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Abstract: In clinical scenarios, the use of biomedical sensors, devices and multi-parameter assess-
ments is fundamental to provide a comprehensive portrait of patients’ state, in order to adapt and
personalize rehabilitation interventions and support clinical decision-making. However, there is a
huge gap between the potential of the multidomain techniques available and the limited practical
use that is made in the clinical scenario. This paper reviews the current state-of-the-art and provides
insights into future directions of multi-domain instrumental approaches in the clinical assessment of
patients involved in neuromotor rehabilitation. We also summarize the main achievements and chal-
lenges of using multi-domain approaches in the assessment of rehabilitation for various neurological
disorders affecting motor functions. Our results showed that multi-domain approaches combine
information and measurements from different tools and biological signals, such as kinematics, elec-
tromyography (EMG), electroencephalography (EEG), near-infrared spectroscopy (NIRS), and clinical
scales, to provide a comprehensive and objective evaluation of patients’ state and recovery. This
multi-domain approach permits the progress of research in clinical and rehabilitative practice and the
understanding of the pathophysiological changes occurring during and after rehabilitation. We dis-
cuss the potential benefits and limitations of multi-domain approaches for clinical decision-making,
personalized therapy, and prognosis. We conclude by highlighting the need for more standardized
methods, validation studies, and the integration of multi-domain approaches in clinical practice
and research.

Keywords: EMG; muscle synergies; EEG; NIRS; kinematics; clinical scales; biomarkers; rehabilitation;
review

1. Introduction

In clinical scenarios, clinical scales are the most-used tools for the evaluation of patients’
neuromotor impairment and the assessment of recovery after rehabilitation. Despite their
widespread use, clinical scales present some limitations that affect the reliability, objectivity,
and sensitivity as well as the feasibility of use, related to cost-effectiveness and ease of
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administration [1]. Besides a general consistency in repeated measurements, most clinical
scales are unable to capture the entire spectrum of motor function in patients, due to
limited sensitivity or ceiling and floor effects [2]. Other limitations include objectivity,
inter-evaluator variability, and test responsiveness to subtle changes and the amount
of time needed to apply these tests [3]. Despite being useful, clinical scales have often
been proven not fully satisfactory for clinical assessments. Thus, it is crucial to identify
virtuous approaches for clinical decision-making and therapy administration to provide
novel insights on pathologies, as well as to minimize the long-term costs and maximize
the recovery of rehabilitation procedures. One of the most promising approaches is the
use of multi-modal devices and multi-domain analysis techniques, which allow for the
detection of novel relationships between variables and the acquisition of new knowledge
on physiological processes.

Therefore, in recent decades, clinicians have started to rely on the availability of tools,
devices, and techniques for the analysis of biological signals, exploiting their added value
in comparison to the standard clinical practice; the innovative, highly advanced, and pi-
oneering approaches favor the adoption of multi-modal solutions and the improvement
of the assessment of rehabilitation effectiveness in a plethora of pathologies. This process
boosts the progress of research in clinical and rehabilitative practice and improves the
understanding of the pathophysiological changes occurring during and after rehabilitation,
overcoming the low sensitivity of traditional clinical practice. Instrumental measurements,
such as kinematic recordings, electromyography (EMG), electroencephalography (EEG), or
near-infrared spectroscopy (NIRS), are widely used in clinical scenarios and can provide
quantitative assessments of the patient’s health state. Each instrumental assessment ex-
plores and provides information about a specific domain: kinematic recordings allow us to
quantify motor performance and quality of movement by directly assessing the motor out-
puts; EMG measures the activity of muscles and can be useful for muscle-fatigue detection,
force estimation, and motor-control analysis; EEG measures the electrical activity of the
brain and can monitor the complex neuronal activity and its changes; NIRS measures the
hemoglobin concentration in human tissue and can assess the hemodynamics in the brain
cortex or muscles. However, since motor and neural functioning are complex structures
involving individual, environmental, and contextual factors, a multi-modal comprehensive
characterization of the patient is needed to overcome the limited view that is provided
when using only one sensor at a time. It is unlikely that a single outcome measure may
adequately assess the degree of neuromotor functions and differentiate between key ele-
ments of the same function. Indeed, multi-domain approaches combine information and
measurements that are collected with sensors from different domains, such as kinematics,
EMG, EEG, NIRS, and others. Each domain gives specific information that, combined
with the other measurements, may provide a more comprehensive understanding of the
state of the patient. This may explain why, in research studies, different clinical outcome
measures have been integrated to capture different domains of the same function and
different domains of the International Classification of Functioning, Disability, and Health
(ICF) (i.e., impairment vs. activity vs. participation) to gain a more complete picture of
functioning. In fact, in many neurological disorders, the impairment regards the neural
and sensorimotor systems at different levels, and, therefore, a detailed quantitative as-
sessment is essential for the definition of rehabilitation treatment and the evaluation of
the recovery [4]. Therefore, clinical interventions have to be tailored to the individual in
order to evaluate the recovery. Multi-modal and multi-parameter assessments provide
information on different domains that can be used to identify the specific patterns of the
functional organization of the neuromotor control of the patient and can help to address
the rehabilitation [5].

Multi-modal approaches allow us to choose the most effective treatments and, prospec-
tively, provide the best care methods for patients. These methodologies may be integrated
into clinical practice to support clinical decisions, to provide a comprehensive assessment
of the patient and quantitatively evaluate motor recovery during rehabilitation. However,
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the main findings achieved using multi-parameter assessments and the potentiality of
combining measures from multiple domains have not been summarized to guide future
directions in the clinical field.

This paper provides a detailed overview of the current scientific research based on
multi-modal and multi-parameter assessments in the clinical field and suggests how to
improve scientific and clinical research to promote the use of multi-domain approaches,
in order to foster the application of multi-parameter assessment in clinical practice by
showing clear evidence of its potential. This overview focused mainly on musculoskeletal
and central nervous system (CNS) assessment in rehabilitation.

2. Methods: Rationale and Research Questions

This narrative review aims at collecting and reviewing the main multi-domain instru-
mental approaches that are currently employed in clinical assessments, with a particular
focus on the rehabilitation field. We would like to (i) provide a summary of the main
domains assessed with instrumental technologies, (ii) summarize which combinations
of multi-domain instrumental approaches have been used so far, (iii) describe the main
achievements obtained, and (iv) critically comment on the future directions for the field.

The findings that will be summarized come from a vast field and from variable
approaches. A screening of the literature was performed, and the most representative
articles were selected based on the authors’ experience. Only papers available in the main
databases (Web of Science, PubMed, Scopus, and Google Scholar) and written in English
were considered for selection. From this analysis, the main advantages and disadvantages
of the multi-domain approaches will be discussed, highlighting how future research and
clinical practice would be impacted by these techniques.

