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ARTICLE INFO ABSTRACT
Keywords: Modern cyber—physical production systems provide advanced solutions to enhance factory throughput and
Digital twin efficiency. However, monitoring its behaviour and performance becomes challenging as the complexity of a

Deep learning
Synthetic datasets
Production monitoring

manufacturing system increases. Artificial Intelligence (AI) provides techniques to manage not only decision-
making tasks but also to support monitoring. The integration of Al into a factory can be facilitated by a reliable
Digital Twin (DT) that enables knowledge-based and data-driven approaches. While computer vision and
convolutional neural networks (CNNs) are crucial for monitoring production systems, the need for extensive
training data hinders their adoption in real factories. The proposed methodology leverages the Digital Twin of
a factory to generate labelled synthetic data for training CNN-based object detection models. Regarding their
position and state, the focus is on monitoring entities in manufacturing systems, such as parts, components,
fixtures, and tools. This approach reduces the need for large training datasets and enables training when the
actual system is unavailable. The trained CNN model is evaluated in various scenarios, with a real case study

involving an industrial pilot plant for repairing and recycling Printed Circuit Boards (PCBs).

1. Introduction

Monitoring plays a fundamental role in modern manufacturing sys-
tems, supporting process optimization, quality control, predictive main-
tenance, and inventory management [1-3]. Cyber—Physical Production
Systems (CPSS) [4] enable different monitoring solutions that are in-
creasingly enhanced by automation, flexibility, and digitization. Indus-
try 4.0 and the large availability of affordable sensors have enabled
the acquisition of real-time data to support automation and control [5],
helping to ground decisions on updated and reliable data [6].

After the disruptive rise of Artificial Intelligence (AI) and its suc-
cessful application in various fields, the manufacturing industry is also
adopting Al to manage both complex decision-making tasks and moni-
toring by analysing data acquired from manufacturing systems [7]. The
integration of Al in the industry is strictly linked to the availability
of a Digital Twin (DT) [8] of the factory, i.e., a digital replica of
the real factory that includes not only geometric characteristics but
also products, processes, resources and their integrated behavioural
features [9,10]. The availability of a Digital Factory Twin provides
comprehensive and structured information that could easily support
the implementation of knowledge-based and data-driven approaches,
especially AL
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Digital Twin and Al techniques are effectively applied in manufac-
turing to support decision-making, design and control within factories,
from single production modules to whole company networks. In par-
ticular, these techniques combined with image data are becoming
more and more relevant to address tasks such as monitoring processes,
tracking objects, visual inspections, and handling parts.

Computer vision approaches are already crucial for monitoring
production systems and processes; among these, convolutional neural
networks (CNN) are one of the most promising tools for image analysis.
Nevertheless, the need for a massive amount of data to train this class
of models constitutes a significant barrier towards their adoption in real
factories.

This work proposes a methodology that employs the Digital Twin
of a factory to generate synthetic data to support the training of CNN-
based object detection models. The focus lies in monitoring entities
(parts, components, fixtures, tools, etc.) in manufacturing systems in
terms of their position and state, as these data serve various objectives,
such as tracking products or general entities, supporting and optimize
handling operations, monitoring the progress of production activities,
enabling advanced safety and ergonomics analyses.

In addition to reducing the burden of large training datasets, the
proposed approach also enables training CNN models when the actual
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system is non-existent or inaccessible. The proposed approach involves
an automated workflow that automates the generation of synthetic data
and annotations leveraging the DT of a factory. The CNN model is
trained on these data, and its performance is tested in various scenarios.
The proposed approach is tested on a real case represented by a re-
demanufacturing pilot plant [11] dedicated to handling, repairing and
recycling Printed Circuit Boards (PCBs), thus entailing the need to
locate pallets, PCBs, and transporters.

