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ABSTRACT
Outperforming the markets through active investment strategies is

one of the main challenges in finance. The random movements of

assets and the unpredictability of catalysts make it hard to perform

better than the average market, therefore, in such a competitive

environment, methods designed to keep low transaction costs have

a significant impact on the obtained wealth. This paper focuses

on investing techniques to beat market returns through online

portfolio optimization while controlling transaction costs. Such

a framework differs from classical approaches as it assumes that

the market has an adversarial behavior, which requires frequent

portfolio rebalancing.

This paper analyses critically the known online learning liter-

ature dealing with transaction costs and proposes a novel algo-

rithm, namely Online Gradient Descent with Momentum (OGDM),

to control (theoretically and empirically) the costs. The existing

algorithms designed for this setting are either (i) not providing

theoretical guarantees, (ii) providing a bound to the total regret,

conditionally on unrealistic assumptions or (iii) computationally

not efficient. In this paper, we prove that OGDMhas nice theoretical,

empirical, and computational performances. We show that it has

regret, considering costs, of the order O(
√
𝑇 ), 𝑇 being the invest-

ment horizon, and has Θ(𝑀) per-step computational complexity,

𝑀 being the number of assets. Furthermore, we show that this algo-

rithm provides competitive gains when compared empirically with

state-of-the-art online learning algorithms on a real-world dataset.
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1 INTRODUCTION
The amount of assets managed by funds and private investors is

currently more than 85 trillion USD, a quantity comparable to the

global GDP.
1
This capital is invested with a variety of techniques

which, simplifying and generalizing, are usually designed for one

of the two steps of the investment process: the asset selection, i.e.,
the choice of the most promising subset of available financial assets

to invest in, and asset allocation, i.e., deciding how much to invest

in each asset [20]. In this paper, we focus on the latter, addressed

in scientific literature as the portfolio optimization problem. In this

context, the investment strategy rebalances the portfolio by buying

and selling assets frequently, and this generates the so-called trans-
action costs. The scientific literature has extensively analyzed the

problem of increasing gains by trying to predict the movement of

market instruments, yet very few works are focusing on keeping

transaction costs under control [7, 14].

While private funds do not disclose the techniques used to man-

age their assets, there exists an extensive scientific literature on port-

folio optimization based on quantitativemethods, started by [34, 37],

which is also known as Modern Portfolio Theory (MPT). In MPT an

investor has to optimize an utility function of the portfolio which

accounts for the trade-off between the mean and the variance of

the returns; this line of thinking continues to be applied in modern

techniques such as Risk-averse RL [6]. Even if works in this area

have been considering transaction costs [18], they require that the

price evolution of assets satisfies strong statistical assumptions,

which are hardly met in the real-world. A different approach is

provided by capital growth theory [21, 26, 33], which originates

from information theory and has now developed, in the machine

learning community, under the name of Online Portfolio Optimiza-

tion (OPO). The underlying theory assumes that the assets are

controlled by an adversary who knows your investment strategy:

no stochastic characterization is given to the market data and, there-

fore, the strategies designed in this framework do not require strong

assumptions about market behavior. To react to the adversary, it is

necessary to rebalance the portfolio at every time step and, thus, it

is crucial to optimize the generated transaction costs. In this paper,

we propose the use of a novel algorithm: Online Gradient Descent

with Momentum (OGDM) for the OPO problem and show that it

provides strong theoretical guarantees about the combined gains

and costs incurred during the investment process.

In the OPO literature, two metrics have been used to measure the

performance of an algorithm: regret on the wealth and per-round

computational complexity. More specifically, in this framework,

the wealth provided by a strategy is compared to the one of the

best Constant Rebalanced Portfolio (CRP) [12], i.e., a clairvoyant

1
https://www.opalesque.com/671554/Global_assets_under_management_rose_to155.

html.
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strategy that keeps the best constant proportion of assets during

the entire investment horizon. The regret on the wealth for an al-

gorithm is defined as the difference between the growth rate of the

best CRP and the rate obtained by the algorithm and represents the

loss suffered by the algorithm due to the lack of information. Keep-

ing this quantity limited is of paramount importance; indeed, the

algorithms that show sub-linear dependence of the regret w.r.t. the

investment horizon 𝑇 are called universal [2]. Conversely, the com-

plexity of an algorithm is evaluated by the number of operations

needed to compute the strategy used to rebalance the portfolio.

Generally, there exists a trade-off between the regret incurred by

an algorithm and its computational complexity. For instance, [12]

proposed the Universal Portfolio (UP) algorithm, which achieves a

regret on the wealth of O(log𝑇 ) and requires a per-step computa-

tional cost of Θ(𝑇𝑀 ), where𝑀 is the number of assets used in the

portfolio, while [23] proposed the Exponential Gradient (EG) algo-

rithm which has a regret on the wealth of O(
√
𝑇 ), with a per-step

computational cost of Θ(𝑀).
The regret analyzed by these algorithms assumes that rebalanc-

ing the portfolio does not generate any transaction costs and, thus,

they do not guarantee sub-linear regret in the realistic scenario in

which costs are taken into account. There exist a wide variety of

heuristic methods that tried to overcome this problem e.g., [29, 40],
but they do not provide a theoretical assurance on total regret, i.e.,
the regret that includes transaction costs. To the best of our knowl-

edge, there are only two studies that analyze total regret: U𝐶P [7],

and Online Lazy Updates (OLU) [14]. Both works provide theoret-

ical guarantees in settings in which the costs are proportional to

the reallocated assets. More specifically, the former modifies the

UP algorithm to include costs and has a total regret of O(log𝑇 ),
but with a prohibitive computational cost, similarly to UP, and the

latter provides a O(
√
𝑇 ) total regret but requires the unrealistic

assumption that the costs decreases during the investment horizon.