3. Results
3.1. Summary of the Main Domains of Assessment and Main Achievements

A scheme of the main instrumental approaches related to different physiological
domains investigated in this work is shown in Figure 1.
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3.1.1. Clinical Scales

People with neurological conditions can suffer from several impairments, ranging
from paresis associated with decreased strength and sensation to increased muscle tone,
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loss of inter-joint coordination, and impaired control of voluntary movement that results in
slow, imprecise, and uncoordinated task-related movement [6]. These impairments often
cause limitations in activities of daily living and may decrease the quality of life. Although
many studies have investigated the efficacy of various rehabilitation interventions, how to
improve functions after CNS damage remains an important challenge [7]. Clinical outcome
measures are essential for improving clinical practice and for evaluating the efficacy of
rehabilitation interventions.

Several systematic reviews, guidelines, and consensus-based recommendations have
evaluated the psychometric properties and/or feasibility of clinical outcome measures [8]
in neurologic conditions. Other reviews described the different ICF domains (namely
body function, activities, and participation) covered by each measure [9] and provided an
overview of the frequency of use in clinical practice and research [1].

Within the ICF Body Structure/Body Function level, a variety of assessment scales exist
to evaluate motor impairment after stroke, designed to capture aspects such as joint range of
motion (ROM), strength, synergistic execution of movements, gross motor capabilities, and
object manipulation. These assessments concern movement strategies used to accomplish
a task and try to identify the factors that may affect the performance of a task. In the last
few decades, the focus of rehabilitation has slowly shifted from ICF function level towards
activity and participation level [10]. The limitations at the activity level are associated with
limitations in the execution of activities of daily living, resulting in greater dependency,
restricted social participation, and a decreased quality of life experienced by those with
neurological conditions. However, the relationship between function/impairment level and
activity level (and participation as well) is still poorly understood [11]. Information about
activity level, although very useful in clinical settings, may not reveal valid information
about the functioning of a patient in daily life.

In the last few years, several recommendations combining existing evidence, clinical
practice guidelines, and expert consensus have provided a core set of outcome measures
for upper- and lower-limb assessment in neurological rehabilitation [12]. Most of these
core recommendations have prompted the usage of the Fugl–Meyer Test (FMT) for upper-
and lower-limb-impairment assessment [13] to assess sensory and motor function, balance,
and coordination. At the activity level, the Action Research Arm Test (ARAT) [14] and
the Wolf Motor Function Test (WMFT) [15] measure upper-limb impairments and activity
limitations. The widespread adoption of core assessments could improve the quality of
clinical practice and the effectiveness of interventions.

Another drawback of the clinical outcome measures is that they are insufficiently sensi-
tive to capture the quality of sensorimotor performance. This impedes the ability to clearly
distinguish behavioral restitution or compensation, which is essential for understanding
the neurological mechanism of sensorimotor recovery post-stroke [16].

A better understanding of the relationship between movement quality and the ability
to perform functional activities can be achieved with a detailed analysis of the joints/body
segments involved in accomplishing a particular task [6]. This is usually not part of
standardized clinical outcome measures since they mainly focus on task accomplishment.
Only a few outcome measures are focused on the assessment of quality aspects of functional
movements [17]. Technologies such as wearable sensors, robots, force sensors, and 3D
motion-capture techniques allowing the objective measurement of movement kinematics
and kinetics were suggested as the best way to tackle this problem [18].

Clinical outcome measures have also been used as predictors of recovery potential [19].
A range of models to predict upper- and lower-limb motor outcomes have been published.
Measurable grip strength at 1 month or the presence of shoulder abduction or finger exten-
sion at 3 days post-stroke are suggested as plausible predictors for upper-limb recovery.
Prediction models only including clinical assessments have shown to be inferior compared
to the models combining clinical and neurophysiological or neuroimaging techniques. This
seems to be particularly valid for patients with initial poor motor function [20].
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3.1.2. Kinematics

Kinematic evaluations can provide quantitative and objective information about motor
output associated with tasks and allow for monitoring the administration of therapeutic
techniques [21]. Kinematics measures refer principally to the execution of a movement and
its repeatability, such as articular angles, range of motion (ROM), and measures derived
from the end-effector movement. A summary of common applications is shown in Figure 2.
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These parameters can be measured with optoelectronic systems that require a set of
infrared cameras and retroreflective markers placed on anatomical landmarks of the pa-
tients, or marker-less systems, such as RGB-depth cameras or IMUs. Parameters related to
movement speed are usually movement time, mean velocity [22], and peak velocity [23]. In
upper-limb applications, the accuracy of movement can be evaluated with metrics derived
from the end-effector movement: movement deviation from a theoretical or desired trajec-
tory [24] and target error, measured as the end-point error around the target placement [25].
These measures are often employed during robotic rehabilitation, but they can be used
also in free body movements. Kinematics also provides information about the fluidity and
repeatability of movements. In particular, measures of movement smoothness are usually
considered for the evaluation of motor-control improvement and dexterity. These measures
are based on the velocity profile or jerk, which is the third time derivative of the position.
Smoothness metrics based on speed usually employed in clinical scenarios are the number
of velocity peaks [26], the ratio between the mean speed and the peak speed [27], time to
peak velocity [28], and spectral arc length [29]. Other measures are based on jerks, such as
the normalized jerk [22,28].

Kinematic measures provide insight into the movement execution and functional
outcomes of the neurological system performance of the patient; however, they cannot
identify coordination patterns and the underlying mechanisms of impairments, which can
be detected with other neurophysiological measures [30].

3.1.3. EMG

Surface EMG is a non-invasive technique used to record the activity of the muscles
under the electrodes placed on the skin [31]. The acquired signal is the train of the motor-
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unit action potentials (MUAPs) generated by the muscle fibers of the motor unit, in response
to nervous stimulation [32]. An EMG signal can be analyzed in both time and frequency
domains, and some common applications are shown in Figure 3.

Healthcare 2023, 11, x FOR PEER REVIEW 6 of 27 
 

 

identify coordination patterns and the underlying mechanisms of impairments, which can 
be detected with other neurophysiological measures [30]. 

3.1.3. EMG 
Surface EMG is a non-invasive technique used to record the activity of the muscles 

under the electrodes placed on the skin [31]. The acquired signal is the train of the motor-
unit action potentials (MUAPs) generated by the muscle fibers of the motor unit, in re-
sponse to nervous stimulation [32]. An EMG signal can be analyzed in both time and fre-
quency domains, and some common applications are shown in Figure 3. 

