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We study optimal portfolio choice and labor market participation in a continuous time setting in which 

agents face health shocks, medical expenses, and random lifetimes. We explore the implications of dif- 

ferent forms of health coverage and study their impact on dynamic portfolios and labor supply decisions. 

We characterize these effects in semi-closed form, providing tools to measure retirement incentives as a 

function of relevant state variables and health cover arrangements. A calibration of the model matches 

empirically observed labor market participation patterns and portfolio decisions of US workers during 

the last phase of their working lives, while offering insights into the interlinkage between labor market 

participation, health insurance provision and portfolio choice. 
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. Introduction 

For many individuals the aspiration to retire is an important 

river of wealth planning and life style choice. Improvements in 

ife expectancy and rising health care costs, however, make the 

rospect of outliving one’s resources increasingly material. These 

onsiderations affect not only investment decisions during the ac- 

umulation and decumulation phases of the life cycle, but also the 

hoice of when to retire. Governments have long recognized that 

he secular increase in life expectancy and fall in interest rates 

ose severe challenges for the sustainability of social security and 

ension provision. Although the switch from defined benefit to de- 

ned contribution retirement plans has partly mitigated the bur- 

en of pension liabilities, 1 a number of policy questions remain 

pen, such as whether to increase the minimum retirement age or 

ow to design eligibility criteria for medical coverage. These ques- 

ions can be properly addressed only by taking into account the 

scal effects of policy intervention, which in turn cannot abstract 

way from labor market participation incentives. 

In this paper we provide a parsimonious continuous time model 

apturing some of the main trade offs driving investment and labor 

arket participation decisions during the latter part of an agent’s 
∗ Corresponding author. 

E-mail addresses: emilio.barucci@polimi.it (E. Barucci), e.biffis@imperial.ac.uk (E. 

iffis), daniele.marazzina@polimi.it (D. Marazzina) . 
1 See Maurer, Mitchell, Warshawsky, & Warshawsky (2012) for an overview of 

ome of these issues. 
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orking life, as well as portfolio choice after retirement. In particu- 

ar, we focus on the retirement (dis)incentives of medical expenses 

nd various insurance mechanisms ranging from private insurance 

o medical coverage offered by employers and governments (e.g., 

edicare in the US). We consider individuals facing a random life 

ime whose distribution is shaped by health shocks leading in turn 

o medical expenses and potentially lower earnings. In the baseline 

odel, agents can self-insure by investing in a riskless and a risky 

sset, or can insure themselves via life and health covers available 

n the private insurance market. They can also adjust continuously 

heir labor supply as well as make an irreversible retirement de- 

ision associated with a jump in leisure. We then add employer 

nd government provided health insurance: we consider common 

onfigurations offering health coverage while working and/or after 

etirement. 

Throughout the first part of our analysis, we consider a com- 

lete market in which all sources of risk are insurable. In an ex- 

ension of the model, we consider an unspanned source of risk, 

hich can be thought of as an uninsurable health shock leading 

o a reduction in life expectancy and higher future medical ex- 

enses. The results are shown to be robust to such an extension, 

hich requires additional technical work. The baseline model is 

herefore simple enough to be solved in semi-closed form, yet rich 

nough to deliver empirical predictions in line with recent evi- 

ence on medical expenses and labor market participation (e.g., 

rench, 2005; French & Jones, 2011 ), as well as portfolio choice 

mong the elderly (e.g., De Nardi, French, & Jones, 2009; 2010 ). 

he tractability of the model makes it suitable for comparative 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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tatics analysis in the context of health care and social security 

eforms. 

The findings of the paper address two main research questions: 

) gauging the (dis)incentives for labor market participation pro- 

ided by different forms of health insurance schemes, and ii) un- 

erstanding the optimal portfolio choice of an agent that can mod- 

late investment, insurance decisions, and labor market participa- 

ion in response to insurable and uninsurable health shocks. 

To answer the first question, we follow French & Jones 

2011) and consider the following insurance frameworks: private 

nsurance only (“private insurance” case); employer-provided in- 

urance offering coverage only while working (“tied insurance”

ase); employer-provided insurance offering coverage while work- 

ng as well as during retirement (“retiree insurance” case); cov- 

rage provided only during retirement, which we regard as a 

roxy for Medicare in the US and similar arrangements elsewhere 

“Medicare” case). We find that the private and tied insurance 

ases provide the greatest incentives to delay retirement, whereas 

etiree insurance and Medicare incentivize earlier retirement to 

ain access to health coverage. The optimal portfolio strategies in 

he Medicare and private insurance case are rather similar, but 

learly agents retire much earlier on average with Medicare, as 

ealth insurance does not need to be funded during retirement 

nd hence wealth decumulation can be slower. Irrespective of the 

ype of cover considered, we observe decreasing patterns in risky 

sset demand ahead of retirement. The introduction of an un- 

panned source of health risk amplifies these effects and makes 

learer the divergent role of life expectancy and medical expenses 

n shaping labor market participation. On the one hand, a reduc- 

ion in life expectancy allows agents to revise downwards their 

distance to retirement” thus disincentivizing labor market partici- 

ation. On the other hand, health shocks leads to immediate med- 

cal expenses or an increase in future medical expenses, thus pro- 

iding an incentive to generate wages to support immediate and 

uture health costs. We find that the second effect dominates in 

he private and tied insurance cases, making the distance to retire- 

ent increase, whereas the first effect dominates in the Medicare 

nd retiree insurance cases, for which retirement is instead accel- 

rated. The option-like element introduced by irreversible retire- 

ent (see discussion below) leads to interesting nonlinear effects 

or a number of model parameters. The most interesting insights 

e obtain are probably associated with the likelihood of health 

hocks, which can have opposite effects on the incentives to retire, 

epending on the particular health insurance framework consid- 

red. For example, an increase in the likelihood of health deterio- 

ation has opposite implications for Medicare and tied insurance, 

aking the distance to retirement reduce in the former case and 

ncrease in the latter. 

As far as the second question is concerned, we show that dur- 

ng their working life agents adjust continuously labor supply in 

esponse to wage levels and their preferences for leisure and con- 

umption, while keeping track of a wealth dependent threshold 

riggering irreversible retirement once reached. This is in line with 

arhi & Panageas (2007) , but in our setup the wealth threshold, 

nd hence the distance to retirement, is health dependent: the bet- 

er the health state of the agent, the greater the distance to retire- 

ent, as more sizeable resources need to be accumulated to sup- 

ort consumption and rising medical expenses over a longer lifes- 

an. Our model is flexible enough to deliver a rich set of empiri- 

al predictions consistent with more or less aggressive investment 

trategies ahead of retirement. In particular, in our estimation of 

he model based on data from the Health and Retirement Study 

HRS), we find that the risky asset allocation decreases relative to 

otal wealth as the individual approaches retirement. Importantly, 

ortfolio choice depends not only on the current health state, but 

lso on the possibility of future health transitions and associated 
911 
edical expenses, which leads to less aggressive risky asset allo- 

ation as the retirement goal approaches. The same pattern ap- 

lies to private health insurance demand, which is initially large 

ut then declines on average as the retirement goal becomes closer 

nd excessive insurance purchases would prevent wealth from ac- 

umulating fast enough. 

The paper is organized as follows. The next section discusses 

he existing literature. Section 2 introduces the setup and presents 

he baseline model. In Section 3 , we give an idea of how the model

s solved and discuss the solutions for optimal labor supply, con- 

umption, and investment/insurance decisions. Section 4 presents 

esults based on estimation of the model based on HRS data. We 

onsider first the case in which only private health insurance is 

vailable and then introduce the availability of employer-provided 

nsurance. We then consider different health insurance configura- 

ions and carry out sensitivity analyses of the optimal retirement 

hreshold relative to key parameters of interest. Section 5 intro- 

uces an unpsanned source of risk. Finally, Section 6 offers some 

oncluding remarks. We relegate to the online supplementary ma- 

erial the proofs of the main results of the paper, as well as a num-

er of closed and semi-closed form expressions for key quantities 

f interest. 