The article is structured as follows. Section 2 presents related works
in the literature. Section 3 defines the goals and requirements of the
proposed methodology to generate data sets and train a CNN for object
recognition, described in Section 4. The use case presented in Section 5
was employed to test the methodology, in particular checking the
generation of synthetic data (Section 6), evaluating the performance
of a CNN model trained on synthetic data (Section 7), and assess-
ing the application to monitoring transport and handling operations
(Section 8). Finally, the conclusions are drawn in Section 9.

2. State of the art

Sensor-based monitoring is a widely-used approach in the industry,
benefiting from the reliability and benefiting from of tags (e.g., based
on RFID technology) for tracking and monitoring products, compo-
nents, and tools. However, an RFID tag is required for each monitored
object, leading to costs proportional to the number of objects to be
tracked.

In this category of applications, machine vision offers several advan-
tages compared to sensor-based tracking [12]. It is possible to avoid
the labelling of a high number of objects, reducing the investment
cost when tracking a large number of items. Furthermore, machine
vision can also overcome tag limitations, e.g., in high-temperature
environments.

The following subsections delve into the state of the art of tech-
nologies that constitute the pillars of the proposed solution, namely
computer vision (Section 2.1), Convolutional Neural Networks and
object detection (Section 2.2), Synthetic datasets (Section 2.3), and
Digital Factory Twin (Section 2.4).

2.1. Machine vision

Machine vision employs cameras and computational capabilities to
execute vision-related tasks, such as object detection, position iden-
tification, human operator pose recognition, identification of specific
situations, etc. Thanks to the continuous and rapid advancement of en-
abling technologies, machine vision approaches are gaining relevance
and are diffusely adopted in the industry [13,14].

Machine vision in industry is exploited for various purposes, includ-
ing visual inspection of products and machinery [15], tracking parts
and components in production stations [12], monitoring manufacturing
processes [16], and supporting the grasping and handling of objects by
robots [17].

Implementing machine vision technology has significantly enhanced
productivity and overall quality management, leading to a consider-
able competitive advantage if properly exploited [18]. Furthermore,
machine vision has proven successful in various applications, such as
production control in the food industry, quality inspection in textiles,
and defect identification and classification in PCB manufacturing [19].

2.2. Convolutional neural networks and object detection

Detecting specific objects in images is a fundamental aspect of
industrial monitoring systems. Specifically, the capability to function
effectively in demanding environments characterized by diverse sce-
narios and operating conditions (e.g., light, dust, etc.) is a challenge
for numerous machine vision tasks. In recent years, Deep Learning
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(DL) approaches, particularly deep convolutional neural network ar-
chitectures, have attained impressive results and are emerging as one
of the breakthrough technologies with potential applications in the
industry [20].

Convolutional Neural Networks (CNNs) are a specific class of neural
networks engineered to process images and extract distinct features via
convolutions. CNNs comprise multiple layers of different types: con-
volutional, non-linear, pooling, and fully connected layers [21]. CNNs
take a two-dimensional image as input and produce an identification
of one of the possible functionalities in object recognition, i.e., the
association of the image to a possible class if a single object is present
(image classification) or the identification of potential objects within
the image using bounding box, associated labels, and a measure of the
confidence for the inference (object detection). These approaches have
been successfully exploited for a wide range of objects [22], and for
human beings [23,24]

Numerous deep convolutional architectures have demonstrated very
good performance, e.g., RetinaNet [25], Faster R-CNNs [26], Yolo [27],
SSD [28,29], and R-FCN [30]. These models are undergoing rigorous
testing, validation, and showcasing their efficacy in supporting a wide
range of applications, e.g., faults diagnosis [15], process control [16],
medical imaging analysis [31], etc.

Nevertheless, a shared characteristic among all the approaches men-
tioned above is the need to train models with millions of parameters,
demanding vast quantities of training data. Developing these datasets
involves collecting and labelling images, which relies on human in-
put and becomes time-consuming, error-prone, and costly. This likely
constitutes the primary constraint to their widespread adoption in
real-world applications, particularly within the industry.