 
Figure 3. A schematic representation of EMG signal processing workflow and biomarkers. The fig-
ure shows different applications of EMG signals in clinical and motor rehabilitation, such as estima-
tion of number of motor units (MU), computation of muscle-fiber conduction velocity, detection of 
movement onset/offset, analysis of motor control with muscle synergies, and detection of muscle 
fatigue with median frequency. 

Common applications in the time domain are the estimation of the number of motor 
units (MUs), the detection of muscle activity, and the analysis of muscle co-contraction. 
The number of MUs has been identified as a biomarker for the progression of neurodegen-
erative diseases, such as amyotrophic lateral sclerosis (ALS) [33]. The detection of muscle 
activity and, specifically, the identification of the onset and the offset of the activity, is 
useful in clinical practice for motor-control analysis or for the evaluation of the results of 
interventions, such as orthopedic surgeries [34]. EMG is also at the basis of motor-control 
theories based mainly on time and spatial domain analysis, such as muscle synergies, 
which provide insight into the control mechanisms for motor planning [35]. In particular, 
muscle activation patterns can be decomposed into a limited number of modules, called 
synergies [36], which provide insight into the organization of muscle activation during 
motor tasks. According to this theory, muscle co-activation patterns are extracted using 
decomposition algorithms to obtain spatial and temporal components of muscle activa-
tions, which, respectively, could be interpreted as co-activating muscles and their time 
recruitment. This analysis can provide information on muscular coordination and motor 
control [37]. The analysis of EMG signals in the frequency domain is usually related to the 
detection of muscular fatigue. Muscle fatigue is the result of a complex mechanism that 

Figure 3. A schematic representation of EMG signal processing workflow and biomarkers. The figure
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number of motor units (MU), computation of muscle-fiber conduction velocity, detection of movement
onset/offset, analysis of motor control with muscle synergies, and detection of muscle fatigue with
median frequency.

Common applications in the time domain are the estimation of the number of motor
units (MUs), the detection of muscle activity, and the analysis of muscle co-contraction.
The number of MUs has been identified as a biomarker for the progression of neurodegen-
erative diseases, such as amyotrophic lateral sclerosis (ALS) [33]. The detection of muscle
activity and, specifically, the identification of the onset and the offset of the activity, is
useful in clinical practice for motor-control analysis or for the evaluation of the results of
interventions, such as orthopedic surgeries [34]. EMG is also at the basis of motor-control
theories based mainly on time and spatial domain analysis, such as muscle synergies,
which provide insight into the control mechanisms for motor planning [35]. In particular,
muscle activation patterns can be decomposed into a limited number of modules, called
synergies [36], which provide insight into the organization of muscle activation during
motor tasks. According to this theory, muscle co-activation patterns are extracted using
decomposition algorithms to obtain spatial and temporal components of muscle activa-
tions, which, respectively, could be interpreted as co-activating muscles and their time
recruitment. This analysis can provide information on muscular coordination and motor
control [37]. The analysis of EMG signals in the frequency domain is usually related to the
detection of muscular fatigue. Muscle fatigue is the result of a complex mechanism that
causes structural and energetic changes in muscles and, therefore, it can be detected with
EMG signals [38]. In particular, the median frequency (MF) and mean power frequency
(MPF) of EMG signals show a decreasing tendency during fatigue [39] and, therefore,
they can be used as biomarkers for fatigue [40], preventing patients, athletes, or workers
from injuries.
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Despite its numerous applications, the EMG signal is affected by the structure and
the placement of the electrodes [41] and by the number and properties of active fibers,
such as type and conduction velocity [42]. Another phenomenon affecting the EMG signal
is cross-talk, which is the recording of electric signals from nearby muscles that are not
investigated and that overlap with the signal from the muscle under investigation [43].
Despite the possible presence of these noises, surface EMG is a useful and powerful tool
that provides insight into human physiology and supports the diagnosis of neuromuscular
diseases. Indeed, EMG signals are used in a wide variety of applications in both research
and the clinical field, such as muscle-fatigue detection, force estimation, and motor-control
analysis [44].

Applications of EMG in Rehabilitation

In clinical scenarios, EMG analysis has been used for a variety of assessments. Current
applications of EMG are mainly related to physiological investigation, the monitoring of
neurological disorders, and the planning of treatments [44]. The evaluation of muscle
activity and coordination is a useful tool for the assessment of motor impairment and for
targeting the rehabilitation activity in patients with neuromotor disorders, such as post-
stroke patients, since they usually show abnormal muscular activity, including spasticity,
weakness, or spatiotemporal patterns [45]. Motor control theories can be used for the
quantification of motor-control abnormalities [46] and changes in muscular activation
patterns [47]. In recent years, interesting applications of EMG were found in prosthetic
control [48], in which amputees can perform simple yet useful movements by controlling
automatized prostheses with residual EMG near the amputated region. Several EMG
pattern-recognition algorithms are implemented for myoelectric prosthesis control [49].
EMG signals in clinical practice have also been employed for characterizing the impact
of motor abnormalities on motion by identifying changes in EMG median frequency at
fatigue [50]. EMG signals were also used to evaluate the effects of rehabilitation on muscle
fatigue and force capacity in inpatients, showing that force capacity increased without
increasing fatigue [51].

3.1.4. EEG

EEG is a technique that measures the electrical activity of the brain from electrodes
attached to the scalp. EEG has a high temporal resolution, meaning that it can capture
fast changes in brain activity with millisecond accuracy [52]. EEG signals reflect the syn-
chronous activity of large populations of neurons, and they are characterized by different
frequency bands that correspond to different physiological and behavioral conditions. For
example, delta waves (0.5–4 Hz) are dominant during deep sleep, theta waves (4–8 Hz) are
related to memory and emotion, alpha waves (8–13 Hz) indicate relaxed wakefulness, beta
waves (13–30 Hz) reflect alertness and concentration, and gamma waves (30–150 Hz) are
associated with cognitive processing and sensory integration [53].

With the advent of high-density systems, it is possible to monitor whole-brain neuronal
activity with a better spatial resolution, which is more suitable for exploring functional
network organization [54]. Indeed, EEG can also show how different brain regions commu-
nicate with each other, by measuring the functional or effective connectivity between them.
Functional connectivity (FC) reflects the statistical dependence or correlation between two
signals, while effective connectivity (EC) reflects the causal influence or direction of infor-
mation flow between them [55]. EEG connectivity can be estimated with different metrics,
such as coherence, phase synchronization, Granger causality, or transfer entropy [56,57],
both in the time and frequency domain.

Moreover, graph analysis has been successfully employed to concisely describe the
brain network’s integration and segregation behavior in communication [58]. The brain
is thus described as a complex network, where specific cortex areas represent nodes and
the links between these nodes represent the functional interaction between these cerebral
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regions. It has been found that the human brain exhibits a small-world behavior—a balance
between a local and global integration of networks.