In this paper, for the first time, we propose: (i) the use of a novel

online convex optimization algorithm: the OGDM algorithm, a mod-

ified version of Online Gradient Descent (OGD) [41], to deal with

transaction costs in the OPO framework; (ii) a theoretical analysis

of the total regret of OGDM in the presence of costs, assuming that

they are proportional to the reallocated assets, obtaining a total

regret order of O(
√
𝑇 ); (iii) an in-depth analysis of the algorithms

dealing with transaction costs, i.e., OLU and U𝐶P, shedding light on

their limits; (iv) an empirical comparison between the performance

of OGDM and state-of-the-art OPO algorithms, to guide the choice

of the best method to use on the OPO problem depending on the

magnitude of the costs.

2 RELATEDWORKS
Many algorithms from the online learning literature have been

applied to the OPO framework since they provide both strong

theoretical guarantees in the adversarial setting and good empirical

results. The most interesting ones have been described in detail

by Li and Hoi [27] and by Dochow [15]. U𝐶P and OLU are the

algorithms closest to our work, and will be discussed in depth in

Sections 4.3 and 4.4.

Most notably, the Online Newton Step (ONS) [2, 22] algorithm

has been shown to provide good performance in terms of regret

on the wealth when empirically tested, as well as feasible computa-

tional complexity. There are also heuristic algorithms designed to

solve the OPO problem, e.g., Anticor [8], PAMR [30], OLMAR [28],

and MRTC [40], which outperform the algorithms described above

in terms of empirical performance. Remarkably, none of the above

algorithms provide guarantees on the total regret.

In addition, Li et al. in [29] extend both traditional and heuris-

tic algorithms to include an additional term to the optimization

function to handle transaction costs, but only provide an empirical

analysis and no type of regret guarantees. Notably, what is pre-

sented by Ito et al. [24] is related to the objective of controlling

transaction costs. Indeed, the assumption that the portfolio is com-

posed of a small set of assets indirectly addresses such a problem.

However, the authors do not present theoretical guarantees on the

potential costs incurred by such an algorithm.

The problem of dealing with transaction costs has also been

tackled in sequential decision-making settings similar to the OPO

one, i.e., in the expert and bandit learning field [10, 39] and the

Metrical Task Systems (MTS) literature [19, 31, 32]. In the expert

and bandit literature the problem of learning with costs has been

analyzed either purely theoretically by Cesa-Bianchi et al. in [10]

or under the bandit feedback by Trovò et al. in [39], which is not a

realistic feedback in our financial application. In the MTS literature

[19, 31, 32], the notion of regret has been extended to include the

cost of changing the prediction of the algorithm over time, but the

framework allows the learner to know the future realizations of

the environment, i.e., the price of the assets for the next day, which
is unreasonable in our application.

Finally, the algorithm we propose to deal with online optimiza-

tion is inspired by the effectiveness of the momentum technique

by Polyak in [35]. The momentum term smooths the estimation of

the gradient and it has been used successfully in the optimization

of complex non-linear functions, such as Neural Networks [36, 38].

3 PROBLEM FORMULATION
This section provides a formal description of the OPO problem

and defines the transaction costs. The framework consists of a

sequential decision problem in which, at each (discrete) round 𝑡 ∈
{1, . . . ,𝑇 } over an investment horizon 𝑇 ∈ N, an investor makes a

portfolio allocation over a set of𝑀 ∈ N different assets by choosing

a vector x𝑡 := (𝑥1,𝑡 , . . . , 𝑥𝑀,𝑡 ), with x𝑡 ∈ Δ𝑀−1, Δ𝑀−1 being the

(𝑀 − 1)-simplex in R𝑀 . Each element 𝑥 𝑗,𝑡 of x𝑡 is the proportion of

asset 𝑗 contained in the portfolio at round 𝑡 . The sequence x1:𝑇 :=

(x1, . . . , x𝑇 ) represents the investment strategy over 𝑇 rounds.
2

Let us define the price relatives, r𝑡 := (𝑟1,𝑡 , . . . , 𝑟𝑀,𝑡 ), i.e., 𝑟 𝑗,𝑡 =
𝑝 𝑗,𝑡+1
𝑝 𝑗,𝑡

, where 𝑝 𝑗,𝑡 is the price of asset 𝑗 at round 𝑡 , and the price

relatives sequence as r1:𝑇 := (r1, . . . , r𝑇 ). As is commonly done

in the portfolio allocation literature [2], we assume that the price

of the assets does not change too much during two consecutive

rounds, or, formally:

Assumption 1. There exist two finite constants 𝜖𝑙 , 𝜖𝑢 ∈ R+ s.t. the
price relatives 𝑟 𝑗,𝑡 ∈ [𝜖𝑙 , 𝜖𝑢 ], with 0 < 𝜖𝑙 ≤ 𝜖𝑢 < +∞, for each round
𝑡 ∈ {1, . . . ,𝑇 } and each asset 𝑗 ∈ {1, . . . , 𝑀}.
2
The time duration of a step is discretionary and may be defined as a few hours, days,

weeks, or months. Commonly, investors choose daily discretization when using OPO

techniques.
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Regret on the Wealth. The cumulative wealth𝑊𝑇 (x1:𝑇 , r1:𝑇 ) at
round 𝑇 , for an investment strategy x1:𝑇 and a sequence of price

relatives r1:𝑇 , is defined as:

