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Abstract
This work discusses the use of Lyapunov Characteristic Exponents to assess the stability of nonlinear, time-dependent
mechanical systems. Specific attention is dedicated to methods capable of estimating the largest exponent without requir-
ing the Jacobian matrix of the problem, which can be applied to time histories resulting from existing multibody solvers.
Tiltrotor whirl-flutter stability is analyzed. With respect to the available literature, the proposed method does not require the
system to be strictly periodic, no linearization is required about a reference steady solution, and characteristic nonlinear
aspects of stationary solutions like limit cycle oscillations are correctly identified and pointed out. A limitation lies in the
ability to correctly identify the stability but no information is inferred about the related characteristic frequencies/periods, if
any.

Introduction

Stability assessment is a fundamental aspect of the anal-
ysis and design of dynamical systems. The foundations
of modern stability theory lie in Aleksandr M. Lyapunov’s
work [1].

Although for nonlinear problems of the general form

ẋ = f(x, t)(1)

stability is a local property of a specific solution, x(t), re-
sulting from a specific set of initial conditions, x(t0) = x0,
for Linear, Time-Invariant (LTI) problems, like those result-
ing from linearization about a steady reference condition in
the form

ẋ = Ax,(2)

it becomes a characteristic of the entire system. It can be
evaluated from the inspection of the real part of the eigen-
values of matrix A.

In many applications associated with rotorcraft dynam-
ics, and specifically in helicopter rotor aeromechanics, prob-
lems often need to be formulated as time-periodic, although
often still linear, through linearization about a periodic or-
bit, resulting in Linear, Time-Periodic (LTP) problems. In
this case, stability assessment may exploit the periodic-
ity of the motion through the well-known Floquet-Lyapunov
approach. Asymptotic stability is associated with contrac-
tion, over a period T , of the so-called “monodromy matrix”,
which corresponds to the State Transition Matrix (STM) of
the problem over one period. This approach is relatively
popular in the rotorcraft aeromechanics community [2–5].

In general, however, when problems are non-linear and
subjected to non-(strictly) periodic time dependence, as
may occur in many transient-related problems, the ability
to evaluate the stability of reference trajectories can be ex-
tremely useful. The use of Lyapunov Characteristic Expo-
nents (LCE) or, in short, Lyapunov Exponents (LE), has
been recently proposed in the field of rotorcraft aerome-
chanics [6–8], also with a focus on their sensitivity study
[9–12], and other aerospace-related applications [10].

Lyapunov Characteristic Exponents

The LCEs indicate the rate of expansion or contraction of
perturbations of a generic solution of the nonlinear differen-
tial problem of Eq. (1) along independent directions in the
state space. As such, they describe the stability of the ref-
erence solution with respect to such directions.

Consider a solution x(t) of Eq. (1) for t ≥ t0 (some au-
thors refer to it as the ‘fiducial trajectory’), and a solution
ix(t) of the problem

iẋ = f/x
∣∣
x(t),t ix, ix(t0) = ix0(3)

for a perturbation ix0 of arbitrary magnitude and direction.
LCEs are defined as

λi = lim
t→∞

1
t

log‖ix(t)‖ .(4)

Each λi is calculated from one of n linearly independent
ix0, the equivalent of the principal directions of a LTI prob-
lem. Since Eq. (3) is linear time-dependent, its solution
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can be expressed through the State Transition Matrix (STM)
Y(t, t0),

ix = Y(t, t0) ix0(5)

The STM Y(t, t0) is the solution of Ẏ = f/x
∣∣
x(t),t Y, with

Y(t0, t0) = I, namely the matrix that represents the evolu-
tion of the problem’s state from time t0 to t. Then Eq. (4) is
equivalent to

λi = lim
t→∞

1
t

Re(log(eig(Y(t, t0)))) .(6)

When all LCEs are negative, the solution is exponentially
stable. When at least one LCE is positive, the solution is
unstable, or leads to a chaotic attractor. When the largest
LCE is zero, or the largest LCEs are zero, a limit cycle os-
cillation (LCO) is expected; i.e., there exists one direction,
or multiple independent directions, in the state space along
which the solution neither expands nor contracts. In case of
multiple largest LCEs equal to zero, a higher order periodic
or quasi-periodic attractor exists, e.g. a torus.