2.3. Training CNNs on synthetic images

Training data can be partially or entirely generated synthetically
to mitigate the challenge of acquiring the necessary training data or
to address situations where it might even be impossible, e.g., if the
objects to be monitored or the operating do not exist. This involves
using computer-based tools such as CAD software or virtual reality envi-
ronments to generate images and their corresponding labels. Thus, the
CNN training is carried out with synthetically generated images, which
are later applied to the real world. Training models with synthetic data
is a very appealing approach. It not only streamlines the collection of
extensive data and the associated annotation, but it also provides the
ability to generate practically limitless training data. Furthermore, it is
possible to customize the synthetic data generation settings, thereby
enhancing the diversity of training datasets. For instance, one can
select the objects to be included in the images, their positioning, the
surrounding environments, and other relevant factors.

Different strategies and approaches have been developed to imple-
ment and enhance the effectiveness of training neural networks using
synthetic data. The characteristics of the dataset are fundamental, as
the performance of the detection heavily relies on the size, quality and
richness of the dataset itself.

A straightforward approach has also been proposed [29] involv-
ing generating images by cutting pictures of objects to be detected
and pasting them onto random images, thereby providing a variable
background. A similar approach has been used in [32-34], focus-
ing on indoor detection of everyday objects, in particular in kitchen
environments.

Transfer learning is a common approach to mitigate the need of
extremely large datasets in training, even when using synthetically
generated data. Starting from pre-trained object recognition models
(e.g., Faster-RCNN, R-FCN, Mask-RCNN), the layers responsible for
feature extraction are kept frozen, assuming that what is learned on real
images can also be exploited on synthetic images. On the contrary, the
last layers are replaced with new ones considering the new classes of
objects to be identified and subsequently trained on synthetic datasets.
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Thus, the final training phase focuses on the parameters associated
with a small subset of the model, requiring a significantly smaller
amount of data. This approach has consistently demonstrated superior
performance compared to training on synthetic images alone [35,
36]. Nevertheless, transferring the capabilities of object detection ap-
proaches between different domains and, even more critically, between
synthetic and real images remains a significant challenge that needs
to be tackled [33,37]. Alternative methods have been proposed to
address this challenge, such as domain adaptation [38] and domain
randomization [37]. The latter approach has been further enhanced by
combining real background images and photo-realistic rendering [39].

Recent advancements in this field also aim to explore the exclusive
use of synthetic training data, thus reducing reliance on real images.
The approach proposed in [40] focuses on generating synthetic images
comprising two main components: 3D background and foreground
objects. The foreground objects are targeted for detection, whereas
background objects are densely and randomly arranged to construct a
realistic background image. Randomized illumination, blur, and noise
are also incorporated to increase the variety of the dataset further. The
authors demonstrate that this approach makes trained models robust to
environmental changes and can even outperform models trained on real
data [40]. This methodology is the foundation for SynthDet [41], an
open-source project that demonstrates an end-to-end object detection
pipeline using synthetic image data, leveraging the Unity Perception
Package [42].

2.4. Digital factory twin

A Digital Twin (DT) is intended as the coupling of a real system, its
digital counterpart, a set of models and algorithms to support decisions,
a continuous flow of data coming from the field and a control bus to
actuate the decisions in the real system [43].

A digital twin is a relevant enabling technology for realizing the
paradigm of smart manufacturing and Industry 4.0 [44], involving an
entirely digitized, complex system that affects all units and classes
in a factory. Indeed, the widespread use of digital technologies in
factories generates and requires vast amounts of data. A review of DT
for factories is presented in the article by Terkaj et al. [45], introducing
the concept of Digital Factory Twin (DFT) and reviewing literature
contributions that focus on factory, system, and process levels, while
highlighting current challenges.