EEG is thus a valuable tool for studying how the brain changes and recovers its
functions after injury or disease, such as stroke, Parkinson’s disease (PD), cerebral palsy
(CP), spinal cord injury (SCI), or traumatic brain injury (TBI). EEG has several advantages
over other neuroimaging techniques, such as being affordable, portable, easy to use, and
adaptable to different situations. EEG can work both in rest and movement conditions,
and it can be combined with other modalities, such as EMG, kinematics, functional NIRS
(fNIRS), or transcranial magnetic stimulation (TMS). EEG can reveal various aspects of
brain function that are relevant for motor rehabilitation, such as event-related potentials
(ERPs), power spectra, and connectivity measures. ERPs are time-locked changes in EEG
signals that reflect the brain’s response to specific stimuli or events. Power spectra show the
distribution of EEG signal energy across different frequency bands. Connectivity measures
show how different brain regions interact with each other. Figure 4 shows how EEG signals
are processed and what kind of information can be obtained from them.
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Applications of EEG in Rehabilitation

EEG is a widely used technique to study the brain changes that occur during and after
post-stroke rehabilitation, across different stages of recovery [59]. EEG biomarkers, such
as the ratio of slow (delta/theta) to fast (alpha/beta) waves, can predict motor outcomes
in stroke patients, as they indicate the level of arousal and alertness of the brain [60,61].
EEG can also investigate other neurological disorders that affect motor function, such as PD,
which is characterized by reduced motor-evoked potentials and altered EEG microstates [62];
CP, which shows abnormal EEG patterns and connectivity [63,64]; SCI, which affects the
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cortico-spinal communication and motor control [65]; and TBI, which disrupts the functional
network organization and integration [66,67].

In addition to traditional biomarkers, more recently, FC investigation proved to be
particularly interesting in the study of rehabilitation effects in those pathologies derived
from the disruption of information transfer between brain regions and helped to explore
how induced brain plasticity may play an important role in functionality recovery [68].

In the following text, we focus on summarizing more recent findings of FC analysis,
undirected or directed, in the field of motor rehabilitation treatments.

Brain connectivity in the resting state (RS) is one of the most investigated conditions
since it is the easiest experimental protocol that can be performed with patients of all
grades of impairments, and it has been demonstrated that RS connectivity is predictive
of motor-function recovery in stroke patients [69]. Nevertheless, studies have also been
conducted during the proper execution of tasks [70,71] or motor imagery [72] protocols to
investigate movement-related network configuration.

Most of the studies evaluating the effect of rehabilitation in motor recovery focused
their analysis on motor-network characterization. However, altered motor-network FC
has also been found with higher-order cognitive control networks such as default mode
networks, executive control networks, and dorsal attention networks. Therefore, connec-
tivity patterns have been recently investigated both within and between RS large-scale
networks [73–75].

In the literature, the major results of connectivity analysis in the rehabilitation field
are focused on stroke recovery, comparing stroke patients with control groups [69,76–78]
and evaluating the effect of different rehabilitation treatments [79–81]. In most works, an
altered inter-hemispheric connectivity pattern was found. Homologous regions of the two
hemispheres show reduced connectivity in the acute stage, which gradually returns to a
normal level in sub-acute and chronic stages both during rest and motor execution [70,82,83].
Indeed, brain network reorganization has been demonstrated to depend on time after
stroke [84], and an increase in inter-hemispheric connectivity, particularly between the
primary motor cortexes in alpha and beta frequencies, was found to positively correlate with
motor outcome improvement [71,82,83]. Conversely, an increase in RS-directed connectivity
measures, from pre-motor towards primary motor intra-hemispheric regions, was found in
sub-acute patients assessed before and after rehabilitation treatment [85]. Hoshino et al.
in 2021 found higher intra-hemispheric FC in both hemispheres in RS and during ankle
movement [71]. Wu et al. in 2015 found a positive correlation between motor outcome and
an increase in coherence between ipsilesional pre-motor and primary motor cortexes in
chronic patients after one month of rehabilitation [86]. This alteration in the communication
may be due to alterations between the segregation and integration of information between
affected and non-affected hemispheres [68].

Philips et al. in 2017 proved that topographical measures of integration and segrega-
tion among functional networks may be useful biomarkers of post-stroke motor recovery,
suggesting their employment for the prognosis and evaluation of therapeutic outcomes [87].
Many studies employed graph analysis [88], reporting that small-worldness reduces in
stroke patients when compared to healthy subjects [76,77]. Small-worldness in RS brain net-
works was also suggested to represent a biomarker of functional recovery in stroke patients
since a correlation with motor outcome was found [77]. Molteni et al. found an increase in
the node strength of the contralesional primary motor cortex and ipsilesional pre-frontal
cortex after exoskeleton training in subjects with lesions in the non-dominant hemisphere,
as well as a restoration of the interactions between primary motor and premotor cortexes
after rehabilitation [80].

As for large-scale intra-network connectivity, Romeo et al. investigated the interaction
of 14 RS networks and their correlation to different impairment domains in a cohort of
30 sub-acute/chronic stroke patients. Interestingly they found a correlation between dorsal
attention networks and language network FC with motor indexes [75]. Wang et al. in
2018 explored neurological changes after guided or non-guided robot hand training in
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24 chronic stroke patients. They found that only the robot-assisted group showed motor
improvement and found an increase in the temporal variability of six large-scale networks,
including somatomotor, attention, auditory, and default mode networks [73].

3.1.5. NIRS

NIRS is a non-invasive optical technique that allows for the measurements of hemoglobin
concentration in human tissues using light in the near-infrared region (650–900 nm). Light is
shone into the biological tissue and recollected from the same by means of optical fibers.
The injected photons travel in the whole volume under the optical fibers and the features of
the recollected signal depend on the different tissue optical properties, i.e., the absorption
and diffuse coefficients [89].

The main physiological parameters investigated with this technique are the oxygenated-
(O2Hb) and deoxygenated-(HHb) hemoglobin concentrations, allowing for the calculation
of tissue total hemoglobin (tHb) content and tissue oxygen saturation (SO2 = O2Hb/tHb).

Among the applications of NIRS, we mention the measure of the cortical response
function (i.e., an increase in O2Hb and a concomitant decrease in HHb in the brain cortex)
after the administration of stimuli of different natures. In this case, the optical probe is
placed on the scalp and photons travel through the head, reaching the brain cortex after
going through the skin, the skull, and the cerebrospinal fluid. This kind of study is referred
to as functional NIRS (fNIRS) [89]. Another important application of NIRS encompasses
the assessment of the muscle oxidative metabolism through the measurement of skeletal
muscle fractional O2 extraction, typically represented by a concomitant increase in HHb
and a decrease in O2Hb [90]. In this case, the probe is placed on the limb and photons
travel through superficial layers, such as skin and fat, before reaching the muscular tissue.