𝑊𝑇 (x1:𝑇 , r1:𝑇 ) :=
𝑇∏
𝑡=1

⟨x𝑡 , r𝑡 ⟩, (1)

where we denote with ⟨·, ·⟩ the scalar product. We define the loss

incurred at round 𝑡 for choosing a portfolio x𝑡 as:

𝑓𝑡 (x𝑡 ) := − log(⟨x𝑡 , r𝑡 ⟩) .
For an algorithm 𝔘 which generates an investment strategy x1:𝑇 ,
the regret on the wealth 𝑅𝑇 (𝔘) at round𝑇 is the difference between

the cumulative losses of the best CRP and those of the algorithm 𝔘,

formally:

𝑅𝑇 (𝔘) =
𝑇∑
𝑡=1

𝑓𝑡 (x𝑡 ) −
𝑇∑
𝑡=1

𝑓𝑡 (x∗)

= log(𝑊𝑇 (x∗1:𝑇 , r1:𝑇 )) − log(𝑊𝑇 (x1:𝑇 , r1:𝑇 )),
where x∗

1:𝑇
is a constant investment strategy using the best CRP

computed on the sequence r1:𝑇 , i.e., for all 𝑡 ∈ {1, . . . ,𝑇 } the invest-
ment strategy is x∗ = x∗𝑡 = arg supx∈Δ𝑀−1

∏𝑇
𝑖=1⟨x, r𝑖 ⟩.

Regret on the Costs. In real-world scenarios, transaction costs

may vary depending on multiple aspects [5], e.g., the liquidity of the
financial instrument, or the market impact of the trade. In this work,

following the approach previously used in the OPO literature [7],

we use an approximation of the real transaction costs, considering

them proportional to the difference in portfolio allocation over two

consecutive rounds. Formally, the transaction costs at round 𝑡 are

implicitly determined by the solution of the following equation

(known in finance as turnover):

𝛼𝑡 = 1 − 𝛾 | |x′𝑡−1 − x𝑡𝛼𝑡 | |1, (2)

where 𝛼𝑡 is the proportion of residual wealth after the transac-

tion fees, 𝛾 is the transaction rate, which is equal for buying and

selling and fixed throughout the investment horizon, and x′𝑡−1 =
x𝑡−1⊗r𝑡−1
⟨x𝑡−1,r𝑡−1 ⟩ is the portfolio composition after the market movement

r𝑡−1.3 The wealth considering transaction costs becomes:

�̃�𝑇 (x1:𝑇 , r1:𝑇 ) =
𝑇∏
𝑡=1

⟨x𝑡 , r𝑡𝛼𝑡 ⟩, (3)

where 𝛼𝑡 is the solution of Equation (2). If we assume that the price

relatives r𝑡 are small, we have that x′
𝑡−1 ≈ x𝑡−1 and 𝛼𝑡x𝑡 ≈ x𝑡 ,

and, therefore, the proportion of remaining wealth becomes 𝛼𝑡 =

1 − 𝛾 | |x𝑡−1 − x𝑡 | |1. Using the above approximations, the wealth

�̃�𝑇 (x1:𝑇 , r1:𝑇 ) can be transformed as follows:

log(�̃�𝑇 (x1:𝑇 , r1:𝑇 )) = log

(
𝑇∏
𝑡=1

⟨x𝑡 , r𝑡𝛼𝑡 ⟩
)

(4)

≈ log(𝑊𝑇 (x1:𝑇 , r1:𝑇 )) + log
(
𝑇∏
𝑡=1

𝛼𝑡

)
(5)

≈ log(𝑊𝑇 (x1:𝑇 , r1:𝑇 )) −
𝑇∑
𝑡=1

𝛾 | |x𝑡 − x𝑡−1 | |1, (6)

3
With a ⊗ b we denote the element-wise product between the two vectors a and b.

Algorithm 1 OGDM in OPO with Transaction Costs

Require: learning rate sequence {[1, . . . , [𝑇 }, momentum param-

eter sequence {_1, . . . , _𝑇 }
1: Set x1 ← 1

𝑀
1

2: for 𝑡 ∈ {1, . . . ,𝑇 } do
3: Select x𝑡+1 ← ΠΔ𝑀−1

(
x𝑡 + [𝑡 r𝑡

⟨r𝑡 ,x𝑡 ⟩ −
_𝑡
2
(x𝑡 − x𝑡−1)

)
4: Observe r𝑡+1 from the market

5: Get wealth log(⟨r𝑡+1, x𝑡+1⟩) − 𝛾 | |x𝑡+1 − x𝑡 | |1
6: end for

where we used a first term expansion log(1 − 𝑦) ∼ −𝑦 to get Equa-

tion (6), given that the transaction rate is 𝛾 ≪ 1. Using the second

term of Equation (6) we define the proportional costs 𝐶𝑇 (𝔘) in-
curred by an algorithm 𝔘 during the investment horizon of 𝑇 , as is

done in [14]:

𝐶𝑇 (𝔘) := 𝛾
𝑇−1∑
𝑡=1

| |x𝑡+1 − x𝑡 | |1 . (7)

The total regret 𝑅𝐶
𝑇
(𝔘), i.e., the regret computed considering the

transaction costs, is defined as:

𝑅𝐶𝑇 (𝔘) = 𝑅𝑇 (𝔘) +𝐶𝑇 (𝔘).
The financial interpretation is that regret on the costs consists in
the (approximated) turnover gap and it decreases the final wealth

of the investor. While total regret is the combination of the regret

coming from the suboptimal choice of the portfolio and the one

from the turnover, i.e., the wealth gap considering transaction costs.

