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A B S T R A C T   

Thin-walled, open cross section PC (prestressed concrete) beams are widely used in precast structures. Never-
theless, the analytical computation of their load carrying capacity under bending and torsion is still an unsolved 
problem. This is because of the markedly non-linear behaviour of both steel and concrete and of the asymmetry 
of the behaviour of concrete in tension and compression. This involves a search for the correct solution from a 
physical point of view (among those mathematically admissible) based on trial-and-error methods of numerical 
analysis. 

This paper suggests a method to evaluate the interaction diagrams under bending and torsion. According to 
this method the solving system is made by two equilibrium plus two compatibility equations. Some examples 
show the outcomes of this approach.   

1. Introduction 

For over half a century, thin-walled, PC (prestressed concrete) open 
cross section beams have been widely used in precast structures. Their 
use is particularly widespread in the construction of roofs for industrial 
sheds and warehouses, as well as in the construction of floors in shop-
ping centres and multi-storey car parks. Nevertheless, research into the 
mechanical response of open thin-walled PC members under combined 
actions of bending, shear and torsion is quite rare. This is because of the 
extreme complexity of the problem. 

It is well established [1–5] that, the torsional behaviour of 
thin-walled sections is the combination of the torsional behaviour ac-
cording to St. Venant’s theory, and the one related to warping defor-
mation, which implies the distortion of the cross section out of its own 
plane. The second effect is described by means of a particular internal 
action, called bimoment (or warping moment), which gives rise to a 
normal stress distribution that adds to the one coming from bending of 
the beam and is comparable to it. Moreover, this phenomenon gives rise 
to a shear stress that adds to those related to both circulatory torque and 
shear. 

When dealing with simply supported, open cross section P.C. beams 
it is usually possible to partially simplify the problem by ignoring the 
shear stress related to circulatory torque owing to the small thickness of 
the members composing the cross section [9], but nevertheless their 
analysis is extremely complicated, due to the non-linear constitutive 
laws that have to be adopted for the materials involved. 

The tensile strength of concrete is about one tenth of that under 

compression, and once concrete cracks that crack will last all the 
structural member lifelong (at least 50 years according to the codes [7]). 
Moreover, Leonhardt [8] lists twenty possible causes of crack formation 
prior to the first application of the load. In short, the tensile strength of 
concrete can’t be taken into account and steel reinforcing bars and 
tendons are placed to supply this weakness. According to the European 
Codes [7], the constitutive law that have to be adopted to determine the 
load carrying capacity related to the stress normal to the cross section of 
these beams are depicted in red in Fig. 1. 

The adoption of these non-monotonic constitutive laws inevitably 
entails an enormous complication of the problem since from a mathe-
matical point of view it may have no solution, a finite number or even an 
infinite number, depending on the values of the internal actions 
involved. It is up to us to find the correct solution, i.e. the real (exper-
imental) one. 

Moreover, the piecewise curvilinear shape of the constitutive laws 
adopted implies the knowledge of the strain distribution over the 
structural element to determine which curvilinear segment of the 
constitutive law has to be adopted point by point to determine the stress 
distribution, but this would imply the knowledge of the solution. For 
example, the cracked zones of the cross section are marked in red in 
Fig. 12 in the three cases where the strain distribution at the ultimate 
limit state is depicted. 

In short, the determination of the solution is an implicit problem in 
the terminology of numerical analysis (that is one can’t write the solving 
system if he does not know the solution). This implies the need to adopt a 
trial-and-error method of numerical analysis, which inevitably brings 
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with it all the problems related to its convergence to the solution sought, 
i.e. the real (experimental) one. Note that the position of the shear centre 
changes with the level of damage, that is the level of stress over the cross 

section. Because of this, the computation of the interaction diagrams of 
thin-walled, open cross section PC beams will be made according to 
Vlasov’s torsion theory, except for the constitutive laws of the materials 
and the effect of prestressing. More sophisticated approaches that take 
into account the shear lag effect [9–11] are not needed. This is because 
in these simply supported beams the shear influence is small, owing to 
the high value of the span to cross-section height ratio [12] which is 
between 12 and 24. 