Because of the hardware simplicity and moderate price, the most common approach for
NIRS acquisitions is based on the employment of continuous wave (CW) optical radiation.
CW NIRS allows us to retrieve relative variations of the hemodynamic parameters with
respect to an arbitral baseline [91]. In this case, the sensitivity to deeper tissues is obtained
by increasing the source–detector distance or employing more source–detector pairs. On
the contrary, by adopting a time-domain (TD) approach to NIRS, it is possible to retrieve the
absolute values for the hemodynamic parameters and to better discriminate the investigated
tissues in depth. This is obtained, however, with more complex instrumentation [92]. In
the literature, we also find devices based on the frequency-domain regime (FD).

Finally, NIRS is a relatively low-cost, noninvasive technique that can be made mul-
tichannel and can be easily applied at the bedside for the continuous monitoring of the
hemodynamic parameters. Moreover, it is compatible with various other clinical tech-
niques. For these reasons, it has already been employed in different scenarios and different
clinical settings, even if it can be still considered quite a new technology. In the following,
some examples are presented, giving wider importance to the rehabilitation scenario and
focusing on both the brain and muscle applications. In Figure 5, a schematic workflow and
extrapolated biomarkers for NIRS and fNIRS are shown.

Lastly, another optical technique was recently introduced in combination with fNIRS:
diffuse correlation spectroscopy (DCS), which allows for the investigation of the motion
of red blood cells and calculating cerebral blood flow, exploiting the coherence loss of
highly coherent laser light when it diffuses in biological tissues [93]. For further details and
applications, see the following sections.

Applications of NIRS in Rehabilitation (Brain)

One of the main applications of fNIRS is the measure of brain cortex hemodynamics in
response to neural activity, which allows researchers to investigate a wide range of cognitive
and motor processes connected to rehabilitation. It has also been widely leveraged in
clinics to assess cerebral hemodynamics in patients suffering from stroke [94], TBI [95], or
dementia [96]. Recent technological improvements allowed also its exploitation in delicate
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environments such as neonatal intensive care units (ICUs), where fNIRS is particularly
suitable for assessing the cerebral autoregulation of preterm infants [97].
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In the neuro-rehabilitation contest, compared to other neuro-imaging techniques such
as fMRI, whose studies in this framework are limited to the upper-extremity exercises,
fNIRS allows us also to investigate brain oxygenation during the exercise of the lower limbs,
being less prone to motion artifacts. An important type of study where fNIRS is exploited
concerns the monitoring of the rehabilitation process, to investigate the mechanisms of
functional recovery after brain injury. In other cases, fNIRS was used as a therapeutic
tool to develop brain–computer interface modules (BCI) [98]. Many papers have been
published exploiting fNIRS as a diagnostic tool, and most of the published studies are
focused on stroke survivors and patients with cerebral palsy [99]. In the past few years,
great attention has been paid to investigating human–robot interaction, studying the
hemodynamic response to robot-assisted motor tasks. In 2022, Bonnal et al. studied the
cerebral activations during walking with an exoskeleton at different levels of assistance,
and they observed that the amplitude of the activations was strictly related to the level of
effort during gait [100].

Due to fNIRS acquisitions on the cerebral cortex, we have information about neurovas-
cular coupling. This process is always more considered, together with other parameters
acquired in the clinical practice, in order to have a comprehensive view of the cerebral
cortex’s functioning and state. With fNIRS, it is easier to perform experiments when the
subjects are walking or performing rehabilitation exercises, thanks to the possibility of
making this technique portable [101,102]. Recently, it was also demonstrated that a major
comprehension of the fNIRS signal could be possible with the employment of concomi-
tant physiological signals (such as arterial partial pressure of CO2, blood pressure, skin
conductance, skin temperature, heart rate, respiratory rate, photoplethysmography, and
others), which can be also used for regressing out physiological confounding components
in fNIRS signals [103]. In the future, fNIRS instrumentation will increasingly be integrated
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with these and other emerging modalities, such as eye-tracking and augmented and virtual
reality devices.

Applications of NIRS in Rehabilitation (Skeletal Muscle)

The employment of NIRS techniques on muscular tissue allows for the determination
of local musculoskeletal O2 saturation and oxygen consumption (

.
VO2) as a measure of

muscular oxidative metabolism [104]. In a recent review from Tuesta et al., an overview of
the effects on muscular oxygenation of the exercises in a clinical scenario is presented [105].
In particular, different pathologies were considered, such as multiple sclerosis, orthopedic
disorders, acute myocardial infarction, heart failure, type 2 diabetes mellitus, chronic kidney
disease, metabolic muscle, and peripheral artery diseases. Concerning the rehabilitation
field, fewer examples can be found: the evolution of functional impairments and the
rehabilitative intervention were monitored [90], and the loss of muscle oxidative capacity
associated with aging or diseases was evaluated [106]. Skeletal muscles were also monitored
during early rehabilitation after heart failure, which cause a disturbance of the peripheral
perfusion, to target therapeutic strategies [107]. Manfredini et al. identified novel muscle
metabolism biomarkers to evaluate muscle adaptations in patients with peripheral artery
disease [108]. The effect of the rehabilitation was also evaluated in patients with coronary
artery diseases combining NIRS acquisitions and vascular occlusion tests [109]. Finally,
muscular metabolism was also assessed during post-stroke rehabilitation [110].

3.2. Summary and Achievements of the Main Multi-Domain Instrumental Approaches

In this section, we reported multi-domain approaches that were found to be most
diffused in clinical applications. We discuss in detail the combinations of instrumental
approaches from different domains.

3.2.1. EEG + EMG

EEG and EMG signals regard functional activities that are strictly correlated: the EEG
measures the activity at the brain motor cortex, where the motor commands start, while the
EMG quantifies the muscle activations that are generated by those commands. Therefore,
EEG + EMG analysis may give insights into how each of the two domains is affected
by the impairment and restored with the rehabilitation, supporting the therapy decision
process and the evaluation of the motor recovery [111]. The most diffused application
of the combined EMG and EEG signals is the analysis of cortico-muscular coherence
(CMC), which assesses the functional connections between the brain motor cortex and the
associated muscles [112]. CMC can assess functional changes between acute and chronic
stages in post-stroke patients [113] and evaluate the positive effects of rehabilitation on
motor recovery [114]. The analysis of EEG combined with EMG was employed for the
evaluation of exoskeletons [115] or robotic devices [116] used for rehabilitation, finding
that both brain connectivity and muscle activations improved with therapy. Relations
between cortical activity and muscular activations have also been investigated with mutual
information for the detection of movement intention, which is needed to increase the
effectiveness of the rehabilitation of post-stroke patients [117]. Recent applications of
combined EEG and EMG approaches also include a measure of directed information flow
that has been adopted to investigate the effects of electrical stimulation during cycling on
neuro-muscular coupling in chronic stroke [118] and the fusion of EEG and EMG signals
for device-guided therapy [119].