Notice that the best CRP investment strategy x∗
1:𝑇

generates no

costs under this model, therefore the costs 𝐶𝑇 (𝔘) also represent

the regret on the costs of the algorithm𝔘 due to the transaction fees

paid over the investment horizon 𝑇 .

4 OGDM FOR PORTFOLIO OPTIMIZATION
This section describes the new OGDM algorithm and how it can

be tailored to the OPO framework. We also provide a theoretical

analysis on the OGDM regret in the presence of transaction costs

and compare it with the state of the art algorithms for this problem.

4.1 OGD with Momentum
The definition of the OGDM update rule for a generic convex loss

function 𝑓𝑡 (x𝑡 ) over a generic convex set 𝑋 is the following:

x𝑡+1 = Π𝑋

(
x𝑡 − [𝑡∇𝑓𝑡 (x𝑡 ) −

_𝑡

2

(x𝑡 − x𝑡−1)
)
, (8)

where Π𝑋 (𝑦) := arg inf

𝑥 ∈𝑋
| |𝑦 − 𝑥 | |2

2
is the standard projection of

the vector 𝑦 onto 𝑋 , [𝑡 > 0 is the learning rate at round 𝑡 , _𝑡 is a

parameter controlling the momentum influence at round 𝑡 , and ∇(·)
denotes the gradient operator. Recalling that in the OPO framework

the function to be minimized is the loss 𝑓𝑡 (x𝑡 ) = − log(⟨x𝑡 , r𝑡 ⟩),
the portfolio update rule becomes:

x𝑡+1 = ΠΔ𝑀−1

(
x𝑡 + [𝑡

r𝑡
⟨x𝑡 , r𝑡 ⟩

− _𝑡
2

(x𝑡 − x𝑡−1)
)
. (9)

The pseudo-code corresponding to the OGDM algorithm in the OPO

framework, including transaction costs, is presented in Algorithm 1.
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The algorithm starts with a portfolio x1 of weights equally allocated
among the 𝑀 available assets (Line 1). Then, for each round 𝑡 ∈
{1, . . . ,𝑇 } it rebalances the assets according to Equation (9) (Line 3),
it observes the market outcomes r𝑡+1 (Line 4), and gains a per-round
wealth, including costs, of log(⟨r𝑡+1, x𝑡+1⟩) −𝛾 | |x𝑡+1−x𝑡 | |1 (Line 5).

4.2 Regret Analysis
We now present the main result on the total regret of the OGDM

algorithm.

Theorem 1. The OGDM algorithm with [𝑡 =
𝐾[√
𝑡
, and _𝑡 =

𝐾_

𝑡 ,

for each value of 𝐾[ , 𝐾_ ∈ R+, has a total regret of:

𝑅𝐶𝑇 ≤
[
𝐷2

𝐾[

(
1

2

+ 𝐾_
)
+ 𝐾[�̃�

(
2𝛾
√
𝑀 + �̃�

)] √
𝑇, (10)

where 𝐷 = sup

x,y∈𝑋
| |x − y| |2, and �̃� = sup

x∈𝑋
| |∇𝑓𝑡 (x) | |2 + 𝐷𝐾_

2𝐾[
.

Proof. Recall that for a generic loss function 𝑓𝑡 : 𝑋 → R and

a convex set 𝑋 the OGDM algorithm has the update rule in Equa-

tion (8). This formulation can be rewritten as:

x𝑡+1 = Π𝑋

(
x𝑡 − [𝑡∇ ˜𝑓𝑡 (x𝑡 )

)
, (11)

by defining:
˜𝑓𝑡 (x) = 𝑓𝑡 (x) + 𝛽𝑡

2
| |x−x𝑡−1 | |2

2
, with 𝛽𝑡 =

_𝑡
[𝑡
. Note that,

by the triangle inequality | |∇ ˜𝑓 (x𝑡 ) | |2 ≤ �̃� .
Before presenting the main result, we recall that, from [41], given

the update in Equation (11) we have:

| |x𝑡+1 − x∗ | |22 = | |Π𝑋 (x𝑡 − [𝑡∇ ˜𝑓𝑡 (x𝑡 )) − x∗ | |22
≤||x𝑡 − x∗ | |22 − 2[𝑡 ⟨x𝑡 − x

∗,∇ ˜𝑓𝑡 (x𝑡 )⟩ + [2𝑡 | |∇ ˜𝑓𝑡 (x𝑡 ) | |22,

where we used the fact that the projection operator ΠΔ𝑋
(·) is non-

expansive. Rearranging the terms, we have:

⟨x𝑡 −x∗,∇ ˜𝑓𝑡 (x𝑡 )⟩ ≤
1

2[𝑡

(
| |x𝑡 −x∗ | |22−||x𝑡+1−x

∗ | |2
2

)
+ [𝑡
2

�̃�2 . (12)

Using the above inequality, the total regret 𝑅𝐶
𝑇
(𝑂𝐺𝐷𝑀) of the

OGDM algorithm is bounded as follows:

