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Abstract

This paper presents an improved alpha shape-based linear interpolation method, and an
improved binning method within the continuum method framework for accurate and effi-
cient planar phase space long-term density propagation. The density evolution equation is
formulated for the continuum density propagation under the influence of the solar radiation
pressure and Earth’s oblateness using semi-analytical equations. The concept of the alpha
shape is included to get accurate interpolated density within the non-convex hull enclosing
all the samples for the highly deformed and elongated density distribution. The improved
binning method increases the density accuracy by considering the variant nonlinearity of
the density within each alpha shape triangulation, which calculates the joint and marginal
density as the weighted sum of density weights per bin area and per bin width, respectively.
The suitable sample number for the continuum method and the suitable grid number for
performing the linear interpolation are selected by trading off the density accuracy and the
computational effort. The superiority of the improved alpha shape-based continuum method
is demonstrated for accurate and efficient density propagation in the context of the high-
altitude and high area-to-mass ratio satellite long-term propagation.
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1 Introduction

The long-term density propagation problem is studied in many applications, such as the
dynamic evolution of the interplanetary dust (Gor’kavyi et al. 1997a, b), nanosatellite con-
stellations (McInnes 2000), swarms of high area-to-mass ratio spacecraft (Colombo and
Mclnnes 2011), the global space debris population (Nazarenko 1997; Smirnov et al. 2001),
small-debris-object clouds (Letizia et al. 2015, 2016a, b; Frey 2020), the asteroid post-
encounter motion (Wittig et al. 2015), and clouds of high-altitude and high area-to-mass
ratio satellites (Wittig et al. 2017; Sun et al. 2022a, b). To realize high-quality density propa-
gation after long-term propagations, an accurate and efficient characterization for the highly
nonlinear density is required.

Monte Carlo (MC) is a traditional method for density propagation. It provides reference
density via a large number of random samples; however, is computationally intensive. To
reduce the computational load, many nonlinear methods are developed for density prop-
agation. In (Halder and Bhattacharya 2016), the authors classify the methods into two
categories: parametric (where one evolves the statistical moments) and nonparametric (where
one approximates or directly propagates the evolution equation of the Probability Den-
sity Function (PDF)). Representative nonparametric methods are Gaussian Mixture Model
(GMM)-based hybrid methods (such as Gaussian Mixture Model-Unscented Transforma-
tion (GMM-UT) (Giza et al. 2009)), and Density Evolution Equation (DEE, or continuity
equation) (McInnes 2000; Trisolini and Colombo 2021; Sun et al. 2022a). The former approx-
imates the non-Gaussian PDF at any time using the weighted sum of the first two statistical
moments of the Gaussians. The latter directly propagates the density as a fluid with continuous
properties, and can be solved together with the propagation of the state space via the method
of characteristics (Evans 1998; Halder and Bhattacharya 2016; Sun et al. 2022a). Since all
the statistical moments can be derived from the PDF, with the nonparametric methods, we
get all the density information at any time via the evolved PDF.

The DEE method has been developed over the years. Different from the MC method
(where many simulations are conducted for an equivalent large number of random samples),
we can get the density evolution of the entire clouds of objects through a finite number of
simulations for a finite number of random samples, featuring a much lower computational
load. The accuracy of the DEE method mainly depends on the dynamic nonlinearity, the
performance of the interpolation method, and the binning method. In the work of (Sun et al.
2022a), the DEE method and the Gaussian mixture model are compared on the long-term
phase space density propagation problem. It demonstrates the overall high accuracy of the
DEE method for the long-term density propagation. However, when the phase space is highly
deformed and elongated, the density accuracy of the case with fewer samples is low. This is
because, when the density distribution is highly deformed and elongated, the actual density
distribution is not convex. The Delaunay Triangulation-based Binning method adopted in
the work of (Sun et al. 2022a) (we define it as the DT-B1 method in this paper) performs
worse because it interpolates the density within the whole convex hull. The binning method
in (Sun et al. 2022a) (i.e., the B1 method) calculates the joint and marginal density as the
weighted mean of density weights per bin area and per bin width, respectively. In this case,
the core value and the overall distribution characteristic of the joint density, and the peaks of
the marginal density in two phase space directions, are underestimated.
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Since the performance of the DEE method is mainly affected by the interpolation and
the binning methods, to tackle the long-term density propagation problem featuring highly
deformed and elongated density distribution, we will consider the following four aspects
to improve the DEE method. First, an improved linear interpolation method based on the
alpha shape triangulation (Trisolini and Colombo 2021) can be studied to get more accurate
interpolated density by adapting to the evolution of the shape of the density space volume.
Second, for the nonlinear dynamics under consideration, we should consider an improved
binning method for accurate density calculation. The improved binning method should give
weights to each bin for density calculation with the inclusion of the area weight, and the
variant nonlinearity of the density within each alpha shape triangulation. Third, the problem
of how many random samples are required for the DEE method for ensuring the density
quality needs to be studied. In (Sun et al. 2022a), the smaller sample number case (N g, =
961) cannot ensure the density accuracy for the DEE method, while the larger sample number
case (Ngam = 1ES) is too computationally intensive. Fourth, the problem of how large the
grid number Ngrid should be for performing the linear interpolation for ensuring the density
quality and the computational efficiency needs to be studied. It should be noted that, for the
highly deformed and elongated density distribution, the selected sample and grid number
should be advantageous for selecting the DEE method for the long-term density propagation
problem, i.e., with high density accuracy and computational efficiency compared with that
of the MC method.

The motivation of this paper is to improve the density accuracy for the highly deformed and
elongated density distribution within the continuum method framework using an improved
Alpha shape Triangulation-based linear interpolation method, and an improved Binning
method (defined as AT-B2). The improved Alpha shape Triangulation-based linear interpola-
tion method (AT) is used to obtain linearly interpolated density within the actual non-convex
hull enclosing all the samples. The improved Binning method (B2) calculates the joint and
marginal density as the weighted sum of the density weights per bin area and per bin width,
respectively. It increases the density accuracy by considering the weight for each alpha shape
triangulation per bin area, and the variant nonlinearity of the density within each alpha shape
triangulation. The suitable values of the sample number for the DEE method and the suitable
grid number for performing the linear interpolation are selected by trading off the density
accuracy and the computational effort. The Medium Earth Orbit (MEO) planar phase space
case subject to the semi-analytical coupled effects of the solar radiation pressure and Earth’s
oblateness is given for demonstrating the improved performance in the density accuracy and
the computational efficiency for the AT-B2 method.