.1. Literature review 

The paper is related to at least two strands of literature. First, 

he paper contributes to the vast literature on lifecycle portfolio 

hoice originating from the seminal contributions of Samuelson 

1969) and Merton (1971) . The paper speaks in particular to the 

ine research focusing on endogenous labor market participation. 

n important reference in this area is the work of Bodie, Merton, 

 Samuelson (1992) , who allow agents to adjust labor supply con- 

inuously. The empirical evidence, however, suggests that the lat- 

er is to a large extent indivisible, as many workers who retire do 

ot return to work at a later date and, if they do, they work only

art time or for lower wages (e.g., Hausman & Wise, 2008 ). Farhi 

 Panageas (2007) and Dybvig & Liu (2010) allow for irreversibil- 

ty of the retirement decision, demonstrating how this introduces 

onlinear option-like effects in the agents’ optimal strategies. In 

articular, Farhi & Panageas (2007) show how an agent’s wealth 

lays a dual role, as it determines not only the resources available 

or future consumption, but also the distance to retirement, as the 

gent retires only when reaching a high enough wealth threshold. 

his aspect is not material when labor supply can only be adjusted 

ontinuously. In line with Choi, Shim, & Shin (2008) , we consider 

oth continuous and irreversible labor supply adjustments. In ad- 

ition to the extant literature, we explicitly allow for health risks 

o shape the agent’s life expectancy (see Hugonnier, Pelgrin, & St- 

mour, 2013 ) as well as trigger medical expenses and lower wages 

productivity losses). On the methodological side, we solve the 

ontinuous time optimal portfolio problem by using a duality ap- 

roach, in the spirit of He & Pages (1993) and Karatzas & Wang 

20 0 0) . Papers that are closely related to ours are Farhi & Panageas

2007) , Choi et al. (2008) , Dybvig & Liu (2010) , Barucci & Marazz-

na (2011) , Bensoussan, Jang, & Park (2016) , Chai, Horneff, Maurer, 

 Mitchell (2011) . Differently from our contribution, they abstract 

way from insurance and risky wages ( Choi et al., 2008; Farhi & 

anageas, 2007 ), labor flexibility before the irreversible retirement 

ecision ( Barucci & Marazzina, 2011; Dybvig & Liu, 2010 ), and from 

ealth shocks and insurance ( Bensoussan et al., 2016; Chai et al., 

011 ). We also refer to Koo, Pantelous, & Wang (2022) for a related

iscrete time life cycle model, and to Konicz & Mulvey (2015) and 

wadally, Jang, & Clare (2021) for a multi-stage stochastic pro- 

ramming approach. 

The second strand of literature our contribution speaks to fo- 

uses on the impact of medical expenses on labor market par- 
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2 See, for example, Biffis, Denuit, & Devolder (2010) . 
icipation and portfolio choice. The importance of social security 

nd health insurance provisions in this context has been studied 

y a number of authors, including Rust & Phelan (1997) , Blau & 

illeskie (2008) , Hubbard, Skinner, & Zeldes (1995) , French (2005) , 

ausman & Wise (2008) , Blundell, French, & Tetlow (2016) , French 

 Jones (2011) . Earlier contributions such as Lumsdaine, Stock, & 

ise (1996) and Gustman & Steinmeier (1994) consider medical 

xpenses and employer-provided health insurance finding modest 

mpact on labor market participation, but this is largely due to as- 

uming that health insurance has no role other than reducing av- 

rage medical expenses. The dynamic programming models esti- 

ated by Rust & Phelan (1997) and Blau & Gilleskie (2008) show 

nstead that when agents are risk averse and health insurance 

elps mitigate the volatility of out-of-pocket medical expenses, 

hen labor supply responses can be much larger. French (2005) and 

rench & Jones (2011) take this point further by allowing individu- 

ls to save to smooth consumption and self-insure against volatile 

edical expenses. French & Jones (2011) obtain a good match of 

he empirical evidence on 60-year-old US males covered by HRS 

nd consider different health insurance schemes to estimate their 

mpact on labor supply. Their model is in discrete time and the 

ynamic programming problem is solved numerically. We consider 

 similar model, but in continuous time, and use a duality ap- 

roach to reduce its solution to solving a system of free boundary 

roblems in a regime switching framework, thus delivering semi- 

nalytical expressions for a number of quantities of interest. We 

btain results consistent with those documented in French & Jones 

2011) , but are also able to explain the mechanics of labor market 

articipation decisions induced by the option-like nature of irre- 

ersible retirement, in the spirit of Farhi & Panageas (2007) and 

hai et al. (2011) . Another important question is how individu- 

ls save during retirement. The empirical evidence suggests that 

he elderly consume more frugally than standard lifecycle models 

ould predict, a possible reason being rising life expectancy and 

edical expenses (e.g., De Nardi et al., 2009; 2010; Dynan, Skin- 

er, & Zeldes, 2004 ). Our model and its empirical calibration pro- 

ide support for these insights and show how medical expenses 

ssociated with health deterioration have a larger impact on re- 

irement decisions than life expectancy considerations. An interest- 

ng question, which is not addressed in this paper, is how health 

nvestment would impact labor supply decisions. Hugonnier et al. 

2013) propose a continuous time portfolio choice model with en- 

ogenous health risk which can be related to ours in the way 

ealth dynamics shape life expectancy. Although they do not con- 

ider flexibility in labor supply and irreversible retirement, they 

btain important insights into the wealth dependence of health ex- 

enditures. The exploration of this angle in the context of labor 

upply responses is left for future research. 

. The setup 

We consider an agent with initial wealth W (0) > 0 and an en-

owment of leisure normalized to one unit. At each time t ≥ 0 

he agent chooses consumption c(t) , leisure l(t) (equivalently, la- 

or supply 1 − l(t) ), as well as how to allocate her wealth W (t)

o a riskless and a risky asset. Labor market participation gener- 

tes income Y (t) . The agent can decide to exit the labor market 

nce and for all at the endogenous retirement date τr . Life ex- 

ectancy evolves over time in response to health shocks, which 

rigger random medical expenses. Life and health insurance are 

vailable throughout the agent’s lifetime. We therefore work in 

artial equilibrium, in the spirit of Merton (1971) , as the agent 

akes wages, health dynamics and asset prices as given. 

In the following, we outline a simple model allowing us to de- 

ermine semi-explicitly the agent’s optimal portfolio choice and la- 

or market participation decisions. An extension of the baseline 
912 
odel to a richer setting including longevity or pandemic risk and 

ultiple health states is discussed in Section 5 . As notation can 

e rather daunting at times, we facilitate navigation of the setup 

y using subscripts “d”, “h ” and “S” for quantities related to d eath, 

 ealth, and s tocks (risky assets), respectively. 

.1. Health and mortality shocks 

The agent’s planning horizon is bounded by the random death 

ime τd , which coincides with the first jump of a conditionally 

oisson process 2 with intensity λd (H(t)) > 0 . The latter represents 

he conditional instantaneous death probability, given the agent’s 

ealth state, H(t) , prevailing at time t . In the simplest model spec- 

fication, we consider the two states “best” and “poor”, so that we 

ave H(t) ∈ { b , p } . An agent in the best health state has intensity

f mortality λ > 0 (i.e., λd (b ) = λ). When a health shock occurs at 

n independent Poisson time τh with parameter λh > 0 , the agent 

ransitions to the poor health state and the intensity of mortality 

umps to level λd (p ) = λ + �h , �h ≥ 0 . For simplicity, we assume 

ealth state transitions to be irreversible. We therefore have that 

he intensity of mortality satisfies 

d (t) := λd (H(t)) = λ + �h 1 τh ≤t . (2.1) 

n line with Markov chain models of health dynamics, one may 

egard death occurrence as a transition to a third and absorbing 

tate (e.g., Asmussen & Steffensen, 2020; Hoem, 1969 ). We note 

hat the model can be extended to any finite number of health 

tates; see Section 5 for an explicit example and Chen, Chang, Sun, 

 Yu (2022) for a formulation allowing the dynamics of the health 

tatus to be driven by a Brownian motion. The use of two health 

tates clearly allows us to obtain neater solutions, while capturing 

he most salient features of the data. 

In addition to reducing life expectancy, the health shock results 

n medical expenses amounting to the random quantity M ≥ 0 a.s.. 

e assume M to be an independent, square integrable random 

ariable capturing treatment costs. The health shock also induces 

roductivity losses captured by lower hourly wages and reduced 

eisure endowment as discussed in the next section. 

Extension of the model to medical expenses dependent on the 

ealth state is straightforward and is illustrated in Section 5 . 