DT have several possible applications in manufacturing, such as
product design and production engineering [46], monitoring and op-
timization of manufacturing processes [47-49], analysis of tools [50],
design of production systems [10], maintenance [51], ergonomics [52],
system control [53]. DT is also a fundamental enabler for Al integration
in industrial applications [54], such as aerospace, autonomous driv-
ing, smart city transportation, and smart manufacturing [55]. Specifi-
cally, applications in smart manufacturing include fault diagnosis meth-
ods [56], lifecycle management of complex equipment [57], additive
manufacturing [58], manufacturing system reconfiguration and opti-
mization [59], task learning, movement prediction, risk reduction [60].
A detailed factory DT, which comprises realistic, textured 3D models of
parts, components, equipment and buildings, enables users to interact
with these models in a Virtual Reality (VR) environment. A VR repre-
sentation of a factory proves to be a powerful enabler for generating
synthetic datasets. The combination of VR technology and realistic 3D
models contributes significantly to creating diverse and comprehensive
synthetic datasets, enhancing the potential of Al models for industrial
applications.

A solution for recognizing parts in a working environment for
robotics applications has been presented in [17]. The authors realized
the CNN training on images of parts rendered using a 3D CAD and
placed on a background of randomly arranged and distorted images of
an industrial environment. The results are promising, although based
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on limited experiments involving single ring-shaped parts with rela-
tively simpler geometric features than the wide variety of industrial
parts and components. A similar methodology was presented in [61]
where CNNs were employed to segment and detect aluminium profiles
after training on images generated using a CAD system. The outcome
was a model exhibiting high accuracy and deemed potentially suitable
for the specified industrial application. However, the robustness of the
model has not been thoroughly tested in various realistic environmental
scenarios, such as changes in lighting, background, and other factors
that may occur in real-world settings.

A framework for developing DT-driven Machine Learning models
was presented in [62], addressing a use case by training vision-based
recognition of parts’ orientation thanks to DT models.

Another potential industrial application of these approaches has
been proposed in [63], addressing the detection of objects in egocentric
vision. This concept assumes the point of view of a human operator
to support manual operations, such as assembly tasks. The authors
demonstrate how it is possible to improve the training of a CNN by
using a large synthetic dataset rather than relying on a smaller dataset
of real images.

Recently, this methodology has been applied to the civil engineering
domain, specifically to aid in building scene understanding (BSU) [64].
In this context, a Building Information Model (BIM) was leveraged
to generate photorealistic images from various perspectives of an in-
door environment. The use of synthetic images resulted in promising
outcomes for training deep-learning models.

3. Problem statement

The problem addressed in this work revolves around monitoring
factory objects by identifying their locations within a manufacturing
system. This is achieved by harnessing the availability of images or
videos captured within the factory environment.

The goal is to develop an effective object detection and local-
ization method to support monitoring and automation processes in
industrial contexts. This method aims to fulfil the following functional
requirements (FR):

FR1 Identification of specific objects in the factory environment, such
as parts, components, tools, fixtures, transporters, etc..

FR2 Detection of the position of the tracked objects in the captured
image/videos to facilitate the identification of their absolute or
relative location in the working area.

FR3 Identification of specific macroscopic characteristics of the
tracked objects, for example, determining whether they are
empty or full, etc.

In addition, the following non-functional requirements must be
satisfied:

NFR1 Real-time capability. The method must operate in real-time (or
near real-time) to provide timely responses.

NFR2 Accuracy. The method should offer adequate accuracy to ensure
reliable and precise object detection and localization, meeting
the demands of relevant industrial applications.

NFR3 Flexibility. The method must be flexible enough to track multiple
different objects.

Furthermore, machine vision and, specifically, convolutional neural
networks are the technologies of choice for addressing object detec-
tion and localization, because the rapid development and increas-
ing adoption of CNNs have made them highly suitable for industrial
applications.