The paper is organized as follows. Section 2 gives the problem statement. Section 3
presents the density evolution equation in nonlinear dynamics. In section 4, the improved
alpha shape-based linear interpolation and binning method are presented, together with the
whole computation procedure for solving the density propagation problem with the AT-B2
method, and the integrated illustration and comparison for DEE methods of DT-B1 and AT-
B2. Section 5 presents the numerical simulations, including the simulation setup (defining
the initial conditions for the MEO planar phase space case, the accuracy measure), density
propagation results, and some discussion on the superiority of the AT-B2 method for accurate
and efficient density propagation for the highly deformed and elongated density distribution.
Section 6 gives some conclusions.

@ Springer



5 Page4of24 P. Sun et al.

2 Problem statement

To achieve the long-term density propagation, we need to obtain the nonlinear density (i.e.,
the PDF) corresponding to the propagated state space after long-term propagations.

Given the following Ordinary Differential Equations (ODEs) governing the dynamic evo-
lution, and the initial conditions in the state and density space,

x(1) = v(x(1), 1), x(to) = X0, Py(x) ey

where x(r)e R™ is the state vector, m is the problem dimension, v:R” — R™ is the continuous
acceleration terms for the nonlinear dynamics under consideration, x is the state space initial
condition at time 7o, and p, (x) is the initial PDF.

In this paper, we will focus on solving the long-term density propagation problem for the
highly deformed and elongated density distribution within the continuum method framework,
which directly propagates the evolution equation of the density to get the non-Gaussian PDF,
p:(x), at any time ¢, given the initial conditions in the state space xp and the initial PDF
Py, (x). Without loss of generality we will refer to density as the PDF for the remainder of
this paper. It provides the probability of the object occupying an infinitely small state space
volume around the state x.

Different from the previous work, where the density accuracy of the case with fewer
samples is low when the phase space is highly deformed and elongated, in this paper, we
improve the density accuracy for the highly deformed and elongated density distribution
using an improved alpha shape-based linear interpolation method, and an improved binning
method. The suitable sample number for the continuum method and the suitable grid number
for performing the linear interpolation are selected by trading off the density accuracy and
the computational effort.

3 Density evolution equation

To study the density evolution within the continuum method framework, we need to propagate
the density evolution equation together with the state space dynamics (see Eq. 1).

Assume that 7 is the density to be solved for the problem under consideration. Given m
generic variables x;, i € {1,--,m}, and assuming that the density is differentiable for all x;,
the density evolution equation is written as follows (Gor’kavyi et al. 1997a; Mclnnes 2000;
Letizia et al. 2016a; Frey 2020; Sun et al. 2022a),

on on on dvy vy, cr .
—+—v+ -+ — Uyt |—+ - +— [n=0"—n 2)
ot dxy Xy, X1 X

where it — i~ is the discontinuous acceleration terms included for the dynamic system,
such as the random on-orbit failure of existing nanosatellites on the topic of nanosatellite
constellation evolution, v; is the ith component of the continuous acceleration terms v(x(t),
1) (see Eq. 1). In this paper, no discontinuous acceleration terms are considered, i.e., A" — i~
= 0. By applying the method of characteristics (Evans 1998), the following equations are
obtained (Letizia et al. 2016a),
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dt_
du
dxi ( )
— =vi(x1, -+, X
du 1(X1 m
(3)
dx
szvm(xb---, Xm)
dn 8v1+ +8vm ( 9
_ = | — — |n(x1, -+, Xm,
du 9x; Boom | 0 "

where u is a parametrisation of the characteristic lines. From Eq. (3), we can see that given
the specific formulation for the dynamic system (i.e., given the actual expressions of v;), the
time evolution of the density n(xy, -+, x,;, t) can be obtained together with the state space
variables x;.

To obtain the propagated density (i.e., the non-Gaussian PDF, p;(x)) for the DEE method
at any time ¢, the following three steps are required. First, generate initial random samples
with a predefined sample number N g4y, subject to the given initial PDF p, (x), and calculate
the initial density weights n(xy, -+, X, to) for the samples at time #¢. Thus, initial samples in
the m-dimensional state space (x1, ‘-, X,,,) and their associated density weights are obtained
in the (m + 1)-dimensional extended state space (xp, -+, X, 7). Note that the selection of
the sample number N, is important, because it influences the density accuracy and the
whole computation time. Second, integrate the density evolution equation together with the
state space dynamics (see Eq. 3) to obtain the propagated samples and the associated density
weights in the (m + 1)-dimensional extended state space. Third, calculate the density by
processing the final samples and density weights in a statistical way. In this paper, the linear
interpolation method is combined with the binning method to calculate the density.

4 Improved alpha shape-based interpolation and binning method

To improve the density accuracy within the continuum method framework for the highly
deformed and elongated density distribution, we present an improved alpha shape-based lin-
ear interpolation method, and an improved binning method, identified with AT-B2, for the
accurate and efficient long-term density propagation. In this section, we first introduce the
improved alpha shape-based linear interpolation method and the improved binning method,
respectively. Then, we present the whole procedure for solving the density propagation prob-
lem with the AT-B2 method, and the integrated illustration and comparison for DEE methods
of DT-B1 and AT-B2.

4.1 Improved alpha shape-based linear interpolation method

For the highly deformed and elongated density distribution, in this paper, we include the con-
cept of alpha shape to get accurate interpolated density within the non-convex hull enclosing
all the samples. Different from the DT method, which is done within the whole convex hull
of the scattered sample data, the AT method helps adapt to the evolution of the shape of the
state space volume.

