P
in FL also follows a negative exponential behavior, namely
P ≈ a− e−bm, for m < MU , while for such case γ = 0.5 is
found as reasonable (see Sec. IV-C). With the proposed policy
we avoid the overfitting region, transferring at the same time
a great portion of local information. The term C ·D(k) in (9)

CAMAJORI TEDESCHINI et al.: TRAFFIC MODEL BASED APPROACH TO PS DESIGN IN FL PROCESSES 1777

Fig. 3. Example of validation accuracy (blue) and loss (red) during local
model training on a client. MU (k) and M∗(k) values are highlighted together
with accuracy P and γP (γ = 0.5) respectively. Solid and dotted lines are
obtained with 100% and 10% of the training dataset (of size Sk). Note that
overfitting is expected, as the local training process uses few training samples.

accounts for the traffic variance. Intuitively, a high variance,
as a result of a client with varying computing resources,
might increase the probability of observing high local training
intervals (slow client). For such scenario, choosing a low value
of M(k) allows the PS to process the client local model
updates more often and compensate for this effect.

The PS collects the optimal T ∗
PS(k) computed by

Algorithm 1 and derives the response time to be used for all
clients. Considering the previous analysis, this is obtained as:

T ∗
PS = min

k
T ∗

PS(k), (10)

with the requirements on the efficiency already satisfied by
T ∗

PS(k) since ML(k) ≤M∗(k) ≤MU (k),∀k.
In the following, we explore two scenarios in detail. In the

first one, the clients are homogeneous as featuring the same
VMR D(k), M∗(k) and Ttrain(k). In the second scenario, the
clients are heterogeneous and organized into two clusters (C1

and C2). Clients in each cluster k ∈ Ci have similar computing
power/capabilities, namely A(k) = Ai, σ2(k) = σ2

i and VMR
D(k) = Di, ∀k ∈ Ci corresponding to the same processing
unit, and TPU, if any. Accuracy improvements obtained by
following the policy (10) are assessed in both cases.

C. Experimental Assessment

For the experiments, we consider the CIFAR10 [12] dataset
using the full validation data and a local training set of
Sk = 500 images for each of the K = 9 clients. Policy vali-
dation is based on a real-time FL platform prototype featuring
physically separated clients (here Jetson Nano devices). The
approach adopted for modelling the client heterogeneity is
twofold. First, we used an additive delay whose log-normal
distribution fits the observed completion times in Fig. 2.
Second, the training data is non-IID distributed. To sim-
plify the analysis, the data size is the same for all clients
(as typical in FL). The prototype consists of devices connected
via WLAN to the PS, thus permits to quantify the impact

TABLE I
HOMOGENEOUS CLIENTS AND NON-IID DATA. OPTIMAL T ∗

PS AND
M∗(k) FOR VARYING A(k), D(k), η/ηMAX (%), AND

CORRESPONDING ACCURACY IMPROVEMENT (%)
W.R.T. VANILLA ASYNCHRONOUS FL

of communication impairments. The adopted FL algorithm is
FedAvg [9] while Adam [13] is used as local optimizer with
default hyper-parameters. The ML model is described in Fig. 1
and consists of 105 parameters with size G = 2.53 MB. Loss
and performance metrics are the categorical cross-entropy and
categorical accuracy, respectively. For each considered case,
the validation accuracy is evaluated after TFL = 800 seconds.
Considering the communication with the PS, the bandwidth is
B = 40 MHz while the max. efficiency dedicated to FL is set
to ηMAX = 0.05 bit/sec/Hz. MQTT publishing uses Quality
of Service (QoS) level 2 as this permits re-transmissions in
exchange for larger Tup(k) and Tdown(k).

As previously described, the FL process starts with a client
local training to find MU (k) and subsequently M∗(k) and
T ∗

PS(k) according to Algorithm 1, with γ = 0.5. C = 0.2
adapts the VMR D(k) contribution in (9) to the considered
traffic types. Fig. 3 shows the validation loss/accuracy versus
the local epochs that are used to retrieve MU (k) and M∗(k)
from (7) and (9). For clients with training data size Sk, the
optimal M∗(k) is 6 epochs. Setting now the training size
to 10%, we observe shifts in the overfitting region (around
MU (k)) according to the bias-variance of the model: now
M∗(k) = 4.

In Table I we consider at first homogeneous clients, i.e.,
clients with the same computing power and traffic distribution,
but with non-IID data (80% of the local samples are drawn
from the same class, chosen randomly). Traffic parameters are
set to vary within the set A(k) ∈ [2, 80] s and σ2(k) ∈
[0.001, 100]. To evaluate the proposed policy, we choose
TPS ∈ [1, 400] s and obtain the empirical optimal TPS for
each type of traffic. Notice that for the proposed example,
setting ηMAX = 0.05, a client with A(k) ≤ 80 s would require
ML(k) = 1. Table I summarizes the results for all experiments

1778 IEEE COMMUNICATIONS LETTERS, VOL. 27, NO. 7, JULY 2023

TABLE II
CLIENTS ORGANIZED IN TWO CLUSTERS (C1 AND C2) AND NON-IID

DATA (SEE TABLE I). THE RATIO η/ηMAX (%) REFERS TO
THE WORST CLUSTER CASE, I.E., LOWER M∗(k)

grouped based on the traffic type (Bernoulli, Poisson, Pascal),
mainly determined by the value of σ2(k). For each experiment,
we highlight the traffic parameters A(k), D(k) (obtained
for M(k) = 1), the resulting optimal T ∗

PS , the correspond-
ing M∗(k) and the fraction (%) of utilized bandwidth w.r.t
ηMAX . Last column quantifies the accuracy improvement w.r.t.
a vanilla asynchronous strategy where the PS updates the
global model as soon as a local model is available.