Machine vision based on neural networks asks for large amounts
of training data. Thus, the following technical requirements must be
addressed:
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TR1 Data collection. The acquisition of large sets of data, specifically
images, is essential for training the CNN models 2.2. These
datasets need to be diverse and representative of the industrial
environment.

TR2 Data annotation. The annotation of data (i.e., labelling the ob-
jects in the images) is needed to create ground-truth data for
training the models. Human annotation is time-consuming and
can be prone to errors.

TR3 Model training. Training deep learning models, especially large
CNNs, demands specific hardware resources (e.g., powerful GPUs
or specialized hardware accelerators), procedures, and time.

4. Solution framework

A comprehensive solution framework (see Fig. 1) has been devel-
oped to address the requirements outlined in the previous section while
leveraging the use of synthetic images to train an object detection
model.

At the core of the proposed approach is the Digital Twin (DT) model
of the factory to be monitored. This model is developed through activity
A1, incorporating data and knowledge related to the assets. The input
data are formalized according to a specific data model and level of
detail (Section 4.1).

The second phase of the approach (Activity A2) focuses on generat-
ing synthetic data leveraging the DT model (Section 4.2). The relevant
factory assets to be monitored (e.g. objects flowing through the fac-
tory like parts, fixtures, pallets, or moving components of equipment)
must be selected and identified in alignment with the DT model. The
synthetic data are generated through the use of VR and algorithms
configured based on the specifications for images and labels. This
configuration enables the flexibility of employing various alternative
frameworks and models for object detection.

Hence, an object detection model is selected and trained (Activity
A3) by leveraging the functionalities of existing deep learning frame-
works (Section 4.3). The object detection model receives synthetic data
as input, along with a potential set of real images (i.e. real dataset)
associated with the selected assets to be monitored.

Finally, the trained model is tested and validated (Activity A4) on
both synthetic and real data, according to specific metrics designed for
object detection approaches (Section 4.4). If the performance metrics
(KPIs) meet the acceptable criteria, the results of the validated model
will be used to detect the selected assets and support monitoring.
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IDEFO diagram representing the Solution Framework.

4.1. Development of the digital twin model of the factory

As anticipated in Section 2.4, the Digital Twin of a factory can
support various business processes, including the generation of syn-
thetic data to train AI models. In this case, the synthetic data consists
of factory images, thus the DT must include the 3D representation of
physical assets.

Several commercial and non-commercial methodologies and tools
are available to develop the DT of a factory integrating the 3D vi-
sualization aspect. Nevertheless, most solutions generally involve the
following common steps:

+ The digital model of the factory is instantiated. In particular, the
modelling of production resources, part types, and processes is
crucial in this context.

» Generation of 3D models of factory assets. Typically, 3D CAD files
are simplified and exported to exchange formats. The level of ren-
dering quality can be adjusted based on the specific requirements
for realism.

» Setup of a VR scene that is based on the digital model of the
factory and the 3D models of the assets. In addition, cameras
(i.e., point of view) and lights must be defined.

+ Visualization of the factory in the VR environment.

In this work, a workflow based on free tools [65] is adopted
to ensure data reuse and maximize accessibility to a wide range of
potential users. The digital model of the factory is instantiated as an on-
tology model, leveraging existing meta-models designed for industrial
applications [10]. The ontology instantiation can be streamlined by
employing intermediate steps that involve commonly used data formats
(e.g. spreadsheets, JSON files) and available data sources.

The 3D models are exported to .gLTF format, which has gained
popularity as a widely adopted standard. This format enhances the
realism of 3D models by incorporating visual details in the form of
materials and textures.

The adopted VR environment is the prototype web application
VEB.js (Virtual Environment based on Babylon.js).! VEB.js is recon-
figurable and model-driven since the VR scene can be automatically
generated from an ontology model or a JSON file. Its main func-
tionalities encompass 3D navigation, reconfiguration of the layout,
animation of assets, MQTT connection, (semi-)automatic generation of
screenshots, etc.