Assume a generic 2D problem defined in two independent variables x;, i €{1,2}, the Ny,
propagated samples and their associated density weights at any time ¢ in the vectors (x1o,
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X20, no(X10, X20, 1)), and the grid number Ngrid for each dimension for conducting the linear
interpolation. To get the alpha shape triangulation-based interpolated density, three steps
are required. First, perform the Delaunay triangulation-based interpolation for the specified
query points (x1, x2) (Trisolini and Colombo 2021),

14
n(xr, x2, 1) = Y niBi(x1, x2) “

i=1

where n(x1, x2, t) is the Delaunay triangulation-based linear interpolated density of the point
(x1, x2), V is the number of vertices of the simplex for the Delaunay triangulation, #; is the
value of the density for the ith vertex, B;(x1, x2) is the barycentric coordinates of the ith vertex
including the point (x1, x2). As we can see in Eq. (4), if we find the barycentric coordinates
of the vertices, the linear interpolation can be done. The main advantage of the DT method is
the capability of retaining the scattered samples at the nodes of the triangulation (Preparata
and Shamos 1985). Theoretically, the larger the sample number N, the better the density
quality for the DT method. Second, generate the compact alpha shape triangulation within
the actual non-convex hull enclosing all the scattered sample data for a predefined alpha
radius r, (Edelsbrunner and Miicke 1994; Trisolini and Colombo 2021),

As = {A;(x10, X20, Fa), i € {1, 2, -+, Va}lA; € D(x10, X20)} )

where As is the generated alpha shape triangulation, A; is the ith vertex of the simplex for the
alpha shape triangulation, V4 is the number of vertices of the simplex for the alpha shape
triangulation, D(x19, x20) is the Delaunay triangulation for the samples (x19, x20). As we
can see in Eq. (5), the generated alpha shape triangulation is the subset of the Delaunay
triangulation. The alpha shape is introduced to remove the surplus vertices of the simplex
generated when the shape of the density distribution is not convex. Note that the selection
of the alpha radius r, is important, as it decides how accurate the alpha shape triangulation
characterizes the actual shape of the density distribution. In this paper, we check different r,
values using the dichotomy, and determine the most appropriate for the test cases in examina-
tion. To further improve the density accuracy while still granting an improved computational
efficiency, the adaptive determination of the suitable value of the alpha radius for each case
needs to be given into an insight in future work. In principle, also in this case, the larger the
sample number N, the better the returned alpha shape triangulation is at characterizing
the evolved shape of the density space. Third, retain all the Delaunay triangulation-based
interpolated results that are inside or make up the alpha shape triangulation, and perform the
alpha shape triangulation-based linear interpolation (Trisolini and Colombo 2021),

Va
na (X1, X2, 1) = Y nai Bai(x1, x2) (6)
i=1
where n,(x1, x2, t) is the alpha shape triangulation-based linear interpolated density of the
point (x1, x2), ng; is the value of the density for the ith vertex for the alpha shape triangulation,
B,i(x1, x7) is the barycentric coordinates of the ith vertex including the point (x1, x») for the
alpha shape triangulation.

With the above three steps, we get the improved alpha shape-based linearly interpolated
density by retaining the Delaunay triangulation-based interpolated results within the alpha
shape triangulation. Note that, the selection of the sample number N, and the grid number
Ngrid is important, because it affects the accuracy of the final interpolated density rn,(x14, X24,
t), and the computational efficiency. In this paper, we will select the suitable sample number
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Ngam and the grid number Ngrid by trading off the density accuracy and computational
efficiency.

4.2 Improved binning method

With the interpolated results in the vectors (x1, x2, n4(x1, X2, 1)) at time ¢, an improved binning
method is presented in this paper for density calculation. Different from the B1 method (which
calculates the joint and marginal density as the weighted mean of density weights per bin area
and per bin width, respectively), the B2 method calculates the joint and marginal density as
the weighted sum of density weights per bin area and per bin width, respectively. In Sect. 5,
we will show that this method increases the density accuracy by considering the weight for
each alpha shape triangulation per bin area, and the variant nonlinearity of the density within
each alpha shape triangulation.

To get the joint and marginal density for the B2 method, three steps are required. First,
partition the density weights n,(x1, x2, t) into the 2D uniformly divided bins in the vectors
(x1, x2). Second, with the defined 2D bins, calculate the joint density as the weighted sum of
density weights per bin area, as follows,

@)

SDEE—pk(x1, X2, 1) =

where S is the sum of the density weights n,(x1, x2,t)ineachbin, p €{1,--,B: },k €{1,--,By},
By and By, are the defined bin number for the two state space directions, respectively, Apy is
the area of each bin. Third, calculate the marginal density for each direction by integrating
the joint density throughout the whole domain of the other direction. Here we present the
equation for the marginal density for the first dimension,

Us

foEE1(x1, 1) =) fDEE—pk(X1, X2, 1)dx) ®)
Ly

where Ly and U, are the lower and upper bounds of the bin edges for the second dimension,
respectively.

4.3 Density propagation with the AT-B2 method

In this section, we first present the whole procedure for solving the density propagation
problem with the AT-B2 method presented in this paper, which combines an improved alpha
shape-based linear interpolation method, and an improved binning method for accurate den-
sity calculation. Then, the integrated illustration and comparison for DEE methods of AT-B2,
DT-B1, AT-B1 is given. Note that the AT-B1 method is the combination of the AT method
and the B1 method for density propagation. It is given in this paper as a baseline method
to demonstrate the superiority of the AT method and the B2 method, respectively, for the
AT-B2 method, compared with the DT-B1 method. Also note that to make sure of the density
quality with a low computational effort, in this paper, we select the suitable sample number
N sam for dynamic propagation and the suitable grid number Ngrid for performing the linear
interpolation via the trade-off between the density accuracy and the computational efficiency.