Although complicated, the analysis under long-term service loads 
(that takes into account the delayed behaviour of concrete, i.e. creep and 
shrinkage) can still be conducted according to established rules and 
methods [13–17]. 

As far as the determination of the load carrying capacity is con-
cerned, to date the most used method in professional practice to deter-
mine it consists in carrying out a sufficient number of destructive 
experimental tests (see for instance [18–24] and [25]. Of course, this 
practice is justified in the case of mass production, which, moreover, is 
current practice for this type of precast elements. 

Without prejudice to the fact that a non-linear finite element analysis 
of a heterogeneous beam [26–28] is currently not feasible in common 
practice, the only viable alternative is to try to extend to these beams the 
methods and techniques normally adopted for compact cross section and 
thin-walled closed cross section beams, i.e. carry out separate checks for 
normal stress around midspan and shear stress at the supports at ulti-
mate. Both these stress distributions are modified by the presence of the 
warping torsion. 

The topic of determining the strength for shear stress is extremely 
complex and not yet solved. Moreover, few scientific publications deal 

Fig. 1. Constitutive laws for steel and concrete (compression is positive).  

Fig. 2. Section characteristics, sectorial area, and loads.  
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with this topic [29-30,25]. 
In the case of double tee or U-shaped sections, in common practice 

the problem is normally simplified by assigning to the two vertical 
members the task of collecting the twisting moment applied through 
their bending in opposite directions. These bendings give rise to VT shear 
actions in opposite directions, that is to a resistant torque VT⋅d where d is 
the (horizontal) distance between the axes of the two vertical members. 
Therefore, once the twisting moment has been assigned and d is known, 
the shear VT is immediately obtained. By adding VT to the shear action 
due to the vertical bending of the beam, it is possible to carry out the 
shear verification of each vertical element, taken individually (i.e. as an 
individual structural element). 

Naturally this approach is not applicable to sections of a more 
complex and asymmetrical shape, such as that of Fig. 2. However, it 
should be noted that the shear stress due to warping is constant over the 
thickness of each member of the cross section and therefore is compa-
rable to an increase in the stress present in the same member due to the 
shear action. Therefore, if the shear action resulting from the bending 
and torsion effects could be defined for each member of the cross sec-
tion, a truss model could be subsequently adopted, i.e. one could think of 
applying the same rules used for the shear verification of a rectangular 
section coinciding with the member under examination. It follows that 
in complex cases the approach often adopted is to calculate the overall 
shear stress with Vlasov’s theory (linear elasticity) and then assume 
their integral made over the member’s area as shear action acting on 
that member. The weakness of this approach lies in the fact that Vlasov’s 
elastic theory should be revised due to the cracking of concrete. 

It remains to determine the behaviour of the beam due to normal 
stress. 

Regarding the verification under assigned internal actions, few 
works are available in the literature [29,31] supported by the experi-
ments test reported in [30], and to the author’s knowledge nothing is 
available on the subject of calculating interaction diagrams. This is the 
topic that will be discussed in this paper, whose aim is to evaluate the 
load carrying capacity of the cross section related to normal stress 
through the determination of the interaction diagrams. 

It should be noted that even if experimental qualification tests are 
carried out, the numerical analyses mentioned above are essential in the 
design phase, in order to obtain prototypes that can give satisfactory 
experimental results. 

2. Flexural-torsional behaviour of the heterogeneous cross 
section, problem setting 

The four hypotheses adopted in Vlasov’s theory are:  

• the thin-walled open cross section is non-deformable in its plane (i.e. 
the cross section shape does not change);  

• the shear strain of the middle surface can be ignored;  
• the normal stress in the direction of the generator of the middle 

surface and the tangential stresses in the direction of the tangent to 
the profile line are the only stresses considered;  

• the normal and tangential stresses are constant over the thickness of 
a member. 