.2. Labor income and leisure 

The agent is endowed with one unit of leisure, a portion (1 −
(t)) of which can be allocated to work, which delivers in turn a 

ow of income 

 (l(t) , w (H(t))) = (1 − l(t ) p ) w (H(t )) , (2.2)

ith p ≥ 1 and 0 ≤ l(t) ≤ l (H(t)) < 1 . In the above, w (H(t)) de-

otes the wage rate, which is allowed to depend on the health 

tatus, as in French (2005) and French & Jones (2011) . The idea 

ere is for our stylized model to capture in reduced form the fact 

hat the wage rate experienced by healthy and unhealthy individ- 

als might differ. A health shock is likely to reduce worker’s pro- 

uctivity which leads to a reduction of leisure endowment and, in 

ome cases, of the wage rate, the phenomenon being particularly 

elevant in case of a self-employed worker (see Grossman, 1972; 

ee, 1982 , for a foundation of the relationship between wage and 

ealth status handling them as endogenous). The model specifi- 

ation also allows us to match the empirical findings of French 

2005) for wages of individuals aged between 50 and 60, which are 

learly relevant for our analysis. In line with Aaronson & French 

2004) , the parameter p allows us to capture the empirical regu- 

arity that, all else equal, part-time workers earn relatively higher 
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ages than full time workers. Aaronson & French (2004) find that 

 50% drop in work hours leads to a 25% drop in the offered hourly

age. The quantity l (H(t)) provides a cap on leisure that can be 

njoyed before retirement, and captures the fact that the agent 

ay have to spend time training or looking for a job when un- 

mployed; we may interpret the quantity (1 − l (H (t)) p ) w (H (t)) 

s unemployment benefits. In line with Choi et al. (2008) and 

arucci & Marazzina (2011) , the cap also ensures that the retire- 

ent time is finite, for otherwise the agent would be able to enjoy 

ull leisure and never retire. We assume l ( j) = l − ( l − l )1 j= p , with 

j ∈ { b , p } and l − l > 0 , to account for the fact that the agent might

xperience a further reduction in leisure after a health shock oc- 

urs. Although wages could in principle vary over the life cycle, in 

he baseline model we allow them to change in response to the 

ealth shock only, and simply write w ( j) = w − ( w − w )1 j= p , with 

j ∈ { b , p } and w − w ≥ 0 . 

Retirement corresponds to full leisure and zero labor income, 

.e., l(t) = 1 ∀ t > τr , where τr is the retirement time. The retire-

ent decision is therefore irreversible. 

.3. Investment opportunity set 

The agent can invest in a money market account, which pays 

ontinuously the riskless rate r > 0 , and in a risky asset with gain

rocess S evolving according to 

 S(t) = S(t) ( b d t + σd Z(t) ) , S(0) = S 0 , (2.3) 

here b, σ > 0 are given constants, and Z is a standard Brownian 

otion. The gain process represents the value of a portfolio that 

ontinually reinvests any dividends paid out by the risky asset. 

There is also a private market to insure against medical ex- 

enses and mortality risk at actuarially fair prices: 

• Life insurance and annuities. By paying a premium 

λd (t)(θd (t) − W (t)) at time t , the agent ensures that her 

beneficiaries receive a death benefit equal to θd (t) − W (t) 

should death occur over the next small time interval. Here, 

θd (t) − W (t) is the face value of the life insurance contract 

and is chosen by the agent via the bequest target θd (t) . As in

Dybvig & Liu (2010) , we interpret the contract as an annuity 

whenever θd (t) < W (t) . 
• Health insurance. In line with Koijen, Van Nieuwerburgh, 

& Yogo (2016) , the agent may have access to employer- 

provided coverage while working and Medicare in retire- 

ment. We denote by η(t) the fraction of health expenses 

covered by such arrangements. 3 The agent has also access 

to supplemental, private health insurance. By paying a pre- 

mium θh (t) λh E[ M] at time t , the agent has the right to re-

ceive the amount θh (t) M in case the health shock occurs 

over the next small time interval. Full insurance is delivered 

by a choice of θh (t) equal to 1 − η(t) . 

.4. The agent’s optimization problem 

At each time t before death, the agent chooses the wealth 

mount allocated to the risky stock, θS (t) , the bequest target de- 

ivered by life insurance, θd (t) , and the face value of health in- 

urance, θh (t) E[ M] before the health shock. The agent also de- 

ides consumption, c(t) ≥ 0 , leisure allocation, l(t) ≥ 0 , as well as 

he retirement date τr . To make precise the optimization prob- 

em and admissible strategies, we work on the filtered probabil- 

ty space (�, G , G , P ) , where the filtration G := (G t ) t≥0 is such that

ach sigma-field G t is defined as G t := ∩ u>t F t ∨ σg (τd ∧ u ) , where
3 This is assumed to be predictable relative to the information generated by the 

tate variables. 

u  

d  

t

t  

913 
g (U) denotes the sigma-field generated by the random variable U . 

ach sigma-field F t is in turn defined as F t := ∩ u>t F 

Z 
t ∨ σg (τh ∧ u ) ,

here the filtration F 

Z := (F 

Z 
t ) t≥0 is the one generated by the 

rownian motion Z and augmented with the P -null sets. This con- 

truction makes G the smallest enlargement of the Brownian filtra- 

ion ensuring that the random times τd and τh are stopping times 

e.g., Protter, 2005 , Section VI.3, page 370) and will be shown to be 

ost useful when simplifying the optimization problem (2.7) fur- 

her below. 

A portfolio strategy (c, l, θ, τr ) , with θ := (θS , θh , θd ) , is admissi-

le if it is G -predictable and is such that c, l, θh , θd are integrable

nd θS is square-integrable. In this framework, the agent’s wealth 

rocess satisfies the dynamic budget constraint 

 W (t) = (1 − N d (t )) 
{ 

[ Y (l(t ) , w (H(t ))) − c(t) ] d t 

+(W (t) − θS (t)) r d t 

+ θS (t) ( b d t + σd Z(t) ) − λd (t)(θd (t) − W (t)) d t 

−(1 − N h (t)) λh θh (t) E[ M] d t 

−M(1 − η(t) − θh (t)) d N h (t) 
} 

+(θd (t) − W (t−)) d N d (t) , (2.4) 

here we denote by N i (t) := 1 τi ≤t the indicator of the intensity 

ump at time τi , with i ∈ { h, d} . The agent maximizes her lifetime

xpected utility from leisure and consumption. We assume time 

eparable preferences with subjective discount rate δ > 0 , and de- 

ne the agent’s utility flow as 

 c (c(t) , l(t)) = 

(
l(t) 1 −α c(t) α

)1 −γ

1 − γ
, γ > 0 , 0 < α < 1 . (2.5) 

 value γ < 1 or γ > 1 means that consumption and leisure are 

ither complements or substitutes. The agent values bequest ac- 

ording to the utility function 

 d (θd (t)) = 

(k d θd (t)) α(1 −γ ) 

1 − γ
(2.6) 

ith k d > 0 . The constant k d measures the intensity of preference 

or leaving a bequest. The parameters α, γ , k d could be made de- 

endent on the health state, but for ease of exposition we assume 

hem constant in the baseline model. 

Given initial wealth level W (0) and health state H(0) ∈ { b , p } ,
he agent’s objective function is given by 

 (W (0) , H(0) ; c, l, θ, τr ) = E 

[∫ τd ∧ τr 

0 

e −δt u c (c(t) , l(t)) d t 

+ 

∫ τd 

τr ∧ τd 

e −δt u c (c(t) , 1) d t 

+ e −δτd u d (θd (τd −)) 

]
. 

y using the properties of the conditionally Poisson setting, the 

bove can be rewritten as follows (e.g., Biagini, Biffis, Gozzi, & 

anella, 2022; Biffis, Gozzi, & Prosdocimi, 2020; Pham, 2009 ): 

E 

[∫ τr 

0 

e −
∫ t 

0 β(s ) ds u (c(t) , l(t) , θd (t) , H(t)) d t 

+ 

∫ + ∞ 

τr 

e −
∫ t 

0 β(s ) ds u (c(t) , 1 , θd (t) , H(t)) d t 

]
, (2.7) 

here β(s ) := δ + λd (H(s )) denotes the mortality risk adjusted 

iscount rate and where we have introduced the notation 

 (c(t) , l(t) , θd (t) , H(t)) := u c (c(t) , l(t)) + λd (H(t)) u d (θd (t)) . As

iscussed in Biffis et al. (2020) , Biagini et al. (2022) , this shows

hat we can solve our optimization problem relative to the filtra- 

ion F . For ease of notation, we will keep on writing (c, l, θ, τr )
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Table 1 

Mapping between variables in the primal and dual space. 

Variable Primal space Dual Space 

Retirement threshold x̄ z̄ 

Threshold for leisure smaller than L ˜ x ˜ z 

Optimal controls c ∗, l ∗, θ ∗
S , θ

∗
h 
, θ ∗

d 
z ∗

f

d

fi

V

w

i

 

L

w  

d

U

I  

p

w  

o

s

b

3

d

o

C

c

d

e

s

m

m

s

s

i

n

w

o  

t

s

o  

K  

C

P

a

[

(

c

t

i

w

t

d

ξ

w

i

d  

H

b

ũ  

w

ũ

s  

c

o

fi

Ũ

B

o

(

L

T

t

V  

A

m

V

or our controls, although what we will be using are their pre- 

eath counterparts, 4 which are predictable relative to the smaller 

ltration F . 