𝑅𝐶𝑇 (𝑂𝐺𝐷𝑀) =
𝑇∑
𝑡=1

𝑓𝑡 (x𝑡 ) − 𝑓𝑡 (x∗) + 𝛾
𝑇∑
𝑡=1

| |x𝑡 − x𝑡−1 | |1 (13)

=

𝑇∑
𝑡=1

˜𝑓𝑡 (x𝑡 ) − ˜𝑓𝑡 (x∗) −
𝑇∑
𝑡=2

𝛽𝑡

2

(
| |x𝑡 − x𝑡−1 | |22 − ||x

∗ − x𝑡−1 | |22
)

+ 𝛾
𝑇∑
𝑡=1

| |x𝑡 − x𝑡−1 | |1 (14)

≤
𝑇∑
𝑡=1

⟨x𝑡 − x∗,∇ ˜𝑓𝑡 (x𝑡 )⟩ +
𝑇∑
𝑡=1

𝛽𝑡

2

| |x∗ − x𝑡−1 | |22

+ 𝛾
𝑇∑
𝑡=1

√
𝑀[𝑡 | |∇ ˜𝑓𝑡 (x𝑡 ) | |2 (15)

≤
𝑇∑
𝑡=1

1

2[𝑡

(
| |x𝑡 − x∗ | |22 − ||x𝑡+1 − x

∗ | |2
2

)
+

𝑇∑
𝑡=1

[𝑡

2

�̃�2

+
𝑇∑
𝑡=1

𝛽𝑡

2

| |x∗ − x𝑡−1 | |22 + 𝛾
𝑇∑
𝑡=1

√
𝑀[𝑡 | |∇ ˜𝑓𝑡 (x𝑡 ) | |2 (16)

≤ 𝐷
2

2[1
+ 𝐷

2

2

𝑇∑
𝑡=2

(
1

[𝑡
− 1

[𝑡−1

)
+

𝑇∑
𝑡=1

[𝑡

2

�̃�2

+
𝑇∑
𝑡=1

𝛽𝑡

2

| |x∗ − x𝑡−1 | |22 + 𝛾
𝑇∑
𝑡=1

√
𝑀[𝑡 | |∇ ˜𝑓𝑡 (x𝑡 ) | |2 (17)

≤ 𝐷
2

2[𝑇
+

𝑇∑
𝑡=1

[𝑡

2

�̃�2 +
𝑇∑
𝑡=1

𝛽𝑡

2

𝐷2 + 𝛾
√
𝑀�̃�

𝑇∑
𝑡=1

[𝑡 , (18)

where we dropped the negative term and used the convexity of

˜𝑓 (·) to derive Equation (15), and used the result in Equation (12) to

derive Equation (16).

Finally, substituting 𝛽𝑡 =
_𝑡
[𝑡
, _𝑡 =

𝐾_

𝑡 , [𝑡 =
𝐾[√
𝑡
in Equation (18),

and using the fact that

𝑇∑
𝑡=1

1√
𝑡
≤ 2

√
𝑇 concludes the proof.

□

If we assume that the price of the assets does not change too

much during two consecutive rounds, as asserted by Assumption 1,

we have:

Corollary 1. If Assumption 1 holds, the OGDM algorithm [𝑡 =
𝐾[√
𝑡
, and _𝑡 =

𝐾_

𝑡 , for each 𝐾[ > 0 and 𝐾_ > 0, has total regret of:

𝑅𝐶𝑇 (𝑂𝐺𝐷𝑀) ≤
√
𝑇

[
𝐾2

_
+ 4𝐾_ + 2
2𝐾[

+ 𝐾[𝑀
𝜖𝑢

𝜖𝑙

(
𝜖𝑢

𝜖𝑙
+ 2𝛾

)
+
√
2

(
𝜖𝑢

𝜖𝑙
+ 2𝛾

)
𝐾_

√
𝑀

]
.

Using the previous bound we can optimize the regret bound

w.r.t. the parameters 𝐾[ and 𝐾_ as follows:

Corollary 2. If Assumption 1 holds, the OGDM algorithm with

[𝑡 =
1√
𝑡

[
𝑀𝜖𝑢
𝜖𝑙

(
𝜖𝑢
𝜖𝑙
+ 2𝛾

)]−1/2
and _𝑡 = 0 has a total regret of:

𝑅𝐶𝑇 (𝑂𝐺𝐷𝑀) ≤ 2

√
𝑀𝜖𝑢

𝜖𝑙

(
𝜖𝑢

𝜖𝑙
+ 2𝛾

)
𝑇 . (19)

Notice that the OGDM with the previous choice of the bound

corresponds to the OGD algorithm with a learning rate of [𝑡 =

𝐾[/
√
𝑡 . Indeed, this is consistent with the fact that 𝑅𝑇 (𝑂𝐺𝐷) =

O(
√
𝑇 ) for a generic convex function 𝑓𝑡 (𝑥), as shown by Belmega

et al. in [4]. Even if this is the choice that minimizes the upper

bound on the total regret, it might be suboptimal in practice. In the

experimental section we will analyze the empirical performance of

choices of 𝐾_ ≠ 0.