The first two hypotheses are of geometric type, and as such they 
apply regardless of the shape of the constitutive law of the materials. 
Consequently, the equations that describe the axial strain εc(z,s) of 
concrete at a generic point P, whose position on the profile line placed at 
z = const. (z being an arbitrary axis parallel to the beam axis, see Fig. 2; 
const. = constant value, i.e. the cross section under investigation) is set 
by means of the curvilinear coordinate s (taken with an arbitrary origin 

Os), are [3]: 

ζ(z) = ζ∗(z) + ξ′(z)⋅x|s=0 + η′(z)⋅y|s=0
εc(z, s) = ζ′(z) − ξ˝(z)⋅x(s) − η˝(z)⋅y(s) − θ˝(z)⋅ω(s)

(1)  

where:  

• all the derivatives are made with respect to z;  
• x and y are two arbitrary Cartesian axes orthogonal to z axis;  
• ζ* is the displacement of point Os in the direction of the z axis;  
• θ is the rotation around the z axis of the plan z = const.;  
• ξ and η, respectively, are the displacements in the x and y direction of 

a generic point A placed over the z = const. plan;  
• ω is the sectorial area measured between point A, the sectorial origin 

Os, and point P (see Fig. 2), i.e., the coordinate that depends on the 
shape of the mean profile of the thin-walled cross section. 

The last two hypotheses refer to the stress distribution, that is to say 
they do not take into account the constitutive laws adopted for the 
materials. Therefore, the equilibrium equations built with them do not 
change with respect to the linear elastic case, that is [3]: 

∂N(z)
∂z = −

∫

L
pz(z, s)ds −

∑

r
Hr(z)

∂2Mx(z)
∂z2 = −

∫

L

∂pz(z, s)
∂z ⋅x(z)ds −

∫

L
px(z, s)ds −

∑

r
Hr(z)⋅x(si)

∂2My(z)
∂z2 = −

∫

L

∂pz(z, s)
∂z ⋅y(z)ds −

∫

L
py(z, s)ds −

∑

r
Hr(z)⋅y(si)

∂2Mω(z)
∂z2 +

∂TSV(z)
∂z = −

∫

L

∂pz(z, s)
∂z ⋅ω(z)ds −

∑

r
Hr(z)⋅ω(si)+

−

∫

L

[
py(z, s)⋅(x(s) − xA) − px(z, s)⋅(y(s) − yA)

]
ds

(2)  

N(z) =
∫

L
σc(z, s)⋅b(s)ds+

∑ns

m=1
σsm (z)⋅Asm +

∑np

n=1
σpn (z)⋅Apn

Mx(z) =
∫

L
σc(z, s)⋅b(s)⋅x(s)ds+

∑ns

m=1
σsm (z)⋅xsm ⋅Asm +

∑np

n=1
σpn (z)⋅xpn ⋅Apn

My(z) =
∫

L
σc(z, s)⋅b(s)⋅y(s)ds+

∑ns

m=1
σsm (z)⋅ysm ⋅Asm +

∑np

n=1
σpn (z)⋅ypn ⋅Apn

Mω(z) =
∫

L
σc(z, s)⋅b(s)⋅ω(s)ds+

∑ns

m=1
σsm (z)⋅ωsm ⋅Asm +

∑np

n=1
σpn (z)⋅ωpn ⋅Apn

(3)  

where:  

• the heterogeneity of the cross section is taken into account by 
considering the concrete section (index c), ns steel rebars (index s) 
and np prestressing steel tendons (index p)  

• px(z,s), py(z,s) and pz(z,s) are the external loads per unit surface 
acting on the beam;  

• Mω(z) is the bimoment [warping torsion Tω(z)=∂Mω(z)/∂z]  
• TSV is the Saint Venant torsional moment that in the following will be 

discarded. Indeed, in the usual commercial thin-walled open cross 

section beams the parameter χ =

̅̅̅̅̅̅̅̅̅
GKℓ2

EIωω

√

(EIωω is the warping rigidity, 
GK the Sant Venant torsion rigidity and ℓ the span of the beam) is 
lower than 2 and therefore warping torsion is dominant [6];  

• Hr(z) represents the loads per unit length acting on the lateral edges 
of the beam; 
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• Asm and Apn are the areas of the mth rebar and of the nth tendon, 
whose coordinates are respectively (xsm , ysm , ωsm ) and (xpn , ypn , ωpn ):  

• b(s) is the thickness of the cross section;  
• stresses and strains are assumed to be positive if in compression, and 

the positive internal actions in the beam are drawn in Fig. 3. 