3.2.2. Kinematics + EMG

Biomechanical and neural activity provide complementary information about the
neuro-musculoskeletal system of the patient with an objective approach [30]. The com-
bined analysis of kinematics and electrophysiological measurements gives a complete
characterization of the sensorimotor control, highlights differences between pathologic
and normal subjects, and monitors the ongoing development of motor recovery [120,121].
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Kinematics provides information about the motor output, while EMG signals give insights
into the neurophysiological mechanisms that generate the movement. The two assessments
may provide not overlapping information, as the same movement may be generated with
different combinations of the redundant muscle system. Typical examples of kinematic
analysis combined with EMG measures allowed us to examine the effects of rehabilitation
in hemiplegic children [122], revealing that the combined analysis can highlight the dif-
ferences in the postural responses between the less-affected and more-affected sides. In
patients with spasticity, biomarkers of spasticity were extracted from kinematics and EMG
describing the biomechanical and neurogenic components of spasticity [123]. The combined
use of kinematics and EMG allowed us to evaluate their motor condition, discriminating
the causes of spasticity that could not be found with traditional clinical assessment and tar-
geting rehabilitation [124]. A novel approach for fusing both domains is the mixed-matrix
factorization (MMF) algorithm that allows for extracting both muscular and kinematic
synergies that can give insights into motor control by linking the muscle and task spaces in
the same factorization [125].

3.2.3. Kinematics + EEG

EEG measures can provide complementary information on motor cortex activations
and brain connectivity that can be related to the motor output evaluated by kinematic
measurements. In post-stroke patients, both domains were positively affected during reha-
bilitation [126], indicating that neuromotor recovery reflects in movement performance and
neural activations coherently in multi-modal assessments [127]. Neuromotor biomarkers
for the evaluation of patient performance were defined by relating kinematics to EEG
signals, which could describe both the cognitive and motor state of the patient that has to
learn to interact with the environment [128]. During robotic-assisted therapy, EEG showed
that neuroplasticity was stimulated and was related to an improved motor outcome [129].
EEG and kinematics were also assessed together with EMG for the evaluation of the effects
of rehabilitation on post-stroke patients [130,131]. In particular, Belfatto et al. [130] showed
that improvements found in one of the domains could not be spotted in other domains
and that multi-parameter approaches can detect finer improvements that could not be
identified by clinical scales only. Pierella et al. [131], instead, integrated the information
from the different domains, finding that clinical improvements correlated with changes in
kinematics, muscle synergies, and spinal maps after rehabilitation in stroke patients.

3.2.4. NIRS + EMG

The combination of EMG with NIRS allowed us to assess muscle characteristics
from both an electrical and hemodynamic point of view [132]. Principal applications
regard the characterization of muscle fatigue in healthy subjects [133–135], showing that
spectral EMG features are related to hemodynamic parameters and provide complementary
information on muscle fatigue. Both domains were analyzed for assessing patients with
lower-back pain, showing that pain was not related to impaired muscle fatigability or
oxygen consumption [136], or muscular pain [137], finding that physical exercise stimulates
oxygenation and may have beneficial effects on muscular pain. Very few studies used
these techniques for evaluating the effects of rehabilitation in chronic stroke patients [138]
and those with spinal-cord injury [139], showing that rehabilitation stimulates not only
muscular activity but also tissue oxygenation. The effect of the recruitment pattern of
muscular fibers on muscular oxygenation was described for patients with incomplete
spinal cord injury, where also the impact on their rehabilitation process is discussed [140].

3.2.5. fNIRS + EEG

The multi-modal approach EEG-fNIRS provides complementary information to ex-
plore neurovascular coupling. In the literature, it is possible to find tens of applications
of combined fNIRS-EEG acquisitions, because of the orthogonality of the neurophysio-
logical information provided by the two technologies. Among the clinical applications,
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rehabilitation is present for only 8% [141], probably because of the complexity of the ac-
quisition set-up for the EEG and its sensitivity to motion artifacts. Their combined use is
of particular interest for brain connectivity investigation [142]. Recently, it has been used
to assess post-stroke cortical reorganization and identify biomarkers of motor recovery
after 4 weeks of rehabilitation [143]. A hybrid EEG-NIRS device combined with body
motion capture allowed us to distinguish PD with more than 83% accuracy for each in-
dividual [144]. Moreover, hybrid EEG-fNIRS systems have been used to assess cortical
connectivity in stroke rehabilitation with transcranial direct current stimulation [145,146],
and more recently to monitor non-responding patients with acute brain injury, obtaining
99% accuracy in distinguishing patients that subsequently failed to recover conscious-
ness [147]. The fusion of EEG and fNIRS also provides a useful approach to evaluate
guided robot-assisted rehabilitation [148]. For example, Wang et al. found that BCI-based
neurofeedback training in chronic stroke subjects increased their EEG event-related syn-
chronization/desynchronization during motor imagery and enhanced cortical activity
measured with fNIRS [149].

3.2.6. fNIRS and NIRS + DCS

Combining tissue oxygenation (measured by NIRS), blood flow (by DCS), and arterial
saturation (estimated by a commercial pulse oximeter) it is possible to measure the tissue
metabolic rate of oxygen consumption. In the literature, we can find examples of their
combined clinical application on the neonatal brain. In 2010, Durduran et al. measured
cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,
and they observed a good agreement with gold-standard arterial spin-labeled magnetic
resonance imaging [150]. More recently, Rajaram et al. exploited a hybrid broad-band
fNIRS and DCS device (NNeMo) to study cerebral hemodynamic and metabolic changes of
neonates in ICU during ventricular tap [151]. De Carli et al. tested a hybrid TD fNIRS and
DCS device to assess cerebral changes in postnatal transition [152]. No contributions to the
neurological rehabilitation field were found.