Note the analogy with the LTI case, since Y(t, t0)
LTI≡

eA(t−t0) and thus λi
LTI
= Re(eig(A)), and with the LTP one, in

which

λi
LTP
=

1
T

Re(log(eig(Y(t0 +T, t0)))) .(7)

In this sense, one may consider the LCEs as sort of the
eigenvalues of matrix f/x, averaged over time.

LCEs are often called the ‘spectrum’ of the associated
problem, much like the spectrum of LTI problems is repre-
sented by the eigenvalues of matrix A = f/x.

In most cases, the definition of Eq. (6) cannot be used in
practice, because usually at least some of the elements of
the STM contract to zero, in case of asymptotic stability of
the solution, or expand to infinity, in case of instability, result-
ing in either under- or overflowing, or a mix of both. As pro-
posed in the work of Benettin et al. [13], to estimate LCEs
in practice one needs to exploit the re-orthogonalization of
the local directions of evolution of the solution. Alternative
approaches based on well known orthogonal decomposi-
tions (the Singular Value Decomposition (SVD) and the QR
factorization, respectively) have been proposed [13–15].

Jacobian-Less Methods: Max LCE
from Time Series

The estimation of LCEs from problems of interest in the ro-
torcraft field using those methods has been recently dis-
cussed in [6,8]. However, those methods require the knowl-
edge of the Jacobian matrix of the problem, and the ability
to integrate the associated linear, time dependent problem.
The largest LCE, or Maximum LCE (MLCE) can also be
estimated directly from a time series. This makes the ap-
proach rather interesting because it can be used in conjunc-
tion with experimental data, or with the results of numerical

simulations performed using complex multibody models. Al-
though the full spectrum cannot be obtained, estimation of
the MLCE allows to identify the LCE that belongs to the
least damped principal direction of the system, which is the
most critical stability indicator. Among the algorithms pro-
posed in the literature (see for example [16]), in this work
the one proposed by Rosenstein et al. [17], described be-
low, is used.

The trajectory matrix, X, is constructed from an N-point
time series xi, i = 1, ...,N, using the time delay method.
Each row of matrix X is a phase-space vector, namely

X =
[

X1 X2 . . . Xm
]

(8)

with

Xk =
[

x1+(k−1)J x2+(k−1)J . . . xM+(k−1)J
]T

(9)

with k = 1, ...,m. Thus, X ∈ RM×m, with m, M, J, and N
related by

M = N− (m−1)J(10)

where m is the embedding dimension, N the length of the
time series, and J represents the so-called reconstruction
delay. The embedding dimension is usually estimated in
accordance with Takens’ theorem, i.e., m > 2n.

After constructing the trajectory matrix, the algorithm lo-
cates the nearest neighbor, X ĵ, of each point on the trajec-
tory. It is found by searching for the point that minimizes
the distance from each particular reference point, X j. The
distance is expressed as

d j(0) = min
X ĵ

∥∥∥X j−X ĵ

∥∥∥(11)

where d j(0) is the initial distance from the jth point to its
nearest neighbor, and ‖·‖ denotes the Euclidean norm.

An additional constraint is that nearest neighbors have
a temporal separation greater than the mean period (T̄ , the
reciprocal of the mean frequency of the power spectrum,
although it can be expected that any comparable estimate,
e.g., using the median frequency of the magnitude spec-
trum, yields equivalent results) of the time series,∣∣ j− ĵ

∣∣> T̄(12)

Thanks to this, each pair of neighbors can be considered as
nearby initial conditions for different trajectories.