The computation procedure for solving the density propagation problem with the AT-B2
method is given in Table 1. Table 2 shows the combinations of options for DEE methods of
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Table 1 Computation procedure for solving the density propagation problem with the AT-B2 method

Step Content

1 Determine initial conditions:
1. Formulate the dynamics for the state space and the density evolution (Egs. 1 and 3)
2. Give the density propagation time ¢
3. Select a predefined alpha radius r, for generating a compact alpha shape triangulation
enclosing all the samples

2 Select the sample number N g4, and the grid number Ngrid by trading off the accuracy and
efficiency

3 Conduct improved alpha shape triangulation-based linear interpolation for propagated
samples (Eqs. 4-6)

4 Conduct improved binning method for the interpolated density for density calculation
(Egs. 7-8);

Table 2 Comparison for DEE

methods DEE method DT-B1 AT-B1 AT-B2
Linear interpolation method DT AT AT
Binning method Bl Bl B2

DT-B1, AT-B1 and AT-B2, in terms of the composition of the linear interpolation method
and the binning method. Figure 1 shows the illustration and comparison for the DT and AT
methods for the case DEE-961 for Scenario 1, # = 1 yr in the work of (Sun et al. 2022a), where
the red solid points are the N, = 961 propagated samples in the solar angle-eccentricity
(¢, e) 2D phase space (see Figs. 3, 4 in Sun et al. 2022a). As we can see from Fig. 1, for the
highly deformed and elongated density distribution, for the DT method, gray interpolated
points are generated within the whole convex hull of the scattered sample data. For the AT
method, the compact alpha shape triangulation enclosing all the samples is generated for
a predefined alpha radius r, = 2. Figure 1b gives the snapshot around the point (¢, ¢) =
(m, 0.804) for the AT method. From Fig. 1b, we can see that the AT method is done by

Delaunay triangulation-based linear interpolation Alpha shape triangulation-based linear interpolation
—— Delaunay triangulation —— Alpha shape triangulation
. DEE,N =961 . DEE,N =961
sam sam
‘ Scenario 1, =1 yr ‘ ‘ Scenario 1, =1 yr
0.8 g2 S ] 0.8f / gy
; g oy g
g g
=) =
% S 0.804
8 Q
2 @
0.7 0.7 0.802 4
pi
pi/2 pi 3/2pi pi/2 pi 3/2pi
Solar angle [rad] Solar angle [rad]
a) b)

Fig. 1 Illustration and comparison for the (a) DT and (b) AT methods for Scenario 1, f = 1 yr (Nggm = 961)
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retaining all the Delaunay triangulation-based linearly interpolated results within the alpha
shape triangulation, which adapts to the shape of the density space volume.

5 Numerical simulations

The novelty of this paper is to improve the density accuracy for the highly deformed and elon-
gated density distribution within the continuum method framework using an improved alpha
shape triangulation-based linear interpolation method, and an improved binning method.

In this paper, the MEO planar phase space case is chosen to give an insight into the long-
term density propagation problem in the context of high-altitude and high area-to-mass ratio
satellite long-term propagation (Krivov and Getino 1997; Wittig et al. 2017; Sun et al. 2022a,
b). The test cases are the same of the previous paper (Sun et al. 2022a). It should be noted
that in this paper, the high-altitude refers to the higher orbital altitude (2Rg <a<3Rpg, where
a is the semimajor axis, Rg is the equatorial radius of Earth) in the MEO region.

In this section, we will give the simulation setup (defining the initial conditions for the
MEDO planar phase space case, and the accuracy measure for the DEE methods), the density
results for the test cases of Scenario 1, = 1 yr, and Scenario 2, t = {1.5, 3} yrs (see the
results for Scenario 2 in "Appendices"), and some discussion on the superiority of the AT-
B2 method for the long-term density propagation in terms of the density accuracy and the
computational efficiency. Note that the three cases are chosen from the work of (Sun et al.
2022a). They are used to demonstrate the improved density quality for the highly deformed
and elongated density distribution within the continuum method framework.

5.1 Simulation setup
5.1.1 Definition of the initial conditions for the MEO planar phase space case

The evolution equation of the dynamic system subject to the semi-analyzed coupled effect
of the Earth’s oblateness and the solar radiation pressure is (Krivov and Getino 1997)

g (c\/ 1 — 2 sin ¢)

= ) &)
ng C¥cos¢+L2—l
e (1=

where x = [e; ¢] (eccentricity; solar angle) is the state vector to describe the planar equatorial
orbit, ng is the mean motion of the sun, and C and W represent the dimensionless radiative
and oblateness parameters, respectively. Here we assume C = 0.15, W = 0.409, and a =
2.5 REg, corresponding to the phase portrait of type III in Fig. 1 in (Sun et al. 2022a). Here
a is treated as constant as no eclipses are considered in this paper. Figure 2 shows the phase
portrait and the divided phase space domains in Fig. 1 in (Sun et al. 2022a). The horizontal
line marks the critical eccentricity e.,; = 0.6 for Earth reentry at the Earth surface. In this
phase portrait, phase space bifurcation is detected at the stationary point P4. The Hamiltonian
phase space is divided into three sub-domains SubD;, i €{1,2,3}, departed by the contour
lines passing by the stationary points Py and P4. To get the density together with the state
space, the density evolution equation of the dynamic system is calculated as

x(t) =vx(), t) = |:”1(x(t), t):|

v2(x (1), 1)
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Hamiltonian contour, C=0.15

Divided sub-phase space domains

1 1.35 1
f— 135 0.8
= 7 N\ 125 T
20677 o A T zos o’
el ) 12 g 8
= \ / £ g f
g 04\ \ / LIS g 804 SubD
] P, \§ . / ///// 1.1 ‘g 2 P, !
02} \ // - 0.2P""s SubD,
EN [ s = .
\», P’// ~—— . SubD, b, ) ‘ ‘ v, SubD,
0 pi/2 pi 3/2pi 2pi 0 pi/2 pi 3/2pi 2pi
Solar angle [rad] Solar angle [rad]
a) b)

Fig. 2 (a) Phase portrait of type III; (b) Divided sub-phase space domains (¢ = 2.5 Rg, W = 0.409, C = 0.15,
critical eccentricity e.,; = 0.6 for Earth reentry; Sun et al. 2022a)

Table 3 Initial multivariate Gaussian uncertainty distribution for the three test cases

Scenario mean, m, [rad; -| Covariance matrix, P, ¢, [yr]
1 [ 4 0; €]=[2.2069; 0.145]  diag{0.0386, 6.25E-4} 1
2 [ #0; €]=[0.5419; 0.095]  diag{0.0015, 2.5E-5} %

L @>+i<dl’> _Conosing (10)
dt__<8e<dt 3¢ \ dr )"_ e |

Table 3 gives the initial conditions in terms of the mean mg and covariance matrix Pg of
the initial Gaussian distribution, and the propagation time # for the three test cases. It should
be noted that, for the first test case (i.e., Scenario 1, = 1 yr), it is defined to ensure the
realization of the long-term density propagation within the sub-phase space domain SubD;
(see Fig. 2). For the other two test cases (i.e., Scenario 2, t = {1.5, 3} yrs), they are defined
to ensure the realization of the long-term density propagation within the sub-phase space
domain SubD> (see Fig. 2), featuring the same initial Gaussian distribution, but differing in
the propagation time ¢.