Recently, the DCS technique was also applied to periphery body compartments to
obtain information about systemic tissue perfusion and vascular diseases [153]. Many
papers have been published on the combined NIRS and DCS application on muscle, with
the aim of the assessment of both muscular perfusion and metabolism. Zanoletti et al.
developed a hybrid TD NIRS and DCS device for evaluating endothelial function and
metabolism for patients in the intensive care unit (ICU) and preventing extubation failure
during the weaning from mechanical ventilation [154]. Baker et al. studied the effects of
supervised exercises in patients with peripheral artery disease, observing that supervised
exercise training improved patient ability to increase microvascular calf-muscle blood flow
and oxygen extraction during physical activity [155]. In 2019, dynamic NIRS and DCS
measurements were performed during cycling by Quaresima et al., successfully testing an
algorithm to remove movement artifacts, paving the way for the exploitation of hybrid
NIRS-DCS devices in rehabilitation [156].

3.2.7. NIRS + Others

A multi-domain assessment could also be useful in muscular applications. In particu-
lar, there are many examples where both the central and peripheral aerobic functions have
to be monitored, such as in chronic heart failure (CHF) patients [157]. To better understand
the impact of exercise training, pulmonary ventilation and cardiac output measurements
should also be acquired by a computerized metabolic cart [158]. The assessment of the
muscle-fiber recruitment patterns on muscle oxygen utilization is of interest to gain a com-
prehensive knowledge of the muscular activation patterns. To this purpose, a combined
acquisition with EMG is needed, which can also be useful to assess local muscular fatigue.
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4. Discussion
4.1. Advantages of Multi-Domain Approaches

Instrumental assessments provide quantitative information on the neuromotor and
motor recovery of patients during and after rehabilitation. Such evaluations cannot be
reliably performed using standard clinical scales only. Furthermore, the combination
of the analysis from different domains provides a comprehensive and complementary
evaluation of the patient, which may help to better understand the organization and
rearrangement of the central nervous and musculoskeletal systems [30]. The integration of
multiple information sources allows for the identification of specific causes underlying the
impairment that could not be discerned with clinical scales [124], and the implementation
of multi-parameter assessments can identify motor improvements that cannot be detected
with clinical scales or measured from one domain only. In Belfatto et al., a set-up for upper-
limb robot-assisted rehabilitation was tested with a multi-parameter evaluation, showing
that clinical improvements of the patients could be related to neurophysiological and motor
changes measured by instrumental assessments before and after therapy [130] and that the
assessments might provide complementary information or, in some cases, not even be in
full agreement. In this study, post-stroke patients did not improve their movement range of
motion significantly, but they could perform smoother movements, improving their motor
control. This finding was in part reflected in their muscle synergies that were only slightly
modified after the therapies and in EEG assessments that showed an enhancement of the
desynchronization (especially in the contralateral hemisphere), which may reflect a motor
recovery. Thus, multi-domain approaches may allow us to identify finer improvements that
cannot be detected by clinal scales only. Indeed, relating the brain activations detected with
EEG to changes in muscle recruitments and smoother movements may help to distinguish
between functional recovery and the adoption of suboptimal compensatory strategies.
Kinematic and kinetic measures are one of the most used and valuable methods used
to assess motor performance, but they cannot detect compensatory strategies related to
neural deficits if they are not related to electrophysiological measures [159]. In this way,
multi-domain approaches provide a deeper insight into the mechanisms underlying the
relearning procedure and the level (neuro/muscular) at which it occurred.

Each tool, device, or sensor provides specific information related to its specific domain,
allowing for a deep—but limited to the domain—characterization of the patient. A more
comprehensive characterization of the patient is needed to tailor rehabilitation therapies,
since pathologies affect each patient differently [160], and multi-domain approaches allow
us to evaluate neuromotor organization at different levels, facilitating the customization
of the therapy in the patient [5]. In some studies, multi-parameter assessments could be
employed successfully when associated with robotic rehabilitation. These approaches
allow for measurements of biomechanical parameters with sensors directly integrated into
the robotic tool, such as kinematic and force data, improving the objectivity, repeatability,
precision, and easiness-to-use [161]. In this way, rehabilitation can be adapted rapidly
based on the motor performance, which is computed easily and promptly by the set of
integrated sensors [162].

It is indeed clear from available studies that multi-parameter approaches offer a set of
interpretative advantages that may strongly affect the comprehension of the mechanisms
underlying pathologies and clinical decision-making. It is, however, also clear that the
field of multi-domain approaches is based on pilot studies and has not yet found wide
application in clinical studies, since these approaches also show disadvantages.

4.2. Disadvantages of Multi-Domain Approaches

Multi-domain instrumental approaches have some limitations that have prevented
their systematic use in clinical practice. First of all, employing multiple sensors would
require a long preparation time that is not feasible for routine assessments in clinics, in
which the time dedicated to a single patient is limited [163]. Moreover, all the equipment
might be very expensive for facilities that have to invest in these technologies [164].
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Furthermore, the use of simultaneous multiple recordings results in a large number
of sensors and cables being attached to the patient. This leads to multiple possible con-
sequences. First, from a technical point of view, sensors may interfere and cause relative
movements or the detachment of the sensors themselves from the skin. Indeed, record-
ings can be contaminated by electronic equipment, such as power line noise and cable
motion artifacts, and by movement artifacts at the electrode–skin interface [165]. Second,
the discomfort of the patient could increase, affecting the psychological state and per-
formance during the assessment, and the set of devices may lack transparency altering
motion performance.

Another difficulty for clinical use is the effort required from the clinical personnel:
clinicians need practice and training to use different equipment and for interpreting the
results, or specific professional figures have to be employed [166,167]. This can be complex
because of the often-unclear relationships between multimodal assessments (e.g., clinical
and kinematic) and the high number of resources required to apply a battery of these
assessments. Clinicians require evidence on the reliability of the different measures and
the standardization for the use of assessment tasks and measurement systems, which are
currently missing [168]. To spread the use of multi-domain approaches in clinical routine, it
is necessary to define standardized protocols that guarantee the repeatability of measures.

4.3. Approaches to the Analysis of Multiple Domains in Clinical Practice

Most of the scientific articles presenting multi-domain approaches preliminary present
studies in which physiological and pathological processes are investigated only in a limited
number of patients or even in healthy controls. This set of pilot studies is needed to explore
biomarkers that could potentially support diagnosis and decisions on therapy. However, at
the present stage, few studies have employed multi-domain measures to evaluate the effects
of rehabilitation on motor recovery during training sessions or in pre-post comparisons
and longitudinal studies.