The hypothesis of perfect bond between reinforcement and concrete 
is written as follows: 

εsm (z) = εc(z, s)|s=ssm
εpn (z) = εc(z, s)|s=spn

+ εpn (z)
(4)  

where:  

• ssm and spn are the curvilinear coordinates of the mth rebar and of the 
nth tendon in section z;  

• εpn (z) is the term generally named pre-strain. This term represents 
prestressing and takes also into account its time evolution due to the 
delayed behaviour of concrete (creep and shrinkage). Note that this 
approach to prestressing at ultimate is mathematically exact, as 
demonstrated in [32]. 

The non-linear constitutive law of a material can be written as a 
linear function of the strain and of the secant modulus (superscript *) 
passing through the origin and through the point corresponding to the 
current stress level in the stress-strain diagram of this material, i.e.: 

σc(z, s) = E∗
c (εc(z, s))⋅εc(z, s)

σsm (z) = E∗
s (εsm (z))⋅εsm (z)

σpn (z) = E∗
p

(
εpn (z)

)
⋅εpn (z)

(5) 

So doing, the non-linearity is taken into account by means of the 
secant moduli, that replace in the computation the constitutive laws. 

When setting z, that is when assigning both the cross section under 
investigation and the internal actions acting on it, Eqs. (1), (3), (4) and 
(5) are no more functions of the independent variable z. Replacing Eqs. 
(1), (4) and (5) into Eq. (3) one then gets: 

W⋅ψ = M − F (6)  

where ψ is the vector of the unknowns (the terms depending on z in the 
second of Eqs. (1)), M is the vector of the internal actions acting on 
section z, F is the vector that accounts for the pre-strain. The generic 
term of matrix W and of vector F are written as follows: 

Wik =

∫

L
E∗

c (εc(s))⋅ρi(s)⋅ρk(s)⋅b(s)ds+

+
∑ns

m=1
E∗

s (εc(ssm ))⋅ρi(ssm )⋅ρk(ssm )⋅Asm +
∑np

n=1
E∗

p

(
εc
(
spn

)
+ εpn

)
⋅ρi

(
spn

)
⋅ρk

(
spn

)
⋅Apn

Fi =
∑np

n=1
E∗

p

(
εc
(
spn

)
+ εpn

)
⋅ρi

(
spn

)
⋅Apn ⋅εpn

(7)  

where ρj(s) stands for the jth coordinate, i.e. the jth term of vector 
| 1 x(s) y(s) ω(s) |. 

3. How to determine the interaction diagrams 

Eq. (6) is a system of four non-linear equations. Since the value of the 
secant modulus (i.e. the non-linear terms inside Eqs. (6)) to be assigned 
point by point depends on the local deformation and therefore ulti-
mately on the solution of the problem, the determination of the latter 
can be obtained only through numerical analysis methods. 

In general, the search for the interaction diagram would give rise to a 
surface in a four-dimensional space, in which the independent variables 
are the terms of the vector ψ. However, when dealing with beams, the 
axial force is normally zero, so the interaction diagram is reduced to 
three-dimensional and can be described through a series of two- 
dimensional domains that represent its level lines (see Fig. 4). 

If one wants to determine the domain for assigned values of two 
internal actions, for example of N and Mx, one can use the corresponding 
equations of system (6), in which the terms of the vector M are now 
known: 

∑4

k=1
Wik⋅ψk =Mi − Fi(i= 1, 2) (8)  

which will then be associated with the conditions that require the ulti-
mate deformation of the materials not to be exceeded: 

εc(s)|s=sj ≤ εcu
|εsm | ≤ εsu⃒
⃒εpn

⃒
⃒ ≤ εpu

(9)  

where sj is the curvilinear coordinate of one of the vertexes that describe 
the polygonal shape of the concrete cross section. 