We then define the agent’s value function as 

(W (0) , H(0)) := sup 

( c,l, θ,τr ) ∈A 
J 

(
W (0) , H(0) ; c, l, θ, τr 

)
, (2.8) 

here A is the set of admissible strategies such that the problem 

s well-posed. 

As in Farhi & Panageas (2007) , Choi et al. (2008) , and Dybvig &

iu (2010) , it is convenient to write the objective (2.7) as follows: 

E 

[∫ τr 

0 

e −
∫ t 

0 β(s ) ds u (c(t) , l(t) , θd (t) , H(t)) d t 

+ e −
∫ τr 

0 β(s ) ds U(W (τr ) , H(τr )) 
]
, (2.9) 

here U(W (τr ) , H(τr )) is the value function of the agent once she

ecides to retire: 

(W (τr ) , H(τr )) : = sup 

(c, θ) 

E τr 

[∫ + ∞ 

τr 

e −
∫ t 
τr 

β(s ) ds 

u ( c(t) , 1 , θd (t) , H(t) ) d t ] . (2.10) 

n line with Karatzas & Wang (20 0 0) , the idea is to solve first

roblems (2.9) and (2.10) separately for a fixed retirement date τr , 

ealth level W (τr ) , and health state H(τr ) , and then solve for the

ptimal retirement time τ ∗
r . The next section outlines the solution 

trategy and illustrates the main features of the agent’s optimal la- 

or and portfolio choice. 

. Solution 

In this section, we solve the problem by using martingale and 

uality methods. Use of the latter in portfolio choice problems 

riginates from Pliska (1986) , Karatzas, Lehoczky, & Shreve (1987) , 

ox & Huang (1989) . The idea is to handle the dynamic budget 

onstraint by introducing a semimartingale playing the role of a 

ynamic Lagrangian multiplier. By exploiting the martingale prop- 

rty of pricing functionals, optimization can be reduced to the 

tatic problem of finding the initial value of the Lagrangian semi- 

artingale. A nice feature of the approach is that the Langrange 

ultiplier can be interpreted as the shadow price of wealth as in 

tatic optimization problems. The case of incomplete markets (un- 

panned sources of risk and constraints) can be handled by push- 

ng the approach further and using elegant convex duality tech- 

iques (see, for example, Pennanen, 2011 , for an overview). As we 

ill see in the following, the approach reduces the dimensionality 

f the problem by shrinking the set of controls ( c, l, θS , θh , θd ) to

he starting value of the Lagrangian semimartingale, z(0) ; Table 1 

ummarizes the mapping between primal and dual variables in 

ur setting. We refer to Xu & Shreve (1992) , He & Pages (1993) ,

aratzas & Shreve (1998) , Choi et al. (2008) , Dybvig & Liu (2010) ,

hen & Vellekoop (2017) , Dong & Zheng (2020) , Kamma & Pelsser 
4 In our framework the following result holds (see Aksamit & Jeanblanc, 2017 , 

roposition 2.11(b)): if a process A is G -predictable then there exists a process 

 which is F -predictable and such that A (s, ω) = a (s, ω) for all ω ∈ � and s ∈ 
0 , τd (ω)] . We refer to process a as to the pre-death counterpart of process A . 

E

B

(

s

2

914 
2022) , among others, for applications to a variety of portfolio 

hoice problems. Use of convex duality techniques seems to offer 

he only way to obtain semi-closed form solutions to our challeng- 

ng problem, which is of mixed control and stopping type. 

We now outline the solution strategy and the main results, 

hile relegating detailed proofs to the online supplementary ma- 

erial. In line with He & Pages (1993) , we introduce the state-price- 

ensity process ξ given by 

(t) = e −( r+ 1 2 �
2 ) t −�Z(t ) e −

∫ t 
0 λd (H(s )) ds , (3.1) 

here � := 

b−r 
σ denotes the market price of financial risk, 5 and 

ntroduce the process z(t) = ξ0 e 
∫ t 

0 β(s ) ds ξ (t) having dynamics 

 z(t) = −(r − δ) z(t) d t − �z(t ) d Z(t ) , z(0) = ξ0 . (3.2)

ere, the process z represents the dynamic Lagrange multiplier. 

We then define the convex conjugate of the utility flow, u c , and 

equest function, u d , as 

 

 c (z, H(t)) := max 
c≥0 , 0 ≤l≤˜ l (t) 

u c (c, l) − (c + w (H(t)) l p ) z, (3.3)

here ̃  l (t) := l (H(t)) and 

 

 d (z) := max 
θd 

u d (θd ) − θd z, (3.4) 

o that we have ̃  u (z, H(t)) := ̃

 u c (z, H(t)) + λd (H(t)) ̃  u d (z) . The pro-

esses ̂  c , ̂  l , ̂  θd solving problems (3.3) - (3.4) are given explicitly in the 

nline supplementary material in Proposition A.4. Similarly, we de- 

ne the convex conjugate of U as 

 

 (z, H(t)) := sup ̂ w ≥0 

U( ̂  w , H(t)) − ̂ w z. (3.5) 

y the optional sampling theorem, the budget constraint (2.4) for 

ur optimization problem can be shown to take the following form 

see section A.1 in the online supplementary material): 

E 

[∫ τr 

0 

ξ (t) 
{ 

c(t) −Y (w (H(t)) , l(t)) + λd (t) θd (t) 

+ e −λh t λh (1 − η(t)) E[ M] 

} 

d t +W (τr ) ξ (τr ) 

]
≤W (0) . (3.6) 

et us define ˜ V (W (0) , H(0) , ξ0 , τr ) : 

= E 

[∫ τr 

0 

e −
∫ t 

0 β(s ) d s 
(˜ u ( z(t) , H(t) ) 

+ z(t) ( w (H(t)) − (1 − N h (t)) λh (1 − η(t)) E [ M ] ) 

)
d t 

+ e −
∫ τr 

0 β(s ) ds ˜ U ( z(τr ) , H(τr ) ) 

]
. (3.7) 

hen, for a fixed time τr , denote by A τr the set of admissible 

riplets (c, l, θ) for problem (2.8) and define the value function 

 τr 
(W (0) , H(0)) := sup 

(c, l, θ) ∈A τr 

J (W (0) , H(0) ; c, l, θ, τr ) . (3.8)

s demonstrated in Proposition A.2 in the online supplementary 

aterial, we can then prove that 

 τr 
(W (0) , H(0)) = inf 

ξ0 > 0 

[˜ V (W (0) , H(0) , ξ0 , τr ) + ξ0 W (0) 
]
. (3.9) 
5 In particular, under the equivalent pricing measure ˜ P , defined via ˜ P (A ) := 

 

[
exp 

(
−�Z(t ) − 1 

2 
�2 t 

)
1 A 

]
, A ∈ F t , we have that ̃  Z (t) = Z(t) + �t is a standard 

rownian motion and the compensated jump processes N j (t) − ∫ t 
0 (1 − N j (s )) λ j d s 

for j ∈ { h, d} ) are martingales. As our market setting is complete, the pricing mea- 

ure is unique. Moreover, the doubly stochastic setting is preserved (see Biffis et al., 

010 ). See Section 5 for the extension to an incomplete market setting. 
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y (2.8) and (3.8) , we can write 

(W (0) , H(0)) = sup 

τr ∈ [0 , + ∞ ] 

V τr 
(W (0) , H(0)) , (3.10) 

hich, under the conditions of Proposition A.2, can be reduced to 

he static problem 

(W (0) , H(0)) = sup 

τr ∈ [0 , + ∞ ] 

inf 
ξ0 > 0 

[˜ V (W (0) , H(0) , ξ0 , τr ) + ξ0 W (0) 
]

= inf 
ξ0 > 0 

[
V (ξ0 ) + ξ0 W (0) 

]
, (3.11) 

here 

 (ξ0 ) := sup 

τr ∈ [0 , + ∞ ] ̃

 V (W (0) , H(0) , ξ0 , τr ) . (3.12) 

he value which gives the infimum in Eq. (3.11) , ξ ∗
0 

, is the optimal

agrange multiplier associated to the static budget constraint. 

To solve the optimal stopping problem (3.10) , it is convenient to 

efine 

j (t, z) : = sup 

τr >t 
E 

[∫ τr 

t 

e −
∫ s 

0 β(u ) d u 
[˜ u (z(s ) , H(s )) 

+ 

(
w (H(s )) − λh E[ M](1 − η(s )) 1 H(s )= b 

)
z(s ) 

]
d s 

+ e −
∫ τr 

0 β(s ) d s ˜ U (z(τr ) , H(τr )) 
∣∣z(t) = z, H(t) = j 

]
, (3.13) 

or j ∈ { b , p } , and � j (z) := e 
∫ t 

0 β(s ) ds φ j (t, z) , j ∈ { b , p } , where

he time-homogeneity of the � j ’s follows from Barucci & 

arazzina (2011) . It holds that V (ξ0 ) = φ(0 , ξ0 ) , with φ(t, z) :=
 

j∈{ b , p } φ j (t, z)1 H(t)= j , and hence once the function φ is computed 

e can derive the optimal Lagrange multiplier as 

∗
0 = arg min 

ξ0 > 0 
φ(0 , ξ0 ) + ξ0 W (0) . 