To complement the accuracy and efficiency analysis for DEE methods with respect to that
of MC, a MC simulation is performed for the three test cases. The number of MC samples is
set to be N, = 1ES for ensuring the convergence of the MC method and avoiding a higher
computational load for a test case with a larger sample number.

To give a better choice of the sample number Ny, and the grid number Ngrid for
the DEE methods, the sample number Ny, is chosen within the parameter set, Nggp
€{500,961,1000,2000,4000,8000,16000,32000,64000,1E5}, and the grid number Ngrid is
chosen within the parameter set, Ngrid €{500,1000,1500,2000,2500,3000}. Table 4 summa-
rizes the predefined parameter sets of N, and Ngrid for DEE methods. The two parameter

Table 4 Predefined parameter sets of the sample number N g4, and the grid number Ngrid for DEE methods

Variable Ngrid

Nsam

{500,961,1000,2000,4000,8000,16000,
32000,64000,1E5}

Predefined parameter {500,1000,1500,2000,2500,3000}

set
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sets are defined in this paper for the following considerations. For the parameter set of the
sample number Ny, it is set to be exponentially distributed except the two elements {961,
1ES5}, which are the reference sample number for the cases of DEE-961 and DEE-1ES in
the work of (Sun et al. 2022a). In (Sun et al. 2022a), we can see that, for the case with more
samples (i.e., DEE-1E5), the high density accuracy level comparable with that of the MC
method can be achieved, but with a computational effort larger than that of the MC method.
For the case with fewer samples (i.e., DEE-961), when the phase space is highly deformed
and elongated, the density accuracy level is low. Thus, within this parameter domain [500,
1ES5] for the sample number, the evolution characteristic for the density accuracy and the
computational efficiency with respect to the Ny, can be preliminarily exploited. For the
parameter set of the grid number Ngrid, it is set to be linearly distributed. As we can infer in
(Sun et al. 2022a), only when the number of the propagated density samples is large enough
for characterizing the deformed and elongated density distribution, accurate density can be
calculated via the linear interpolation and the binning method. Thus, for the contribution of
the density accuracy and the computational efficiency, the value of the sample number N g,
may weigh much more than the grid number Ngrid in affecting the accuracy and the effi-
ciency for the DEE method. Within the domain [500, 3000] for the grid number, the evolution
characteristic for the density accuracy and the computational efficiency with respect to the
Ngrid can be preliminarily exploited.

5.1.2 Definition of the accuracy measure

To determine the density accuracy for DEE methods with respect to that of MC, in this paper,
the Likelihood Deviation (LD) is used to be the accuracy measure as follows (Sun et al.
2022b),

\/Z N (foee(xj) — q(xj))2
N

where N is the number of MC samples, x; is the jth MC sample, f pgg(x;) is the density of the
Jjth MC sample for the DEE methods, g(x;) is the density of the jth MC sample for the MC
method. The LD measure quantifies the density accuracy for the DEE methods compared
with that of the MC method. The smaller the LD measure, the higher density accuracy for
the DEE methods compared with that of the MC method.

For the case in examination, to evaluate the overall accuracy level for DEE methods with
respect to that of the MC method, the following performance index J), is predefined as the
weighted sum of the LD measure for the density,

Jp=wg-y LD (12)

where wy is the density weight, LD is the sum of the LD measure for the joint and marginal
density. In this paper, we assume the same weight w; = 1/3 for the joint and marginal density
for the 2D problem. The smaller the performance index J,, the higher overall accuracy level
for the DEE method compared with that of the MC method.

LD =

an

5.2 Results

In this section, results will be given in the two sections as follows. Section 5.2.1 gives the
selected sample number N, and the grid number Ngrid by trading off the density accuracy
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and the computational efficiency for the DEE methods. Section 5.2.2 presents the density
results for the DT-B1, AT-B1, and AT-B2 methods compared with that of the MC method.
Note that for the test case Scenario 1, t = 1 yr, results are shown in the text. For the other
two cases of Scenario 2, t = {1.5, 3} yrs, results are shown in the "Appendices".

5.2.1 Selection of the sample number N4, and grid number Ngrid (Scenario 1, t = 1 yr)

To select the better value of the sample number N, and the grid number Ngrid for the DEE
methods of DT-B1, AT-B1 and AT-B2, we perform the accuracy and the efficiency analysis
with respect to that of the MC method for the predefined parameter sets of the sample number
and the grid number (see Table 4). The density accuracy is evaluated via the LD measure
and the performance index J,, (see Egs. 11, 12). The computational efficiency is evaluated
via the normalized computational effort with respect to that of the MC method.

For the case Scenario 1, t = 1 yr, the values of the sample number and the grid number
are selected as Ny, = 4000, Ngrid = 1000 for the AT-B2 method. Figure 3 presents the
evolution of the normalized LD measure for the joint and marginal density with N4, and
with Ngrid, respectively, for AT-B2, AT-B1 and DT-B1 methods, with respect to the case
AT-B2 (N4 = 4000, Ngrid = 1000). The smaller the normalized LD measure for a specific
Nsam/Ngrid case, the higher accuracy for the density for the specific case with respect to
the selected case AT-B2 (N4, = 4000, Ngrid = 1000). Note that, to perform the density
accuracy analysis for the DEE methods with respect to that of the MC method (via the LD
measure and the predefined performance index), for the case in examination, By and By, are
given as the bin numbers for the solar angle and the eccentricity direction, respectively, for
the joint density calculation, for all the DEE methods. The grid number Ngrid gives the
bin number for two phase space directions for performing the linear interpolation for all
the DEE methods and represents the bin number for two directions for the marginal density
calculation. Figure 4 gives the evolution of the normalized performance index with N, and

Fig. 3 Normalized LD evolution Scenario 1, =1 yr, Ngrid=1000, (B ,B )~(37.43)
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Fig. 4 Normalized performance index J), evolution (a) with Nsq, and (b) with Ngrid, for DEE methods, with
respect to the case AT-B2 (Ngqm = 4000, Ngrid = 1000), for Scenario 1, =1 yr
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Fig. 5 Normalized computational effort evolution (a) with N, and (b) with Ngrid, for DEE methods, with
respect to the MC method, for Scenario 1, =1 yr

with Ngrid, respectively, with respect to the case AT-B2 (N4, = 4000, Ngrid = 1000). The
smaller the normalized performance index, the higher overall accuracy level for the specific
case with respect to the selected case AT-B2 (N, = 4000, Ngrid = 1000). Figure 5 presents
the evolution of the normalized computational effort with Ny, and with Ngrid, respectively,
with respect to that of the MC method.