The calculation procedure consists in first searching for all the points 
of the two-dimensional domain for which two of (9) are satisfied with 
the equality sign. This can be done by combining each of (9) with the 
others. For each combination, a system composed of the two non-linear, 

Fig. 3. Positive internal actions in the beam.  
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Fig. 4. Three-dimensional interaction diagrams.  
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equilibrium equations (8) and two linear, compatibility equations (9), 
assumed with the equality sign is thus obtained. 

If nc is the number of nodes that describe the piecewise polygonal 
shape of the concrete cross section, ns the number of rebars and np that of 
the tendons, the number N of possible combinations is: 

N =

(
nc + ns + np − 1

)(
nc + ns + np

)

2
(10)  

this expression shows that as the complexity of the section increases, the 
number of necessary operations increases quadratically. 

The points in which at least two of Eqs. (9) are satisfied with the 
equality sign represent the common boundary for two different collapse 
mechanisms of the two-dimensional domain, see Fig. 5. Each of these 
collapse mechanisms involves the satisfaction of only one of Eqs. (9) 
with the equality sign, which will also be shared by the two points now 
calculated that represent its extremes (i.e. pointa A and B in Fig. 5). 
Without prejudice to this relation as well as Eqs. (8), the residual 
equation necessary to determine by points the zone of the boundary of 
the domain corresponding to an assigned failure mechanism, can be 
obtained by assuming for one of the unknowns of the ψ vector a value 
between those assumed in the aforementioned extremes, that is, for 
instance: 

ω = ωA + (ωB − ωA)⋅γ0 ≤ γ ≤ 1 (11) 

Whether one is calculating the border point between two failure 
mechanisms, or one is computing a point of the interaction diagram 

between the previous ones, the solving system is composed of the two 
non-linear, equilibrium equations and two linear, compatibility equa-
tions. This system has to be solved iteratively. A trial and error method 
was adopted [33–35]. However, it should be noted that this system is 
ill-conditioned and can even be singular (i.e. it can be rank-deficient). In 
fact, if the two equilibrium equations are linearly independent of each 
other, just as the compatibility equations are, it does not mean that the 
compatibility equations are linearly independent of the equilibrium 
ones. May be that due to an unfortunate choice of the reference system 
one column of the coefficient matrix is a linear combination of the 
others. In the numerical tests carried out, a very low probability of such 
an event was found when the centroid of the geometric section is chosen 
as the origin. Moreover, the adoption of Cramer’s rule allows one to 
reduce the problems associated with ill-conditioning and to detect 
rank-deficiencies. 

By using a trial and error method, during the iterative process there 
may be trials in which at some point of the cross section the ultimate 
strain is exceeded. In order to achieve iterative convergence, it is 
necessary to obtain a result (a numerical value) even in these cases. An 
expedient to get this numerical value and hence to favour the conver-
gence of the iterative process consists in adding to the constitutive laws 
of the materials a linear elastic segment after ultimate. The choice of an 
elastic segment is dictated both by its simplicity, and by the observation 
that if the constitutive law of materials is a monotonically increasing 
function, the adoption of the elastic segments after ultimate will keep its 
monotonic behaviour. 

The integrals appearing in the first of Eqs. (7) are solved with easy-to- 

Fig. 5. Two-dimensional interaction diagram.  
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Fig. 6. Complete set of interaction diagrams.  
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determine analytical expressions. This choice allows to reduce the 
margin of approximation of the calculation and therefore favours the 
convergence of the iterative process. 

Once the system has been solved, it is verified that the remaining Eqs. 

(9) are satisfied. If this is not true, the calculated solution represents a 
point outside the interaction diagram and will therefore be discarded, 
otherwise the two unknown internal actions can be calculated using the 
two equilibrium equations (8) which have not yet been used. 

Fig. 7. Geometry of the double tee beam.  

Fig. 8. Interaction diagrams of the double tee beam when Mx=0.  