For ease of exposition, we now consider the simplification 

(t) = ηw 

1 { τr >t} + ηr 1 { τr ≤t} , for deterministic parameters ηw 

, ηr ≥
 , which will be discussed in the analysis of Section 4.3 . Fol-

owing Barucci & Marazzina (2011) , we can couple the results in 

e & Pages (1993) with those in Buffington & Elliott (2002) to 

how that the solution of the problem is obtained by solving a 

ystem of free-boundary problems in a regime-switching frame- 

ork. In particular, we show that there exist boundaries z b , z p ∈ 

 and functions �p ∈ C 1 (R + ) ∩ C 2 (R + \ z p ) , �b ∈ C 1 (R + ) ∩ C 2 (R + \
 b ) (see also Choi et al., 2008 , for lack of twice differentiability at

he boundaries) such that 

L p �p (z) + ̃

 u p (z) + z w = 0 if z > z p , 

L p �p (z) + ̃

 u p (z) + z w ≤ 0 if 0 < z ≤ z p , 

�p (z) ≥ ˜ U p (z) if z > z p , �p (z) = ̃

 U p (z) otherwise , (3.14) 

nd 

L b �b (z) + ̃

 u b (z) + z ( w − λh (1 − ηw 

) E[ M] ) 

−λh �b + λh �p = 0 if z > z b , 

L b �b (z) + ̃

 u b (z) + z ( w − λh (1 − ηw 

) E[ M] ) 

−λh �b + λh �p ≤ 0 if 0 < z ≤ z b , 

�b (z) ≥ ˜ U b (z) if z > z b , �b (z) = ̃

 U b (z) otherwise , (3.15) 

here we recall that w and w are the wages defined in Section 2.2 , 

nd we have used the notation 

L j � j := −β j � j + (δ − r) z 
∂� j 

∂z 
+ 

1 

2 

�2 z 2 
∂ 2 � j 

∂z 2 
, 

U j (W (t)) := U(W (t) , j) , ˜ U j (z) := ̃

 U (z, j) , 

u j (c, l, θd ) := u (c, l, θd , j) , ˜ u j (z) := ̃

 u c (z, j) , (3.16) 

or j ∈ { b , p } . The solutions to variational inequalities (3.14) - (3.15)

re given explicitly in Theorems A .8-A .9 in the online supplemen- 

ary material. 
915 
We conclude with a verification theorem, for which we intro- 

uce the notation 

 (t) := 

∑ 

j∈{ b , p } 
z j 1 H(t)= j and �(t, z) := 

∑ 

j∈{ b , p } 
� j (z)1 H(t)= j 

see Theorem A.3 in the online supplementary material). Here z ∗(t) 

s the process defined by the dynamic (3.2) with initial value ξ ∗
0 

. 

heorem 3.1 (Verification Theorem) . Consider the pair 

 z (t) , �(t, z)) ∈ R + × C 1 (R + ) ∩ C 2 (R + \ z ) and assume that it

olves variational inequalities (3.14) - (3.15) . Then, we can write 

j (t, z) = e −
∫ t 

0 β(s ) ds �(t, z) , and the latter coincides with φ j (t, z)

efined in (3.13) , for j ∈ { b , p } . Moreover, the optimal stopping time
∗
r is given by 

τ ∗
r = inf { s > t : z ∗(s ) ≤ z (s ) } < + ∞ a.s, where z ∗(t) =

∗
0 e 

∫ t 
0 β(s ) ds ξ (t) . 

.1. Optimal strategies 

In this section, we present the optimal portfolio and insurance 

llocations, as well as labor market participation decisions. 

roposition 3.2 (Optimal labor supply) . There exist health depen- 

ent thresholds W b and W p such that the agent’s optimal retirement 

ime τ ∗
r coincides with the first time when the optimal wealth path 

xceeds the wealth level W (t) := W b 1 H(t)= b + W p 1 H(t)= p . At each 

ime t ≥ 0 before retirement, the optimal leisure is given by 

 

 

 

l ∗(t) = 

(
αz ∗(t ) −1 

(
αp 

1 −α w (H(t )) 
)α(1 −γ ) −1 

) 1 
γ +(1 −p)(α(1 −γ ) −1) 

if z ∗(t) ≥ ˜ z (t) ,

l ∗(t) = l (H(t)) otherwise , 

(3.17) 

ith the health-dependent boundary explicitly given by 

 

 (t) := α
(

αp 

1 − α
w (H(t)) 

)α(1 −γ ) −1 

l (H(t)) −γ −(1 −p)(α(1 −γ ) −1) . 

(3.18) 

roof. See section A.2 in the online supplementary material. �

Proposition 3.2 shows that the health state affects leisure and 

abor market participation in two ways. First, in line with Farhi & 

anageas (2007) , the distance to retirement is determined by the 

gent’s current wealth relative to the retirement threshold W (t) , 

hich in our setting depends on the agent’s health state. Second, 

efore retirement labor supply is driven by the state variable z ∗: if 

t is high enough, then labor supply is shaped by hourly wages and 

reference parameters; if it falls below a health dependent bound- 

ry, then the agent simply opts for maximal leisure. The better 

ealth state results in greater distance to retirement ( W b > W p ), 

s the agent needs to work longer to smooth consumption in the 

ace of a longer life expectancy and medical expenses yet to be in- 

urred. Similarly, before retirement the state variable z ∗ has greater 

lack in the better health state ( ̃  z b < ̃

 z p ), thus increasing the dis- 

ance to maximal leisure choice. 

Similar trade-offs are at play when determining the optimal 

onsumption strategy, which is given in the next proposition. If z ∗

s high enough, consumption is linear in hourly wages, and non- 

inear in leisure choice. When z ∗ falls below the health depen- 

ent boundary ̃  z , then consumption is insensitive to wages and the 

gent simply opts for maximal leisure. Due to productivity losses 

hourly wages drop to w ) and medical treatments (the maximal 

eisure available falls to l ), the worse the health status, the lower 

he consumption level afforded by the agent. 
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roposition 3.3 (Optimal consumption) . For each time t ≥ 0 before 

he retirement time τ ∗
r , the optimal consumption level is given by 

 

c ∗(t) = 

αp 
1 −α w (H(t)) l ∗(t) p if z ∗(t) ≥ ˜ z (t) , 

c ∗(t) = 

(
αz ∗(t ) l (H(t )) (α−1)(1 −γ ) 

) 1 
α(1 −γ ) −1 otherwise , 

(3.19) 

here the health dependent boundary is given explicitly in (3.18) . 

roof. See Proposition A .4 in section A .2 in the online supplemen- 

ary material. �

From the above results we can see that retirement results in 

 drop in consumption as l ∗(t) ≤ l (H(t)) < 1 if t < τ ∗
r and leisure

umps to 1 after retirement; see Hubener, Maurer, & Mitchell 

2015) for empirical evidence supporting this result. This down- 

ard jump ensures continuity of the marginal utility of consump- 

ion, a consequence of the smooth pasting principle (see Dybvig & 

iu, 2010 ). As in Farhi & Panageas (2007) , one can show that con-

umption prior to retirement is lower than in the case when no re- 

irement option is available, as the agent needs to save more ahead 

f her exit from the labor market. Saving and insurance decisions 

re fully characterized in the next proposition. 

roposition 3.4 (Optimal investment, insurance, and bequest) . The 

ptimal investment in the risky asset is given by 

∗
S (t) = 

�

σ
z ∗(t) 

∂ 2 

∂z 2 
�(t, z ∗(t)) , (3.20) 

or t < τ ∗
r . 

The optimal health insurance demand θ ∗
h 

is given by 

∗
h (t) = 

1 

λh E[ M] 

{ 

(1 − l ∗(t ) p ) w (H(t )) − c ∗(t) 

+(b − r − W 

∗(t )) θ ∗
S (t ) 

−λd (H(t)) 
(
θ ∗

d (t) − W 

∗(t) 
)

+ ( δ − r) z ∗( t) 
∂ 2 

∂z 2 
�( t, z ∗( t)) 

+ 

1 

2 

(z ∗(t)�) 2 
∂ 3 

∂z 3 
�(t, z ∗(t)) 

} 

, (3.21) 

or t < min (τ ∗
r , τh ) , and vanishes after the health shock occurrence. 