Finally, knowing the time horizon𝑇 in advance from the starting

of the investment period we have:

Corollary 3. If Assumption 1 holds, the OGDM algorithm with

[𝑡 =
1√
𝑇

[
𝑀𝜖𝑢
𝜖𝑙

(
𝜖𝑢
2𝜖𝑙
+ 𝛾

)]−1/2
and _𝑡 = 0 has a total regret of:

𝑅𝐶𝑇 (𝑂𝐺𝐷𝑀) ≤ 2

√
𝑀𝜖𝑢

𝜖𝑙

(
𝜖𝑢

2𝜖𝑙
+ 𝛾

)
𝑇 .
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Table 1: Theoretical results, in terms of regret and computa-
tional complexity, for the analysed algorithms.

OGDM U𝐶P OLU ONS
𝑅𝑇 O(

√
𝑇 ) O (log𝑇 ) O (

√
𝑇 ) O (log𝑇 )

𝑅𝐶
𝑇

O(
√
𝑇 ) O (log𝑇 ) O (𝑇 ) -

Complexity Θ(𝑀) Θ(𝑇𝑀 ) Θ(𝑀) Θ(𝑀2)

This result provides a slightly improved constant in the bound

over the any-time bound given by Corollary 2. In the next sections,

we compare the theoretical guarantees of OGDM in terms of com-

putational complexity and total regret with OLU and U𝐶P, the only

algorithms that provide upper bounds to total regret.

4.3 Discussion on the Per-round
Computational Complexity

In this section we explore the theoretical results of OGDM in com-

parison to the existing literature w.r.t. regret bounds and computa-

tional complexity, summarized in Table 1.
4

Regarding the computational complexity of the OGDM algo-

rithm, at each round 𝑡 , it evaluates a scalar product, a division and

two vector subtractions (see Line 3, Algorithm 1), which require a

number of operations linearly proportional to the number of assets

𝑀 . It also performs a projection onto the simplex, which can be

computed in linear time with the number of assets 𝑀 (see Duchi

et al. [16] for details). Therefore, the total expected computational

cost per round is Θ(𝑀). Note that, since the learning rate [𝑡 is

decreasing over time, the projection operation is less likely to be

required as we proceed with the investment process, decreasing

the per-step computational effort. Conversely, the technique used

in literature to implement the U𝐶P strategy requires a number of

operations per round of Θ(𝑇𝑀 ) [25], which does not scale well for

large horizons 𝑇 , or settings where the number of assets𝑀 is large.

In [14], Das et al. propose to use the Alternating Direction

Method of Multipliers (ADMM) [9] to implement the update rule

of OLU. Although in terms of computational complexity it has the

same properties of OGDM, the OLU algorithm is more computation-

ally costly (in terms of constants) than the OGDM update, since it

consists of solving a problem with linear complexity in𝑀 multiple

times until ADMM converges, but still provides a feasible solution

in terms of computational effort. To conclude, U𝐶P is a solution

suitable only for problems with a small number of assets 𝑀 and

a short investment horizon 𝑇 ; conversely, OGDM and OLU can

handle data streams that come at higher frequencies, e.g., the ones
required by some specific financial applications [1].

4.4 Discussion on the Total Regret Bounds
As discussed above, the OLU algorithm is the only algorithm com-

peting with OGDM, in terms of per-round computational complex-

ity. OLU can be interpreted as an instance of Composite Objective

Mirror Descent (COMID) [17], whose update is the following:

x𝑡+1 = arg inf

x∈Δ𝑀−1

{
[⟨∇𝑓𝑡 (x𝑡 ), x⟩ + [ 𝑟 (x) + 𝑑𝜓 (x, x𝑡 )

}
,

4
We report the regret bounds and complexity also for the ONS algorithm for sake of

completeness.

where 𝑟 (x) is a regularization term of the loss function 𝑓𝑡 (x), and
𝑑𝜓 (x, y) is a Bregman divergence [3] generated by the convex func-

tion𝜓 (x). More specifically, the OLU algorithm uses as regularizer

𝑟 (x) := | |x − x𝑡 | |1 and divergence 𝑑𝜓 (x, y) := 1

2
| |x − y| |2

2
.

Assuming to know a priori the time horizon 𝑇 and under As-

sumption 1, the authors of OLU provide the following guarantee:

Theorem 2 (Total Regret of OLU [13]). If Assumption 1 holds,
the OLU algorithm with [ = 𝐾√

𝑇
, ∀𝐾 ∈ R+ has a total regret of:

𝑅𝐶𝑇 (𝑂𝐿𝑈 ) ≤
(
1

𝐾
+ 𝑀𝐾𝜖

2

𝑢

2𝜖2
𝑙

)
√
𝑇 + 2𝛾𝑇 . (20)

Notice that the OLU algorithm achieves a regret of O(
√
𝑇 ) only

if the transaction rate 𝛾 ∝ 1√
𝑇
, i.e., if the transaction rate decreases

over time. We can observe that the first term of the r.h.s. of Equa-

tion (20) corresponds to the regret on the wealth. Instead, if we

focus on the second term of the r.h.s. of Equation (20) and we as-

sume that 𝛾 is constant over the investment horizon 𝑇 , we would

have a total regret of the order of O(𝑇 ) for the OLU algorithm.

This does not happen to OGDM, which, under these assumptions,

provides a total regret of the order of O(
√
𝑇 ). Conversely, if we

assume 𝛾 ∝ 1√
𝑇

as in [14], the last term in Equation (19) would

have constant regret on the costs, i.e.,𝐶𝑇 (𝑂𝐺𝐷𝑀) ≤ 2𝜖𝑢𝑀
𝜖𝑙

= O(1),
compared to an order of O(

√
𝑇 ) obtained by OLU, which makes

OGDM strictly better than OLU in terms of total regret bound.