Even if the potential of multi-domain assessments has only been partially exploited,
different approaches could be used for the integration of the parameters from multiple
domains. The analytical approach is to analyze the domains separately to characterize
each level of the neuro-muscle-skeletal system and, successively, compare the results to
find if they are in accordance. In this way, each domain is fully characterized and all
the information of each assessment can be captured, as in Belfatto et al. [130]; however,
this approach can also lead to non-agreements. Another approach is to integrate the data
from the different domains to find relations with data-driven methods. This approach was
employed by Pierella et al., in which kinematic, EMG, and EEG signals were combined using
principal components analysis (PCA) [131]. Similar approaches are the MMF algorithm
that allows for extracting both muscular and kinematic synergies together and linking
the muscle and task spaces in the same factorization [125], and the CMC, which searches
for relations between the brain motor cortex and the associated muscles [112]. Analyzing
the integrated domains allows us to find their correlations, detailing how the data agree;
specific information of each domain may not be caught with the same level of detail as in
the analysis of every single domain, as the information is “fused” in a synthetic approach.

4.4. Clinical Adoption of Multi-Domain Approach: Future Perspective and Barriers

There is a growing body of evidence that rehabilitation-focused biomarkers may pro-
vide more accurate information on patients’ stratification and help us to identify the proper
respondent during different therapies. In this context, rehabilomics is a new emerging
transdisciplinary science based on the evaluation of biomarkers, aiming to understand the
rehabilitation-relevant phenotypes related to the biology, function, prognosis, treatment,
and recovery of patients with neurological disabilities [169].

The concept behind this approach is that a given biological or molecular system can
be better studied by considering it in its entirety, rather than in its individual elements.
This principle is also at the basis of systems biology, according to which the study of an
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organism is considered an integrated and dynamic network of genes and proteins that
interact with each other in space and time, allowing a specific system to function.

In this context, proteomics, genomics, and metabolomics, alongside functional brain
imaging and neurophysiological technologies (i.e., MEPs, EEG, surface EMG, NIRS, and
kinematics), have been explored as potential biomarkers of motor recovery in technology-
assisted rehabilitation.

In clinical rehabilitation practice, the use of a rehabilomic approach along with multi-
sensors assessment can be used, for example, to distinguish subjects who have a high
risk of developing complications following the proposed rehabilitation treatment from
subjects who will not manifest them precisely because of their genetic characteristics and
their biomolecular profile. The use of novel biomarkers in the rehabilitation field is useful
at several levels: in the preclinical phase, allowing us to identify from the genetic profile
the subjects at risk of developing diseases of rehabilitative interest; when the disease has
manifested itself, to tailor a treatment to the individual patient, improving the effectiveness
and efficiency of the rehabilitation proposal; and finally, it is useful to monitor the effects of
the proposal on the individual patient.

4.5. Future Research and Practice

To spread the use of multi-domain approaches for future applications, limitations of
their use in clinical practice should be overcome. Summarizing the findings of our review,
we identified specific future directions and barriers to large-scale adoption.

We expect that future research and practice should:

(i) Adopt standardized methods and criteria for selecting, combining, and analyzing
multi-domain data to ensure the validity, reliability, and comparability of results
across studies and settings [168]. To achieve this, it is necessary to match the study
design with clinical needs in terms of setup complexity and time for preparation [163],
and to define guidelines of good practice for all the combinations of assessments;

(ii) Validate multi-domain approaches against gold-standard measures and clinical out-
comes to establish their accuracy, sensitivity, and specificity for different patient
populations and conditions;

(iii) Integrate multi-domain approaches into clinical practice and research by developing
user-friendly interfaces, protocols, and guidelines that facilitate their application and
interpretation by clinicians and researchers. The comfort and psychological state of
the patient has to be preserved, since the use of many sensors may interfere with the
execution of tasks; thus, the sensors should be made less invasive. To foster the use of
multi-domain approaches, instrumental measures and clinical observation must be
linked so that clinicians may be more encouraged to apply multi-domain approaches
and employ such techniques for evaluations and clinical decision-making. Clinicians
or other professional figures have to be instructed on the use of the instrumentation
and trained to interpret the results [167];

(iv) Explore novel multi-domain combinations and methods that can capture more aspects
of motor function and recovery, such as neural plasticity, muscle metabolism, or
cognitive–motor interactions.

4.6. Messages Learnt

To further clarify the main needs and open points, associated lessons learnt and
solutions, we summarized the main points of discussion on the use of multi-domain
approaches and the corresponding possible solutions in Table 1.

4.7. Limitations

This work has some limitations. First, the scope of the review is comprehensive
and could not systematically cover all the papers available in the literature. While the
authors are confident that the vast majority of relevant papers have been screened and
reviewed, it is possible that a few studies have been missed. Due to the choice of a narrative
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approach, in this work no meta-analyses were presented and, thus, only the main messages
were presented without detailed assessments. Considering that the field is still lacking
clear evidence due to the frontier approach adopted by the inherent studies, our review
could highlight many relevant points, but it is not yet able to set precise guidelines for
clinical practice.

Table 1. Summary of the main points of discussion on the use of multi-domain approaches and the
corresponding possible solutions.

Needs and Open Points Lessons Learnt and Solutions

Need for multi-domain assessments and approaches The use of many different sensors allows us to characterize pathologies
with a multifactorial approach, improving clinical standards

Provide homogeneous guidelines for data analysis
Adopt standardized methods and criteria for selecting, combining, and
analyzing multi-domain data to ensure the validity, reliability, and
comparability of results across studies and settings

Validate multi-domain approaches
Validate multi-domain approaches against gold-standard measures and
clinical outcomes to establish their accuracy, sensitivity, and specificity for
different patient populations and conditions

Some approaches do not show coherent outcomes
- They can highlight different aspects of the rehabilitation course,

providing a more tridimensional assessment of patient status
- They can help in spotting interpretation errors on specific domains

Preliminary recommendation for clinical practice Explore novel multi-domain combinations and methods that can capture
more aspects of motor function and recovery

Adopt multi-domain approaches as a clinical standard
Integrate multi-domain approaches into clinical practice and research by
developing user-friendly interfaces, protocols, and guidelines that
facilitate their application and interpretation by clinicians and researchers

Guarantee tolerable treatments and protocols to patients Reduce the encumbrance and increase the transparency of multisensory
approaches to improve patients’ tolerability

Conform multi-domain approaches to clinical time requirements Reduce research protocols to their essence to be compliant to
clinical timings

5. Conclusions

Multi-domain instrumental approaches showed great potential for improving clinical
assessment and the rehabilitation of motor function by providing more comprehensive,
objective, and personalized information on patients’ states and recovery. Despite some
barriers to their systematic adoption in a clinical environment, they represent a fundamental
step for research on neurophysiology and rehabilitation and a valuable option for standard
clinical practice. Future research will contribute to the fostering of these approaches.
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spectroscopy; EC: effective connectivity; EEG: electroencephalography; EMG: electromyog-
raphy; ERP: event-related potential; FC: Functional connectivity; fMRI: functional magnetic
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