Here we present the procedures for the determination of the sample number N, = 4000
for the AT-B2 method by trading off the density accuracy and the computational efficiency.
First, as we can see from Fig. 3a, the smallest LD measure (i.e., the highest density accuracy)
for the joint density and the marginal density of the eccentricity is obtained for the AT-B2
method. Overall, for the AT-B2 and AT-B1 methods, the LD measure of the joint and marginal
density drops consistently with the increase in the sample number N, indicating a higher
density accuracy stability with respect to the sample number N,,,. Interestingly, though the
highest LD measure (i.e., the lowest density accuracy) is obtained for the DT-B1 method
for the joint density and the marginal density of the eccentricity, overall, it outperforms
the AT-B1 and AT-B2 methods in capturing the marginal density of the solar angle, except
the case AT-B2 (Ngg, = 961). Similarly, for the AT-B1 method, it outperforms the DT-B1
method in capturing the joint density and the marginal density of the eccentricity, but not in
capturing the marginal density of the solar angle. This means that for the DT-B1 and AT-B1
methods, they fail to get the higher accuracy for both the joint and marginal density. For the
sample number N g, >4000, little discrepancy is shown for the LD measure for the marginal
density of the solar angle for the AT-B2 and DT-B1 methods (i.e., indicating the comparable
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high accuracy level for the two methods). Second, as we can see from Fig. 4a, overall, for
the AT-B2, AT-B1 and DT-B1 methods, the larger the sample number N, the smaller the
performance index (i.e., the higher accuracy level). The method accuracy ranking AT-B2>AT-
B1>DT-B1 is obtained. This is not unexpected, because for the AT-B2 and AT-B1 methods,
the linear interpolation is done within the compact non-convex polygon enclosing all the
samples (see Fig. 1). This neglects many Delaunay triangulation-based interpolated points
outside the alpha shape triangulation. In this case, the overall weights for the interpolated
points within the alpha shape triangulation for the AT method are increased compared with
that for the DT method, and thus the higher accuracy in capturing the core values and the
distribution characteristics of the joint and marginal density. Also note that, for the AT-B2
method, the joint density is calculated using the weighted sum of the density weights per
bin area, which allows for the variant nonlinearity of the density within each alpha shape
triangulation. For the sample number N g, >4000, little changing amplitude is shown for the
evolution of the performance index for the AT-B2 method, indicating the high stability for the
overall density accuracy level ranking. Third, from Fig. 5a, we can see that the normalized
computational effort evolves exponentially with the sample number N, for AT-B2, AT-
B1 and DT-B1 methods (note that, here in Fig. 5, the coordinates for the two phase space
directions are plotted using a log scale). The method efficiency ranking { AT-B2, AT-B1}>DT-
B1 is obtained. Overall, little difference is shown for the normalized computational effort for
the three DEE methods. This is because the main difference among the three DEE methods
is the post-processing for the propagated samples using the different linear interpolation and
the binning methods. For the AT-B2 and AT-B1 methods, less interpolated points (within the
compact alpha shape triangulation) are processed than that for the DT-B1 method (within
the whole convex hull) for density calculation. With the increase in the sample number, i.e.,
for Ngq,>4000, the computational effort part of the dynamical propagation of the samples
makes up the main part of the total computational effort, compared with the computational
effort part of the density calculation using the linear interpolation and the binning methods,
leading to the overall little difference for the normalized computational effort for the AT-B2,
AT-B1, DT-B1 methods. For the case Scenario 1, t = 1 yr, the computation time for the
MC method is 621.92 s. For the AT-B2 method, for the case N, = 4000, the normalized
computational effort accounts for only 5.43% of that of the MC method. From Fig. 5a, we
can infer that, for the AT-B2 method, to ensure a computational effort no larger than 20.92%
of that of the MC method, the sample number should not be larger than N, = 1.6E4. Based
on the above three-aspect analysis, the sample number N, = 4000 is selected for the AT-B2
method for the highly accurate density, and the high computational efficiency.

Through a similar procedure, as we can see from Figs 3b, 4b and 5b, the better value of
the grid number Ngrid = 1000 can be selected for the AT-B2 method.

For the AT-B2 method, as we can see from Figs. 3, 4, 5, larger changing amplitudes in
terms of the normalized LD measure (see Figs. 3a, b), the normalized performance index
(see Figs. 4a, b), and the normalized computational effort (see Figs. 5a, b), are obtained with
respect to the sample number N, than the grid number Ngrid. This means that the sample
number N g4, plays a more important role than the grid number Ngrid in affecting the density
accuracy and the computational efficiency. It is not unexpected, since only when the sample
number N, is large enough for characterizing the highly nonlinear density distribution,
accurate density can be calculated via the linear interpolation and the binning method for a
selected grid number Ngrid. For the DEE methods, the main computation effort lies in the
dynamical propagation part for propagating the N, samples. Note that, no apparent change
appears for the LD measure for the joint density with the evolution of the grid number
Ngrid, while the LD measure of the marginal density drops with the increase in the grid
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number Ngrid (Fig. 3b). This means, for the case in examination, the selection of the grid
number Ngrid mainly affects the accuracy of the marginal density, but not the joint density.
Overall, we can conclude that the AT-B2 method outperforms the AT-B1 and DT-B1 methods
for the long-term density propagation featuring the highly deformed and elongated density
distribution in terms of the density accuracy and the computational efficiency.