Finally, the optimal bequest target θ ∗
d 

is given by 

d 
∗
(t) = 

(
1 

α
z ∗(t) k 

α(γ −1) 

d 

) 1 
α(1 −γ ) −1 

. (3.22) 

roof. See the online supplementary material. �

From (3.20) , we see that the optimal risky asset allocation 

eeds to take into account the current health state, as well as fu- 

ure possible state transitions. As shown in the following proposi- 

ion, the solution of the post-retirement asset allocation problem 

s the same as that of the classical Merton problem with optimal 

equest in case the health shock has already occurred (e.g., Dybvig 

 Liu, 2010 ). In case the health shock has not occurred yet, the so-

ution takes into account medical expenses and the availability of 

ealth insurance. More precisely, the agent follows a Merton-type 

trategy in which financial wealth is replaced by total wealth (fi- 

ancial wealth plus human capital) net of the market value of fu- 

ure medical expenses; see Eq. (3.23) and section A.6 in the online 

upplementary material. 

roposition 3.5 (Post retirement strategies) . From the retirement 

ime τ ∗
r onwards, the optimal consumption level is given by c ∗(t) = 

 

αz ∗(t) ) 
1 

α(1 −γ ) −1 , and the optimal investment in the risky asset and 

he optimal health insurance demand are given by Eqs. (3.20) - (3.21) ,
916 
espectively, replacing � with ˜ U , where ˜ U admits the explicit health- 

tate-dependent expressions: 

 

 (z ∗(t) , p ) = α
1 
�

�

(1 − �) 

1 + λd (p ) k 
1 −�
�

d 

ξp 
z ∗(t) 

�−1 
�

 

 (z ∗(t) , b ) = α
1 
�

�

(1 − �) 
M 

1 
�

b z 
∗(t) 

�−1 
� − λh 

r + λh 

(1 − ηr ) E[ M] z ∗(t) , 

ith � = 1 − α(1 − γ ) , ξp = 

�−1 
�

(
r + λd (p ) + 

�2 

2�

)
+ 

δ+ λd (p ) 
� , and 

onstants M b given in Section A.6 in the online supplementary ma- 

erial. Here, ˜ U are the convex conjugates of the post retirement utility 

unctions, given by 

(W, p ) = α

( 

1 + λd (p ) k 
1 −�
�

d 

ξ j 

) �

W 

1 −�

1 − �
, 

nd 

(W, b ) = αM b 

(
W − λh 

r+ λh 
(1 − ηr ) E[ M] 

)1 −�

1 − �
. (3.23) 

roof. See Dybvig & Liu (2010) and the online supplementary 

aterial. �

As pointed out in Karatzas & Wang (20 0 0) , a solution to the op-

imization problem (2.8) may not exist. The next theorem provides 

 simple sufficient condition for existence based on the agent’s 

ubjective discount rate being sufficiently high. Equivalently, the 

gent’s mortality risk adjusted discount rate needs to be larger 

han a given threshold shaped by the preference parameters and 

he risk-return trade-off offered by the investment opportunities. 

heorem 3.6 (Sufficient condition for existence) . Assume that the 

ollowing condition is satisfied for all t ≥ 0 : 

(t) > β∗, (3.24) 

here β(t) = δ + λd (H(t)) and β∗ = α(1 −
) 
(

r + λ + 

1 
1 −α(1 −γ ) 

�2 

2 

)
. Then, the optimization problem (2.8) ad- 

its a solution. 

roof. See Section A.4 in the online supplementary material. �

A stronger condition implying (3.24) is δ + λ > β∗. This is im- 

ediate to check and simply states that the mortality risk ad- 

usted discount rate in the b health state should be greater than 

he threshold β∗. 

. Model estimation 

We estimate the model by using the Health and Retirement 

tudy (HRS), which covers a representative sample of older house- 

olds surveyed every two years since 1992. The data source is per- 

ectly suited for our model, as it follows households over time and 

rovides information on health expenses, health outcomes, insur- 

nce holdings, as well as information on income and wealth. In 

ine with French & Jones (2011) , we focus our attention on optimal 

ortfolio and labor market decisions made by an average 60-year- 

ld male US individual throughout his working life, as well as after 

etirement. Conditioning on relevant socio-economic characteristics 

ields different calibrated parameters, but the main trade-offs sup- 

orted by the optimal strategies discussed below remain unaltered. 

rench & Jones (2011) build an index capturing preference hetero- 

eneity in the sample population and repeat the results for three 

ubclasses of agents obtaining similar results. 
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Fig. 1. HRS data boxplot and calibration results for the calibrated leisure, trans- 

formed in (1 − l ∗(t)) × 4060 working hours. Mean values from the sample, mean 

values are estimated on the basis of 20 0 0 0 simulations for the state variables. 

Fig. 2. Private insurance. Optimal insurance, investment, and consumption strate- 

gies (as a fraction of optimal wealth), as well as optimal leisure for a average agent 

aged 60 in the baseline model of Section 3 . Average values are computed on the 

basis of 200 000 simulations for the state variables. x -axis: age from 0 (60 years 

old) to 25 (85 years old). Optimal wealth is in 10 0 0 0 USD. 
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.1. Estimation strategy 

We adopt a two-stage estimation procedure. In the first stage, 

e estimate those parameters that can be identified without re- 

orting to our model. These include mortality and health shock 

ates, as well as financial market parameters. In the second stage, 

e estimate the remaining parameters by using the simulated 

ethod of moments (e.g., Adda, Cooper, & Cooper, 2003 , Chapter 

.3.3). 

We estimate the components of the intensity of mortality 

y using a simple Markov chain model. The results, reported in 

able 2 , suggest that the health shock occurs on average after 9.29 

ears and that the life expectancy for a 60-year-old is 14.88 years. 6 

arket parameters are estimated by using S&P500 and 3-month T- 

ills monthly data during the period 1950–2006 for the risky and 

iskless asset, respectively. Labor income parameters w and w are 

stimated based on the riearn field of HRS data. In line with 

aronson & French (2004) , we set p = 2 , meaning that switching

rom full time to half time (i.e., increasing leisure from 0 to 50% )

ould generate a 25% drop in gross income. For simplicity, in- 

ome is taxed at a flat 40% rate; see French & Jones (2011) for a

ore complex tax schedule. To estimate average medical expenses, 

e consider the cumulative costs 7 expected to be incurred over 

0 years by a 60-year-old male individual without Medicare, dis- 

ounted at the risk free rate. For this exercise, we therefore con- 

ider η(t) ≡ 0 in (2.4) , i.e., no coverage of medical expenses from 

mployer provided insurance or Medicare. The case with η differ- 

nt from zero is then considered in Section 4.3 . 

In the second stage, we estimate the remaining parameters 

 k d , δ, α, γ , l , l ) by using the method of simulated moments. In

articular, we consider parameter values minimizing the distance 

etween the mean values of three endogenous model outputs and 

he corresponding empirical values. The endogenous model out- 

uts are the number of working hours, the optimal wealth level, 

nd the optimal risky asset allocation. 8 For simplicity, the lat- 

er is obtained by considering the aggregate value of holdings in 

tocks, bonds, and pension savings. Cash and short term deposits 

re instead considered part of the riskless asset allocation. In line 

ith French & Jones (2011) , we consider 4060 hours as the annual 

eisure endowment, and define optimal working hours as given by 

1 − l ∗(t)) × 4060 . In carrying out our simulations, we allow for 

oth Brownian and conditional Poisson randomness. The estima- 

ion error to be minimized is defined as a weighted sum of the L 2 -

orm calibration errors for expected wealth, leisure and risky asset 

llocation. When considering the average wealth level, for example, 

ts calibration error is given by 

rr W 

= 

√ ∑ 10 
i =0 | W HRS (60 + 2 i ) − W m 

(2 i ) | 2 √ ∑ 10 
i =0 W HRS (60 + 2 i ) 2 

, 

here W HRS and W m 

correspond to the average wealth levels ob- 

ained from HRS data and our model, respectively. More precisely, 

 m 

is computed on the basis of 20 0 0 0 simulations for the state 

ariables, averaging among all the obtained wealth paths. We de- 

ne the calibration error for leisure, Err l , and for the stock market 

articipation, Err S , in a similar way. The errors are then weighted 

o as to maximize the goodness of fit across the three curves. 

Table 2 reports the parameter estimates obtained across the 

wo stages. The calibration error on the second stage is equal to 

.083. As an example, Fig. 1 depicts the matching result for the 
6 The life expectancy is computed on the basis of one million simulations of the 

onditionally Poisson process with intensity λd (H(t)) . 
7 This is in line with the annual average expenses for a person in Bad Health 

eported in French & Jones (2011) . 
8 The relevant HRS variables are rjhours ∗rjweeks , hatota , and 

astck + habond + haira , respectively. 

a

a

T

i

917 
rst moment of one of the three calibrated quantities, the labor 

arket participation. To better capture the cross-sectional hetero- 

eneity of households we could extend the simulated method of 

oments to target higher moments of the relevant variable’s dis- 

ribution. 