5 EXPERIMENTS
In this section we analyze the empirical performance of the OGDM

algorithm and the two algorithms from the OPO literature that

provide guarantees on total regret: U𝐶P [7], and OLU [14].
5
Fur-

thermore, we compare OGDM with OGD, to evaluate the empirical

improvement provided by the momentum, and with ONS [2], which

has theoretical guarantees and is known to provide the best empiri-

cal results for the regret on the wealth 𝑅𝑇 (𝔘).
To compare the algorithms, we used four different datasets, sum-

marized in Table 2. More specifically, we ran experiments on the

NYSE(O), SP500, and TSE datasets, which are well-known bench-

marks used in several research papers on portfolio optimization

providing the daily prices for a fixed set of asset.
6
The experiments

on each of the above datasets consist in the execution of the an-

alyzed algorithms on portfolios selected by randomly drawing 5

different assets from the original datasets. The fourth one, namely

the Corona dataset, was designed using data coming from the recent

CoVid-19 crisis period, to explicitly analyze the behavior of the OPO
algorithms in times of high volatility. Table 3 describes the assets

and time period included in the Corona dataset.

For comparison purposes, we set the same [𝑡 for OGD and

OGDM as prescribed by Corollary 2, with 𝜖𝑙 = 0.8 and 𝜖𝑢 = 1.2,

for which Assumption 1 holds for all the datasets. Instead, to tune

the 𝐾_ for the sequence _𝑡 in Corollary 1 for OGDM and the pa-

rameters required by the other algorithms (OLU, ONS, and U𝐶P),

5
We used a naïve version of U𝐶P since the classic implementation would have taken

an unfeasible amount of time for the experiments. More specifically, we discretized

the simplex with 10
4
points and used the corresponding CRPs to approximate the

integrals used by U𝐶P.

6
These datasets are available at http://www.cs.technion.ac.il/~rani/portfolios/.

http://www.cs.technion.ac.il/~rani/portfolios/
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Table 2: Datasets used in the experimental campaign.

Datasets

Name Market Year Span Days Assets

NYSE(O) New York Stock Exchange 1962 - 1984 5651 36

TSE Toronto Stock Exchange 1994 - 1998 1258 88

SP500 Standard Poor’s 500 1998 - 2003 1276 25

Corona Global 2019 - 2020 280 4

Table 3: Assets included in the Corona Dataset.

Corona Dataset (03/29/2019 - 05/08/2020)

Ticker Description Market Category

SPY SPDR S&P 500 ETF Trust Equity

BNDX Vanguard Bond Index Fund ETF Fixed Income

DAX Global X DAX Germany ETF Equity

VIX CBOE Volatility Index Derivatives

we divided the datasets into a validation and testing set of equal

size, we optimized the parameters on the former one and evaluated

the performance of the algorithms on the latter one. All algorithms

have been initialized with x1 = 1

𝑀
1.7

As performance indexes to compare the algorithms we used:

• the wealth with costs

𝑊𝐶
𝑇 (x1:𝑇 , r1:𝑇 ) =𝑊𝑇 (x1:𝑇 , r1:𝑇 ) − 𝛾

𝑇∑
𝑡=1

| |x𝑡 − x𝑡−1 | |1;

• the Annual Percentage Yield (APY), assuming 250 working

days per year and one update per day

𝐴(𝑇 ) =𝑊𝐶
𝑇 (x1:𝑇 , r1:𝑇 )

250/𝑇 − 1;
• the average variation of the portfolio per-round:

𝑉𝑡 (𝔘) :=
𝐶𝑡 (𝔘)
𝛾𝑡

.

Notice that above quantity𝑉𝑡 (𝔘) is defined so that it is independent
from the parameter 𝛾 .

5.1 Experiments without transaction costs
In this first experiment, we test the performance of the OGDM algo-

rithm in a situation where transaction costs are negligible (𝛾 = 0).

More specifically, we present two different experiments that allow

us to draw conclusions on the behavior of the different algorithms

in two radically different market scenarios.

Results. Figure 1a and 1b show the evolution of the total wealth

𝑊𝐶
𝑡 (𝔘) of the different algorithms over the investment horizon in

a specific run, on the Corona dataset and on the NYSE(O) dataset,

respectively. In these experiments OGDM obtains a cumulative

wealth larger than any other algorithm analyzed, suggesting that it

can obtain the best performance even in the absence of costs.

Comparing the two figures we notice that, while in Figure 1b

all tested algorithms have a generally positive trend in terms of

wealth𝑊𝐶
𝑡 (𝔘) over time, in Figure 1a OGDM, OGD, and U𝐶P are

able to provide significantly better performance in the last part of

7
The final version of the paper will provide a link to the code implementing the

described experimental setup, not provided here for anonymization purposes.

the time horizon (220 ≤ 𝑡 ≤ 250). This is due to the presence of the

VIX assets present in the Corona dataset, which had an impressive

gain during the initial phased of the CoVid19 spread.

Instead, if we look at the periods of general market stability (the

entire time horizon of Figure 1a and the period in 1 ≤ 𝑡 ≤ 220

of Figure 1a), there is no clear outstanding algorithm among the

ones we analyzed. It is curious to notice how OGDM, OGD, and

U𝐶P show similar behaviors, while OLU and ONS are different

from the first three, but similar to each other. Overall, the OGDM

algorithm is capable of obtaining a performance comparable to the

ones present in the literature in both settings.