5.2.2 Density results (scenario 1, t =1 yr)

For the selected sample number and the grid number { N, = 4000, Ngrid = 1000} for the
case Scenario 1, t = 1 yr, now we present the joint and marginal density in Figs. 6 and 7, for
the AT-B2 method compared with the AT-B1, DT-B1 methods with respect to that of the MC
method. Note that, to highlight the heavier significance of the sample number than the grid
number in affecting the density accuracy for the DEE methods, in Figs. 6 and 7, we present
also the density for a smaller sample number case with { N, = 961, Ngrid = 1000}, which
is exactly the case DEE-961 in the work of (Sun et al. 2022a). Thus, a parallel comparison of
the improved results in this paper compared with that in (Sun et al. 2022a) can also be done.

From Figs. 6¢, e and g, we can see that, for the selected cases with { N, = 4000, Ngrid
= 1000} for the AT-B2, AT-B1 and DT-B1 methods, the higher accuracy in the joint density
is obtained with respect to that of the MC method (see Fig. 6a) compared with that for the
smaller sample number cases with { N, = 961, Ngrid = 1000} (see Figs. 6b, d and f). The
highest accuracy in the joint density is obtained for the AT-B2 method (see Fig. 6g). Little
discrepancy is shown in the joint density accuracy for the AT-B2 method than that for the
AT-B1 and DT-B1 methods when increasing the sample number from Ny, = 961 to Ny
= 1ES, indicating the higher stability for the density accuracy with respect to the sample
number Nygy, for the AT-B2 method (for the AT-B2 method, see Figs. 6f, g; for the AT-B1
method, see Figs. 6d, e; for the DT-B1 method, see Figs. 6b, c). This is consistent with the
aforementioned results in Figs. 3a and 4a. Similarly, for the marginal density of the solar
angle, we can conclude that for the selected cases with {N,, = 4000, Ngrid = 1000} for
the AT-B2, AT-B1 and DT-B1 methods, the higher accuracy is obtained with respect to that
of the MC method (see Fig. 7b), compared with that for the smaller sample number cases
with {Ngu,m = 961, Ngrid = 1000} (see Fig. 7a). For the marginal density of the solar angle
and the eccentricity, the highest accuracy is obtained for the AT-B2 method (see Figs. 7b, d).

5.3 Discussion

For the case Scenario 1, t = 1 yr, the highest accuracy in terms of the joint and marginal
density is obtained for the AT-B2 method for the selected case with { N, = 4000, Ngrid =
1000}. Overall, the AT-B2 method outperforms the DT-B1 and AT-B1 methods in capturing
the core value and the distribution characteristic of the joint density, and the peak values and
the distribution characteristics of the marginal density of the solar angle and the eccentricity
(for the case Scenario 1, t = 1 yr, see Figs. 6g, 7b and d; for the cases Scenario 2, t = {1.5,
3} yrs, see the "Appendices").

The advantages of the AT-B2 method are shown in the higher density accuracy (see
Fig. 3a), the higher stability for the density accuracy with respect to the sample number
Nsam and the grid number Ngrid (see Figs. 4a, b), and the higher computational efficiency
compared with that of the MC method (see Figs. 5a, b). The sample number Ny, plays a
more important role than the grid number Ngrid in affecting the density accuracy and the
computational efficiency for the DEE methods. For the planar phase space long-term density
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Fig. 6 The joint density (a) for the MC method; for the DT-B1 method, with (b) {Nsqm = 961, Ngrid = 1000},
(©) {Ngam = 4000, Ngrid = 1000}; for the AT-B1 method, with (d) {Ngqm = 961, Ngrid = 1000}, (e) {Nsam
= 4000, Ngrid = 1000}; for the AT-B2 method, with (f) {Ngqm = 961, Ngrid = 1000}, (g) {N sam = 4000,
Ngrid = 1000} (for Scenario 1, ¢t =1 yr)

propagation problem featuring the highly deformed and elongated density distribution,
the combination of the improved alpha shape-based linear interpolation method and the
improved binning method (presented in Sect. 4 in this paper) is necessary for the accurate
and efficient density propagation.

6 Conclusion

This paper presents an improved method within the continuum method framework by combin-
ing the improved alpha shape-based linear interpolation method and the improved binning
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Fig. 7 The marginal density of the solar angle with (a) {Ngzn = 961, Ngrid = 1000}, (b) {Nsam = 4000,
Ngrid = 1000}, and the marginal density of the eccentricity with (¢) {Nsam = 961, Ngrid = 1000}, (d) {N sam
= 4000, Ngrid = 1000}, for DT-B1, AT-B1 and AT-B2 methods with respect to the MC method, for Scenario
L,t=1yr

method, for the accurate and efficient long-term density propagation featuring the highly
deformed and elongated density distribution. The concept of alpha shape is included to get
accurate interpolated density within the non-convex alpha shape triangulation enclosing all
the samples. The improved binning method increases the density accuracy by considering the
variant nonlinearity of the density within each alpha shape triangulation, which calculates
the joint and marginal density as the weighted sum of density weights per bin area and per
bin width, respectively. To ensure the performance of the DEE method for the long-term
density propagation, the suitable values of the sample number for the dynamical propagation
and the grid number for performing the linear interpolation are selected by trading off the
density accuracy and the computational efficiency. The superiority of the AT-B2 method is
demonstrated in terms of the density accuracy and the computational efficiency compared
with that of the AT-B1 and DT-B1 methods with respect to that of the MC method, for the
planar phase space long-term density propagation problem in the context of high-altitude and
high area-to-mass ratio satellite long-term density propagation.
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Appendix A: Scenario 2, t =1.5yrs