.2. Optimal strategies: Private health insurance 

To better understand the optimal strategies delivered by the 

odel, we first consider the case in which only private insurance 

s available, i.e., we set η(t) ≡ 0 in (2.4) . For comparison, we then 

onsider a version of the framework in which we remove health 

isk and medical expenses altogether ( λh = 0 ). Figure 2 reports op- 

imal strategies for an (average) 9 60-year-old male agent; the same 

trategies are reported in Fig. 3 for the case of λh = 0 . We note that

n both cases the model induces a decreasing pattern in the risky 

sset allocation as the (average) agent approaches retirement, i.e., 

s more and more simulations deal with the retirement option. 

he result applies also to the case of working agents. The latter 
9 In the following, we refer to “average” agents when considering results averag- 

ng across “working” and “retired” agents along the optimal paths. 
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Fig. 3. No health risk. Optimal insurance, investment, and consumption strategies 

(as a fraction of optimal wealth), as well as optimal leisure for a average agent aged 

60 in the model without health shock. Average values are computed on the basis of 

20 0 0 0 0 simulations for the state variables. x -axis: age from 0 (60 years old) to 25 

(85 years old). Optimal wealth is in 10 0 0 0 USD. 

Table 2 

Main parameter values. w , w , M and W (0) are given in 10 0 0 0 USD. 

Health Shock λ = 0 . 01376 , λh = 0 . 10765 , �h = 0 . 11971 

Financial Market r = 0 . 0492 , b = 0 . 0872 , σ = 0 . 1426 

Labor income p = 2 , w = 6 . 4188 , w = 5 . 4237 

Medical Expenses M = 8.7055 

Preferences δ = 0 . 0190 , α = 0 . 3880 , γ = 14 . 6978 

Maximum Leisure l = 0 . 6991 , l = 0 . 3046 

Bequest k d = 0 . 0542 

Initial Wealth W (0) = 38 . 417 

Table 3 

Retirement thresholds for an (average) agent aged 60 at time 0 and model parame- 

ters as in Table 2 . 

Health insurance b p 

Private insurance ( ηw = ηr = 0 ) 94.61 16.13 

Tied health insurance ( ηw = 1 , ηr = 0 ) 119.27 16.13 

Retiree health insurance ( ηw = ηr = 1 ) 86.44 16.13 

Medicare ( ηw = 0 , ηr = 1 ) 61.76 16.13 
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10 We make the simplification of not considering age-contingent eligibility re- 

quirements, currently set at age 65 for Medicare, for example. 
as traditionally been regarded as a puzzle (relative to the empiri- 

al predictions of Merton-like models) and then solved by looking, 

or example, at the co-integration between labor income and stock 

rices (see Benzoni, Collin-Dufresne, & Goldstein, 2007 ). Here, we 

ee an alternative explanation in which the compression in risky 

sset holdings is induced by the agent gradually investing more 

onservatively to be able to retire. 

When medical expenses are considered, health insurance de- 

and is sizeable, thus decreasing the resources available for in- 

estment and leading to a more pronounced compression in risky 

sset investment. Moreover, in line with De Nardi, French, & Jones 

2010) , the agent consumes less and the fraction of wealth allo- 

ated to life insurance is smaller and non-linear, as bequest mo- 

ives are traded off against preferences for leisure during retire- 

ent. 

Table 3 reports the health-dependent retirement thresholds rel- 

tive to different types of insurance, including the private health 

nsurance case considered here. We find that an average 60-year- 

ld male agent retires after 9.1 years, at age 69.1. There is a wedge

etween the thresholds in the case with health risk (state b ) and 

ithout (state p , for which the health shock has already occurred). 

he sizeable wedge is mostly due to the simple (binary) nature of 

ealth risk assumed in our baseline model. The message is that the 

rospect of health shocks and associated medical expenses induces 
918 
he agent to work longer, whereas the agent can retire immediately 

s soon as such expenses are no longer material (see Chai et al., 

011 , for related results). The optimal strategies obtained demon- 

trate that working longer is not just the result of a higher retire- 

ent threshold, but also of the slower wealth accumulation along 

he optimal path due to health insurance purchases. Similarly, op- 

imal consumption and labor market participation decrease in the 

resence of health risk, consistently with the empirical evidence 

ocumented in French & Jones (2011) . 

.3. Optimal strategies: Employer-provided health insurance 

We then extend the baseline model to include exogenous in- 

urance provision, which is characterized by the process η(t) ≥ 0 

nd will be seen to provide important retirement incentives. In line 

ith French & Jones (2011) , we consider two forms of employer- 

rovided health coverage: 

• Tied health insurance coverage, which is provided by the 

employer while the agent is actively working: η(t) > 0 on 

the event { τr > t} and η(t) = 0 on the event { τr ≤ t} . 
• Retiree health insurance coverage, meaning that coverage is 

retained by the employee also after retirement: η(t) > 0 . 

For comparison we also consider the following cases: 

• Private health insurance only . As in the baseline model of the 

previous section, we set η(t) = 0 . 
• Medicare . No employer-provided insurance, governmental 

health coverage after retirement: η(t) = 0 on { τr > t} and 

η(t) > 0 on { τr ≤ t} . We regard this case as a proxy 10 for

Medicare in the US and other forms of governmental sup- 

port elsewhere. 

We assume each form of coverage to deliver a payout equal 

o η(t) M, conditional on the health shock occurring. We have 

ull coverage in case η(t) = 1 . For ease of illustration, in the fol-

owing discussion we consider the simple parametrization η(t) = 

w 

1 { τr >t} + ηr 1 { τr ≤t} , for deterministic parameters ηw 

, ηr ≥ 0 . 

Table 3 reports the retirement wealth thresholds conditional 

n different health states. The retirement threshold for state p is 

onstant, as health coverage becomes immaterial once the health 

hock already occurred. Retirement thresholds differ considerably 

n health state b instead. In line with the analysis provided in Rust 

 Phelan (1997) and French & Jones (2011) , we see that agents set 

or themselves a higher wealth threshold for retirement in the tied 

overage case relative to the case of private health insurance only. 

gents target lower wealth thresholds for retirement both in the 

etiree and Medicare case, the latter providing stronger work disin- 

entives. To properly understand how wealth thresholds translate 

nto retirement decisions, we need to consider the relevant opti- 

al strategies and associated optimal wealth paths, which are re- 

orted in Fig. 4 . We note that the optimal strategies for the Medi- 

are and private coverage cases are very close. This is largely due 

o the strategy needing to support private health insurance de- 

and at the expense of wealth, consumption, risky asset alloca- 

ion, and bequest before retirement. Despite the similarity of the 

ptimal strategies, agents retire earlier on average in the Medi- 

are case (lower optimal wealth threshold) as they can gain ac- 

ess to coverage during retirement. Considering now the cases of 

ied and retiree health insurance coverage, they also present similar 

ptimal strategies: lower health insurance demand, higher wealth, 

onsumption, bequest and risky asset allocation compared to the 

rivate and Medicare case. The tied case results in later retire- 

ent (higher wealth threshold), as agents reap the benefits of 
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Fig. 4. Optimal strategies for an (average) agent aged 60 (see Table 2 ) with initial health state b for different types of insurance coverage. Average values are computed on 

the basis of 200 000 simulations for the state variables. x -axis: age from 0 (60 years old) to 25 (85 years old). y -axis: all the strategies (with the exception of the leisure 

rate) are in 10 0 0 0 USD. 

Fig. 5. First order derivative of the retirement threshold in the b state relative to different parameters, all other parameters being set as in Table 2 . 
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mployer-provided health insurance for as long as they manage to 

uild a large enough buffer to support medical expenses and con- 

umption during retirement. Retiree coverage is associated with a 

uch lower optimal wealth threshold for retirement, as medical 

xpenses are covered by the employer. 

.4. Sensitivity analysis 

We now explore the sensitivity of optimal retirement thresh- 

lds to changes in key model parameters. In Fig. 5 , we report the

rst order derivative of the wealth threshold (delta) relative to the 

reference parameters ( α, γ , δ), bequest intensity ( κD ), leisure ( l b ),

ealth shock intensity ( λH ), and market parameters ( r, σ ). We re- 

ark that any result pertaining to retirement thresholds must be 

nderstood in relation to the corresponding optimal wealth path. 