5.2 Experiments with transaction costs
In the second set of experiments, we run the algorithms on the

NYSE(O), SP500, and TSE datasets and evaluate the performance

of the algorithms in settings with different values of the transac-

tion cost rate 𝛾 ∈ {0, 0.0005, 0.001, 0.003, 0.006, 0.01, 0.02, 0.04}. We

evaluated the different algorithms in terms of 𝐴𝑃𝑌 (𝑇 ) and average

variation of the portfolio per round 𝑉𝑡 (𝔘).8 The 95% confidence

intervals for the analyzed quantities have been computed with

statistical bootstrapping and appear as semi-transparent areas.

Results. Figure 1c provides the results of a setting with 𝛾 = 0.01

for the same set of assets shown in Figure 1c. These examples show

that OGDM is able to obtain essentially the same performance as

the framework without costs even with large transaction costs,

while all other algorithms degrade noticeably.

In Figure 2, we present the results for the average APY on three

datasets: NYSE(O), SP500, and TSE. Without transaction costs (𝛾 =

0), all the analyzed algorithms obtain consistently an APY between

around 10% and 15%. In this setting, ONS is the algorithm with

the largest average APY, but as we increase the transaction costs

rate, it is the algorithm that suffers the most, along with OLU.

The performance of U𝐶P deteriorates as the transaction cost rate

increases, but its loss is limited compared to the ones of ONS and

OLU, always providing a wealth𝑊𝐶
𝑡 (𝑈𝐶𝑃) > 0. OGDM and OGD

outperform the other algorithms when the transaction rate is 𝛾 ≥
0.01. While showing similar behavior for the SP500 dataset, in

the other two experiments the OGDM is able to outperform OGD

obtaining almost the same APY as in the setting with no costs, even

when 𝛾 = 0.04, i.e., transaction costs are 4%. Conversely, OGD, not

using an explicit term for costs in its optimization procedure, has a

slight decrease in terms of wealth as costs increase.

In Figure 3, we present the results in terms of average variation

of the portfolio per round𝑉𝑡 (𝔘) for three datasets: NYSE(O), SP500,
and TSE. The worst performing algorithm is OLU since, as expected

from the theory (see Section 4.4), its variation of the portfolio per

round, which is proportional to the transaction costs, is approxi-

mately constant. The second worst performer is ONS which, even

though starting with a larger variation than OLU and not having

any theoretical guarantee, is likely to have a sub-linear variation

per round that decreases over time, but at a slower pace than the

remaining three algorithms. Comparing OGDM, OGD, and U𝐶P,

we can see that they all have a variation of the portfolio per round

that decreases over time. Out of these three, U𝐶P is the one with

8
We also run experiments with transaction costs on the Corona dataset, and the results

are not presented here as they are in line with the ones presented for the other datasets.
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Figure 1: Wealth𝑊𝐶
𝑇
(𝔘) of a specific run, on the Corona dataset (a) and on 5 stocks of the NYSE(O) for 𝛾 = 0 (b), and 𝛾 = 0.01 (c).
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Figure 2: Average APY computed on the wealth𝑊𝐶
𝑇
(x1:𝑇 , r1:𝑇 ) assuming the costs given by 𝐶𝑇 (𝔘).
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Figure 3: Average variation of the portfolio 𝑉𝑡 (𝔘) incurred on a varying time horizon 𝑡 .



ICAIF ’20, October 15–16, 2020, New York, NY, USA Edoardo Vittori1,2 , Martino Bernasconi de Luca1 , Francesco Trovò1 , Marcello Restelli1

the worst performance. Finally, comparing OGDM and OGD, the

respective behavior varies between the three datasets, and it seems

that OGDM is slightly better at minimizing the costs as time in-

creases. This is unexpected given the previous results, in which

OGDM seems to provide a larger APY by keeping costs low. Thus,

this result suggests that OGDM performs well not just because

it is good at handling transaction costs, but also because it has a

superior investment strategy.

To conclude, the experiments confirm the theoretical properties

discussed in Section 4 and suggest that OGDM is the best algorithm

to use in the presence of large (𝛾 > 0.01) transaction costs.

6 CONCLUSIONS
The focus of this paper is to control transaction costs in the OPO

problem. We achieved this result by introducing a novel algorithm:

Online Gradient Descent with Momentum. Indeed, this paper criti-

cally analyses the existing online learning literature dealing with

scenarios with transaction costs and proposes the use of OGDM

to control (theoretically and empirically) the costs. Existing algo-

rithms designed for this setting are either (i) not providing the-

oretical guarantees (e.g., the algorithms in [29]), (ii) providing a

bound to the total regret, conditionally on unrealistic assumptions

(e.g., OLU [14]) or (iii) computationally inefficient (e.g., U𝐶P [7]). In

this paper, we proved that OGDM has nice theoretical, empirical,

and computational performance in the analyzed setting. Finally,

we compared the empirical performance of OGDM with state-of-

the-art algorithms on a real dataset and provided insights into the

settings in which it is likely to provide larger cumulative wealth.

Future developments could be to extend the bound on the trans-

action costs to a wider class of algorithms, e.g., the ones derived
from Online Mirror Descent (OMD). Furthermore, an extension

would be to explore environments that are not completely adver-

sarial and not even completely stochastic. One approach would be

to develop an algorithm that plays an equilibrium strategy against

adversaries and adapts to stationary environments as proposed

in [11]. Finally, it would be interesting to extend the transaction

cost model to include liquidity constraints and market impact.
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