For the case Scenario 2, t = 1.5 yrs, for the AT method, the compact alpha shape triangulation
enclosing all the samples is generated for a predefined alpha radius r, = 8. Figure 8 presents
the illustration and comparison for the DT and AT methods for the case N4, = 961 for
Scenario 2, t = 1.5 yrs in the solar angle-eccentricity 2D phase space. The values of the
sample number and the grid number are selected as N;,, = 2000, Ngrid = 1000 for the AT-
B2 method, by trading off the density accuracy and the computational efficiency. Figure 9
presents the evolution of the normalized LD measure for the joint and marginal density with
Ngam, and with Ngrid, respectively, for AT-B2, AT-B1 and DT-B1 methods, with respect
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Fig. 8 Illustration and comparison for the (a) DT and (b) AT methods for Scenario 2, t = 1.5 yrs (Nsgm = 961)
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to the case AT-B2 (Ngu, = 2000, Ngrid = 1000). Figure 10 gives the evolution of the
normalized performance index with N, and with Ngrid, respectively, with respect to the
case AT-B2 (N g, = 2000, Ngrid = 1000). Figure 11 presents the evolution of the normalized
computational effort with N, and with Ngrid, respectively, with respect to that of the MC
method. For the selected sample number and the grid number { N, = 2000, Ngrid = 1000}
for the case Scenario 2, t = 1.5 yrs, we present the joint and marginal density in Figs. 12 and
13, for the AT-B2 method compared with the AT-B1, DT-B1 methods with respect to that of
the MC method.

Scenario 2, =1.5 yrs, Ngrid=1000, (BX,B)’)=(52,45)
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Fig. 10 Normalized performance index J), evolution (a) with Ngm, and (b) with Ngrid, for DEE methods,
with respect to the case AT-B2 (N gqm = 2000, Ngrid = 1000), for Scenario 2, t = 1.5 yrs
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Fig. 11 Normalized computational effort evolution (a) with N4, and (b) with Ngrid, for DEE methods, with
respect to the MC method, for Scenario 2, t = 1.5 yrs
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Fig. 12 The joint density (a) for the MC method; (b) for the DT-B1 method, (¢) for the AT-B1 method, (d) for
the AT-B2 method, with { N4, = 2000, Ngrid = 1000} (for Scenario 2, t = 1.5 yrs)
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Fig. 13 The marginal density of the (a) solar angle, (b) and the eccentricity with {Ngq, = 2000, Ngrid =
1000}, for DT-B1, AT-B1 and AT-B2 methods with respect to the MC method, for Scenario 2, r = 1.5 yrs

Appendix B: Scenario 2, t = 3 yrs

For the case Scenario 2, t = 3 yrs, for the AT method, the compact alpha shape triangulation
enclosing all the samples is generated for a predefined alpha radius r, = 0.03. Figure 14
presents the illustration and comparison for the DT and AT methods for the case N4, =
961 for Scenario 2, t = 3 yrs in the solar angle-eccentricity 2D phase space. The values of
the sample number and the grid number are selected as N4, = 2000, Ngrid = 1000 for
the AT-B2 method, by trading off the density accuracy and the computational efficiency.
Figure 15 presents the evolution of the normalized LD measure for the joint and marginal
density with Ny, and with Ngrid, respectively, for AT-B2, AT-B1 and DT-B1 methods,
with respect to the case AT-B2 (N, = 2000, Ngrid = 1000). Figure 16 gives the evolution
of the normalized performance index with N, and with Ngrid, respectively, with respect
to the case AT-B2 (N4, = 2000, Ngrid = 1000). Figure 17 presents the evolution of the
normalized computational effort with N, and with Ngrid, respectively, with respect to
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that of the MC method. For the selected sample number and the grid number { N, = 2000,
Ngrid = 1000} for the case Scenario 2, t = 3 yrs, we present the joint and marginal density
in Figs. 18 and 19, for the AT-B2 method compared with the AT-B1, DT-B1 methods with
respect to that of the MC method.

— Delaunay triangulation
- DEE,N =961

Delaunay triangulation-based linear interpolation

Alpha shape triangulation-based linear interpolation
—— Alpha shape triangulation
- DEE,N_ =961

0.3

N
(S}
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o
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o
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o
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Eccentricity [-]

o

29pi/16

Solar angle [rad]

a)

Scenario 2, =3 yrs

7/4pi

b)

29pi/16
Solar angle [rad]

Fig. 14 Illustration and comparison for the (a) DT and (b) AT methods for Scenario 2, t = 3 yrs (N sqm = 961)

Fig. 15 Normalized LD evolution
(a) with N4, and (b) with
Ngrid, for DEE methods, with
respect to the case AT-B2 (Nggm
= 2000, Ngrid = 1000), for
Scenairo 2, t = 3 yrs

10"

10°

107!

Normalized likelihood deviation

&

sam

Scenario 2, =3 yrs, Ngrid=1000, (BX,By)=(39,34)

O Joint density, f{d,e,f)
o Marginal density, f{,/)
¢ Marginal density, fle,?)
DT-B1
—AT-B1
—AT-B2
* Normalization: AT-B2, N =2000

Scer}ario 2, =3 yrs, NmmZZOOO, (Bx,By):(39,34)

10

|

Normalized likelihood deviation
>

=
~

500 1000

1500 2000 2500 3000
Ngrid

© Joint density, f{@,e,)
o Marginal density, f{#,7)
¢ Marginal density, f(e,f)
DT-B1
—AT-B1
—AT-B2
* Normalization: AT-B2, Ngrid=1000

@ Springer



5 Page220f24 P. Sun et al.
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Fig. 16 Normalized performance index J) evolution (a) with Ngm, and (b) with Ngrid, for DEE methods,
with respect to the case AT-B2 (N g, = 2000, Ngrid = 1000), for Scenario 2, t = 3 yrs
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Fig. 17 Normalized computational effort evolution (a) with N, and (b) with Ngrid, for DEE methods, with
respect to the MC method, for Scenario 2, t = 3 yrs
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Fig. 18 The joint density (a) for the MC method; (b) for the DT-B1 method, (¢) for the AT-B1 method, (d) for
the AT-B2 method, with { N4, = 2000, Ngrid = 1000} (for Scenario 2, t = 3 yrs)
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Scenario 2, =3 yrs, DEE-2000, Ngrid=1000

Scsnario 2, =3 yrs, DEE—ZOOO, Ngrid:1QOO
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Fig. 19 The marginal density of the (a) solar angle, (b) and the eccentricity with {Ngq, = 2000, Ngrid =
1000}, for DT-B1, AT-B1 and AT-B2 methods with respect to the MC method, for Scenario 2, t = 3 yrs
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