The largest Lyapunov exponent is then estimated as the
mean rate of separation of the nearest neighbors. The jth
pair of nearest neighbors diverge approximately at a rate
given by the largest Lyapunov exponent:

d j(i)≈C jeλ1(i∆t)(13)

where C j is the initial separation. By taking the logarithm of
both sides

logd j(i)≈ logC j +λ1(i∆t)(14)
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which represents a set of approximately parallel lines, for
j = 1, ...,M, each with a slope roughly proportional to λ1.
The largest Lyapunov exponent is calculated using a least-
squares fit to the “average” line defined by

y(i) =
1
∆t
〈logd j(i)〉(15)

where 〈·〉 denotes the average over all values of j.

Numerical Results

The use of the Jacobian-less method by Rosenstein et
al. was proposed in [18] to address the rather important
rotorcraft-related problem of ground resonance with rela-
tively simple models, for validation purposes, including a
model formulated using MBDyn1, a free general-purpose
multibody solver [19]. In such case, this method is of par-
ticular interest, since it does not require the capability of the
solver to expose the Jacobian matrix of the problem, and
can thus be applied to results obtained from any solver.

The problem analyzed in the following is the aeroelastic
simulation of a tiltrotor semi-span model (Fig. 1) in prox-
imity of whirl-flutter conditions, using a rather sophisticated
aeroservoelastic model [20].

Figure 1: Tiltrotor semispan model.

The entire model can be divided into two main sub-
components: the wing-pylon assembly and the propro-
tor. The wing-pylon model has been developed using a
geometrically exact, composite ready beam finite element
model [21, 22] to reproduce the fundamental frequencies
and mode shapes of an equivalent finite element stick
model, which was tuned to match the full-scale aircraft dy-
namics at the rotor. The proprotor is a three-bladed stiff-
in-plane rotor with gimballed hub (Fig. 2). It consists of the
pitch control chain, three blades, and the yoke, all modeled
using the previously mentioned beam elements.

Figure 2: Proprotor multibody model.

In the original formulation, the algorithm proposed by
Rosenstein et al. is applied to a single time series, namely a
scalar signal. In complex multivariable problems, the choice
of a suitable signal can be critical, along with some param-
eters of the method, related to the duration of the signal
and other factors discussed in the original paper. To over-
come this critical aspect, a Proper Orthogonal Decompo-
sition of the multiple signals resulting from the multibody
dynamics simulation is performed, and the transformed sig-
nals corresponding to the largest singular values are con-
sidered. Figure 3 compares the results obtained with the
proposed analysis to that resulting from the Periodic Oper-
ational Modal Analysis (POMA) proposed in [23–25]. The
MLCEs estimated from the first three principal components
(PC) are considered, starting from the top.

The first PC (top plot) shows results compatible with
those of the first wing chordwise mode. This occurs since
the excitation that caused the transient was dominated by a
collective pitch perturbation, which directly excites the wing
chordwise mode.

The second PC (mid plot) shows results compatible
with those of the first wing bending mode, the most lightly
damped one, except for the analysis at the highest speed,
which is dominated by whirl-flutter, with a substantial partic-
ipation of wing torsion.

1https://www.mbdyn.org/
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a) MLCE from first Principal Component (mainly first wing chordwise mode)

b) MLCE from second Principal Component (mainly first wing bending mode)

c) MLCE from third Principal Component (mainly first wing torsion mode)

Figure 3: MLCE compared with real part of eigenvalues from POMA.
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Indeed, the wing torsional mode dominates the third PC
(bottom plot), which shows greater damping that the other
modes in the speed range below whirl-flutter.

Conclusions

This paper discussed the use of estimated Lyapunov Char-
acteristic Exponents to evaluate the stability of a complex
mechanical system, namely a tiltrotor semi-span model
close to whirl-flutter conditions. The problem was formu-
lated without a priori linearization or coordinate transfor-
mation to reduce the azimuthal dependence of the equa-
tions. Nonlinear phenomena, like limit-cycle oscillations,
can be detected. By resorting to Jacobian-less methods,
the Maximum LCE, i.e., the most critical one regarding sta-
bility, can be estimated from time series computed using
general-purpose multibody formulations, without the need
to modify existing solvers.
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