The results show sizeable non-linear effects at play for several 

arameters. We discuss a selected few: 

• Interest rate level. It is negatively related to the retirement 

threshold. A higher riskless rate environment allows wealth 

to accumulate faster, but also makes future medical ex- 
919 
penses and consumption streams smaller in present value 

terms. The agent can therefore retire earlier. 
• Bequest intensity. The agent works longer to accumulate 

greater resources to leave as bequest, hence the bequest in- 

tensity is positively related to labor supply (higher retire- 

ment thresholds). 
• Subjective discount rate. The parameter δ is negatively re- 

lated to the retirement thresholds: the agent retires earlier 

when the present value of future consumption and expenses 

are reduced because of a high discount rate. 
• The probability of health shock occurrence. The impact on 

labor supply and retirement decisions can only be under- 

stood by considering the relevant health insurance frame- 

work. For example, in the case of tied coverage an increase 

in the likelihood of health shock occurrence (higher λH ) 

makes expected medical expenses more material and there- 

fore the agent delays retirement to extract the health in- 

surance benefits provided by the employer. The opposite is 

true for the case of Medicare , as availability of health insur- 

ance during retirement provides an incentive to retire ear- 

lier. We note that the cases of private and retiree coverage 
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Table 4 

Health states and mortality intensity levels as a function of spanned and unspanned 

health shock occurrences. The health states are: “best” on the event { N a (t) = 

N h (t) = 0 } , “good” on { N a (t) = 1 , N h (t) = 0 } , “poor” on { N a (t) = 0 , N h (t) = 1 } , and 

“worst” on { N a (t) = N h (t) = 1 } . In the baseline model, irreversible transitions can 

occur between states b and p, and between states b, g, and w. 

On { N h = 0 } On { N h = 1 } 
On { N a = 0 } H(t) = b H(t) = p 

λd (b ) = λ λd (p ) = λ + �h 

On { N a = 1 } H(t) = g H(t) = w

λd (g) = λ + �a λd (w) = λ + �a + �h 
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Table 5 

Main parameter values for the extended model. w , w , M , M and W (0) are given in 

10 0 0 0 USD. 

Aging Process ∗ λ = 0 . 01376 , λa = 0 . 200 , �a = 0 . 03175 

Health Shock λh = 0 . 10765 , �h = 0 . 11971 

Financial Market r = 0 . 0492 , b = 0 . 0872 , σ = 0 . 1426 

Labor income p = 2 , w = 6 . 4188 , w = 5 . 4237 

Medical Expenses ∗ M = 7 . 5700 , M = 9.8410 

Preferences ∗ δ = 0 . 0267 , α = 0 . 3986 , γ = 12 . 2632 

Maximum Leisure ∗ l = 0 . 7229 , l = 0 . 2030 

Bequest ∗ k d = 0 . 0426 

Initial Wealth W (0) = 38 . 417 

Table 6 

Optimal retirement thresholds for an average top-wealth-quartile agent aged 60 and 

model parameters as in Table 5 . 

Health insurance b g p w 

Private insurance 102.5740 104.9411 11.3040 11.0291 

Tied insurance 129.8759 135.7914 11.3040 11.0291 

Retiree insurance 91.6448 89.2351 11.3040 11.0291 

Medicare 66.0641 58.4098 11.3040 11.0291 
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11 We set M and M such that ( M + M ) / 2 = M, and M = 1 . 15 M . 
make the retirement threshold relatively insensitive to the 

health shock probability. The reason is that in both cases 

health coverage is provided through the agent’s lifetime. As 

private insurance is fairly priced in our baseline model, there 

is no major difference between the two situations, although 

one must recall that the distance to retirement in the pri- 

vate coverage case is considerably larger than in the retiree 

case, as private insurance purchases make wealth accumula- 

tion slower. 

. Extension: Unspanned health risk 

As an extension of the baseline model, we consider the possibil- 

ty of including an unspanned source of health risk. Beyond stan- 

ard life and health insurance repricing risk considerations, what 

e would like to capture with this model extension is health de- 

erioration which is not associated with immediate medical ex- 

enses, but with a decrease in life expectancy and an increase in 

xpected future medical expenses. We regard such health deterio- 

ation as a by-product of the natural “a ging” process undergone by 

ny individual and therefore label any associated quantities with 

he subscript “a”. The simplest way to capture this extra risk di- 

ension is by extending the model to four possible health states, 

hich are now labelled as follows: b for “best”; g for “good”; p for 

poor”; w for “worst”. An agent in the best health state, H(t) = b ,

as intensity of mortality λ > 0 . At an independent Poisson time 

a with parameter λa > 0 , the agent’s health switches from state 

 to state g and the death intensity increases by �a ≥ 0 . A health 

hock can still occur at an independent Poisson time τh with pa- 

ameter λh > 0 , leading to a jump �h in the current mortality in- 

ensity. For simplicity and ease of exposition, we assume here that 

he unspanned health shock can only occur if τh has not occurred 

et. The resulting health states are H(τh ) = p if H(τh −) = b and

(τh ) = w if H(τh −) = g. See Table 4 for a summary. The agent’s

ntensity of mortality can now be written as follows: 

d (t) := λ + �a N a (t) + �h N h (t) , (5.1) 

here N h (t) and N a (t) denote the health and natural aging shock 

ndicator processes, respectively, the latter being defined for sim- 

licity by N a (t) := 1 τa ≤t 1 τh >τa . In line with empirical evidence 

howing that medical expenses are higher on average for old age 

ndividuals (e.g., De Nardi et al., 2010 ), we make medical expenses 

epend on the health state by using the simple representation 

(t) = M N a (t) + M (1 − N a (t)) , 

ith random variables M and M satisfying E[ M ] ≥ E[ M ] and repre- 

enting random expenses of different average magnitude. 

The introduction of an unspanned source of risk certainly 

akes the model more realistic but also introduces significant 

echnical challenges as the market is no longer complete. In par- 

icular, there is no tradable instrument allowing one to hedge the 

ump �a ; the agent is therefore exposed to life and health insur- 

nce repricing risk. We solve the problem by adopting the ficti- 

ious market completion approach of Karatzas, Lehoczky, Shreve, & 
920 
u (1991) . In particular, we introduce a fictitious insurance prod- 

ct allowing the agent to hedge the aging shock via a wealth al- 

ocation denoted by θa (t) . By the latter, we mean the payment at 

ime t of a premium of amount θa (t) λa to allow the agent to re- 

eive a payout θa (t) in case the unspanned health shock occurs 

ver the next small time interval. Among all the candidate pricing 

easures equivalent to P (equivalent martingale measures), we can 

ext choose the one making the allocation to the fictitious hedge 

anish, i.e., θ ∗
a (t) = 0 . Intuitively, this ensures that the candidate 

trategy is the optimal one for the incomplete market model. See 

emark A.5 in section A.3 in the online supplementary material for 

etails. 

We calibrate the extended model to the ‘average’ 60-year old 

gent considered in the previous section. The relevant parameters 

re reported in Table 5 . 11 The estimation error of the simulated 

ethod of moments procedure is comparable to the one obtained 

or the baseline model (with a relative error equal to 0.076 against 

 value of 0.083 for the baseline model). 

The optimal retirement wealth thresholds for the extended 

odel are reported in Table 6 . An analysis of the results across 

he different health states reveals a divergent role of unspanned 

nd spanned health shocks in shaping labor market participation. 

n general, the unspanned health shock considered here results in 

 lower life expectancy, thus allowing the agents to revise down- 

ards their distance to retirement. However, the increase in ex- 

ected future medical expenses means that agents will value la- 

or income more as a way to support future healthcare costs. Our 

esults suggest that the latter effect dominates and increases the 

istance to retirement in the private and tied insurance cases. The 

ffect is the opposite in the Medicare and retiree cases, as the un- 

panned health shock accelerates the retirement decision in view 

f the support toward healthcare costs that will be provided after 

etirement. 

. Conclusion 

In this paper we have developed a continuous time model 

hedding light on how medical expenses and health insurance 

hape optimal portfolio choice, labor supply, and retirement deci- 

ions. The model is simple enough to deliver solutions available in 

emi-analytic form, yet rich enough to match some important em- 
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irical evidence on portfolio decisions and labor market participa- 

ion during the last phase of an agent’s working life. The tractabil- 

ty of the model allows us to better understand incentives and dis- 

ncentives provided by different health insurance schemes, ranging 

rom private health insurance to employer-provided insurance and 

overnment schemes such as Medicare. The results demonstrate 

ow ill designed policy interventions can result in undesirable fis- 

al effects resulting from the ability of workers to adjust labor sup- 

ly. Although the findings are robust to several extensions of the 

odel, including market incompleteness, it would be interesting to 

onsider the possibility of (partially) endogenizing health dynam- 

cs as a result of health investment (e.g., Hugonnier et al., 2013 ). 

tudying the implications of this aspect for optimal retirement de- 

isions is left for future research. 

upplementary material 

Supplementary material associated with this article can be 

ound, in the online version, at doi: 10.1016/j.ejor.2022.09.016 . 
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