Fig. 9. Interaction diagrams of the double tee beam of practical interest.  
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4. Numerical examples 

Fig. 4 shows a three-dimensional Mx-My-Mω interaction diagram for 
N = 0. Its projection on the My-Mω plane is shown in Fig. 6. This figure 
shows that the failure mechanism does not only change in correspon-
dence with the angular points that describe the individual two- 
dimensional domains, but as Mx varies it also changes on the surface 
enclosed between such points. In the figure ck stands for the kth node of 

the concrete cross section, rk for the kth rebar and tk for the kth tendon. 
The constitutive laws used are those adopted in the Eurocode 2 [7]. 

In particular: fc = 29.3 MPa, fs = 392.6 MPa, εsy = 0.001913, εsu = 0.1, 
fpy = 1452 MPa, εpy = 0.007225, fpu = 1617 MPa, εpu = 0.06 and εpn (z) =

0.00564∀n. 
Similarly, Fig. 8 shows the My-Mω interaction diagrams as the axial 

action (Mx=0) of the double tee beam depicted in Fig. 7 varies. These 
diagrams allow the entire domain to be drawn in 3D, which is interesting 
from a theoretical point of view … but not very useful for engineering 
practice. Nevertheless, asymmetric, thin-walled, open cross section core 
walls are particularly common in RC building placed in regions of low- 
to-moderate seismicity [36], such as Eastern North America [37], 
Australia [38], and Hong Kong [39]. The approach discussed here ap-
plies as is to the analysis of this type of substructures subjected simul-
taneously to compression, bending and torsion. 

The mechanical data adopted are identical to those of the U shaped 
cross section described previously. 

Once again it can be observed that by varying the value of the axial 
force the failure mechanism can change on a surface of the 3D solid. 

The interaction diagrams of the double tee beam of practical interest 
are shown in Fig. 9. 

More complex cross section geometries result in more complicated 
interaction diagram shapes. An 4example relates to the beam whose 
geometry is shown in Fig. 10. For it, the interaction diagrams of practical 
interest are shown in Fig. 11, while Fig. 12 describes some strain dis-
tributions, each one corresponding to distinct incipient crisis conditions. 
The mechanical data adopted are identical to those of the U shaped cross 
section described previously else than for fc = 22.7 MPa, and for εpn (z)
that now adopts for each tendon the value computed in [13]. 

Figs. 11 and 12 show interaction diagrams that are not convex. This 
behaviour is also visible in Fig. 4 if one pays attention to the shape of the 
lines of the sharp edges of the three-dimensional interaction diagram 
shown there. This outcome is a consequence of the warping of the cross 
section. 

All the examples described refer to prestressed beams. Since these are 
ultimate limit state checks and therefore in a cracked regime, it is clear 
that nothing changes in terms of approach to the problem if the beam is 
made of reinforced concrete. 

5. Conclusions 

For over half a century, thin-walled, open cross section PC beams 
have been widely used in precast structures. However, the problem of 
determining their load carrying capacity is still unsolved. 

A method for plotting interaction diagrams under bending and tor-
sion has been presented. 

The advantages of this method are essentially two. First, the systems 
used consist of two linear equations and only two nonlinear equations, 
which generally accelerated the speed of convergence compared to 
systems of the type of Eqs. (6). Furthermore, given its architecture, this 
method precisely identifies the boundary of the areas in which the 
section fails due to a given failure mechanism, thus providing a clear and 
exhaustive description not only of when but also of how the failure 
occurs for a given combination of internal actions. 

The weak point of the method is the ill-conditioning of the system, 
which, when associated with the non-linearity of two of the four equa-
tions involved, makes the problem difficult to solve, especially for 
combinations far from those for which the structural element was 
designed. 

The interaction diagrams of the thin-walled, open cross section 
beams are moreover not necessarily convex and therefore differ from 
those typical of compact cross sections subjected to bending. 

Fig. 10. Geometry of the S shaped beam.  

Fig. 11. Interaction diagrams of the S shaped beam of practical interest.  
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Fig. 12. S shaped beam. Strain distributions corresponding to distinct incipient crisis conditions.  
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