Considering the Bernoulli distribution (Table I.a) and
D(k) ≈ 0, the optimal values of TPS and M(k), obtained
empirically, are in-line with the model (9), that gives
M∗(k) = 6 for γ = 0.5 and C = 0.2. On the other hand, when
A(k) > 20, namely the clients being all very slow, it is more
convenient to keep the TPS as low as possible, rather than
following the policy (waiting the end of the optimized round).
Increasing D(k), namely using Poisson and Pascal traffic, this
behaviour is less evident as the optimal M∗(k) (4 and 1,
respectively) is now in line with the policy and maintained
for all A(k). To summarize, the policy is effective for the pre-
diction of the optimal values of M∗(k) and can be used to tune
the T ∗

PS when A(k)≪ TFL (see cases highlighted in green).
Table II analyzes a more general case where the clients

belong to clusters C1 and C2 and have different local learning
completion times. Cluster C2 contains much slower clients
compared with C1: the example is thus useful to verify
the proposed policy for TPS and whether the PS should
specifically follow any cluster Ci, or not. To achieve that,
we vary A(k) = Ai=1,2 of both clusters within the set [1, 80] s,

TPS ∈ [1, 400] s and σ2
i=1,2 ∈ [0.001, 100] s2. Cluster C1

contains 5 clients while the remaining 4 clients belong to C2.
The results highlighted in blue show that the optimized TPS

should be set to follow the optimal number of local rounds
M∗(k) of the faster clients. For example, this can be seen in
the extreme case of (A1 = 1, A2 = 80) where the cluster C2

almost does not affect the choice of T ∗
PS . For all the considered

cases, the use of an underestimated value of M∗(k) should be
preferred to prevent overfitted local models. In other words,
it is more beneficial to update more often the global model
following the faster clients, k ∈ C1, as opposed to wait for the
slower clients, k ∈ C2, to complete their round. To conclude,
we observe that designing TPS based on the knowledge of
the client-specific traffic is able to outperform asynchronous
FL strategies. Optimization of TPS is particularly critical for
the case of two clusters. Observed accuracy gain increases
from 5.1% (single cluster), to 15-17% on average.

V. CONCLUSION
The letter proposed a stochastic traffic model to describe

the clients’ behavior in FL processes. The model is based
on the moment-matching approximation and it is verified
with practical resource-constrained devices communicating
with a Parameter Server (PS) using MQTT transport. Traffic
characterization is used to develop a policy for the selection
of the PS response time TPS in asynchronous FL. The
policy satisfies spectral efficiency constraints and avoids FL
overfitting impairments. Results obtained in real setups show
that an accuracy increase of up to 15-17% is possible when
clients exhibit different local model completion times.

REFERENCES
[1] P. Kairouz et al., “Advances and open problems in federated learning,”

2019, arXiv:1912.04977.
[2] W. Y. B. Lim et al., “Federated learning in mobile edge networks:

A comprehensive survey,” IEEE Commun. Surveys Tuts., vol. 22, no. 3,
pp. 2031–2063, 3rd Quart., 2020.

[3] M. M. Amiri and D. Gündüz, “Machine learning at the wireless edge:
Distributed stochastic gradient descent over-the-air,” IEEE Trans. Signal
Process., vol. 68, pp. 2155–2169, 2020.

[4] B. C. Tedeschini et al., “Decentralized federated learning for healthcare
networks: A case study on tumor segmentation,” IEEE Access, vol. 10,
pp. 8693–8708, 2022.

[5] Y. Chen, Y. Ning, M. Slawski, and H. Rangwala, “Asynchronous online
federated learning for edge devices with non-IID data,” in Proc. IEEE
Int. Conf. Big Data (Big Data), Dec. 2020, pp. 15–24.

[6] Z. Wang et al., “Asynchronous federated learning over wireless com-
munication networks,” IEEE Trans. Wireless Commun., vol. 21, no. 9,
pp. 6961–6978, Sep. 2022.

[7] (2021). MQTT V3.1 Protocol Specification. [Online]. Available:
https://mqtt.org

[8] R. I. Wilkinson, “Theories for toll traffic engineering in the USA,” Bell
Syst. Tech. J., vol. 35, no. 2, pp. 421–514, Mar. 1956.

[9] H. B. McMahan et al., “Communication-efficient learning of deep
networks from decentralized data,” in Proc. 20th Int. Conf. Artif. Intell.
Statist., Apr. 2017, pp. 1273–1282.

[10] K. Bonawitz et al., “Towards federated learning at scale: System design,”
in Proc. Mach. Learn. Syst., vol. 1, 2019, pp. 374–388. [Online].
Available: https://tinyurl.com/34bwmd5m

[11] Jetson Nano Developer Kit. Accessed: Mar. 1, 2021. [Online]. Available:
https://tinyurl.com/52mdbjzh

[12] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” M.S. thesis, Dept. Comput. Sci., Univ. Toronto, Toronto,
ON, Canada, 2009.

[13] D. P. Kingma et al., “Adam: A method for stochastic optimization,”
May 2015, arXiv:1412.6980.

Open Access funding provided by ‘Politecnico di Milano’ within the CRUI CARE Agreement