1 https://virtualfactory.gitbook.io/vlft/tools/vebjs
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4.2. Generation of synthetic datasets

The CNN training for object detection relies on datasets containing
labelled images. Each image in the dataset is coupled with information
regarding the objects present in the scene, including the class of the
objects and their corresponding bounding boxes.

As described in the previous subsection (Section 4.1), a DT of the
factory, enhanced with a VR interface, serves as an ideal enabler for
generating synthetic images. The camera of the VR environment deter-
mines the point of view within the virtual scene based on its position
and orientation. This capability enables the capture of screenshots
based on the specific perspective defined by the camera configuration.
In addition, by using the underlying geometric model, it becomes
feasible to automatically identify the visible assets in the scene and,
more effectively, determine the coordinates of their bounding boxes
projected on the viewport. This information can be directly extracted
from the rendering engine, streamlining the process of generating syn-
thetic images with accurate object annotations. Thus, for each relevant
visible asset, the annotation includes the identifier of the asset, its class,
and the size and position of the bounding box (cf. requirement TR2).

Different options are possible for the generation of the annotated
(labelled) images:

* Manual. The user navigates through the VR scene and manually
generates the labelled image for the selected perspective.
Semi-automatic. While the user navigates through the VR scene,
a timed capture is executed at regular intervals. This process en-
sures the generation of labelled images from various perspectives
without requiring continuous manual intervention.

» Automatic. The VR camera is controlled by defining a series of
sequential positions or by moving the camera on a sphere frontier
around a target of interest (e.g., a selected factory asset) in its
centre [13]. Thus, by specifying the parameters of the sphere
(i.e., centre and radius) and the pattern to be followed for navi-
gating (i.e., solid angle to be covered and horizontal and vertical
step angles), the movement of the camera and the generation of
the images can be entirely automated.

The semi-automatic and automatic options are highly recommended
for generating large datasets, drastically reducing the time and cost
associated with creating the training dataset (cf. requirement TRI).
Furthermore this approach provides the capability of generating dataset
with the necessary level of variety, which is essential for effectively
training CNN object detection models.

The adopted VR environment VEB.js (Section 4.1) offers the nec-
essary relevant functionalities for the automatic, semi-automatic, and
manual generation of synthetic datasets in the form of images. These
datasets can be exported either in JSON format (annotated version) or
simple PNG format (non-annotated version).

4.3. Training the object detection model

The training of a CNN model for object detection conducted using
synthetic data offers the advantage of being feasible even when real
images are unavailable, e.g., in scenarios where the factory does not
yet exist or is not readily accessible. However, models trained solely
on synthetic data, while often beneficial and effective in various sce-
narios [40], may encounter challenges related to domain transfer [36].
To address this concern and improve performance on real images, a
hybrid approach has been adopted, exploiting a second training stage
where real images are incorporated into the training dataset. This aims
to enhance the adaptability and robustness of the model when used in
real scenarios.

In relation to the training approach and strategy, the initial train-
ing step on synthetic data has been operated according to a transfer
learning scheme [35]. A pre-trained model is used and the weights
associated with the first set of layers in the CNN are kept frozen
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during the training phase. By freezing these weights, their behaviour
remains unchanged as they are responsible for feature extraction from
the data. Hence, the training process only affects the last layers of the
neural networks, which are responsible for the identification of specific
objects.

To initiate the training process, it is essential to determine hyper-
parameters defining the number of epochs, batch size, and learning
rate have to be decided. These parameters significantly influence the
effectiveness and duration of the training process. Their values are
determined through a series of preliminary sets of experiments, aimed
at minimizing the loss function used during the training [66].

After the initial training phase, when the loss function reaches a
steady state, the first layers of the CNN can be unfrozen. Subsequently,
a further training step is conducted on the same dataset to adjust the
parameters of the already trained model.

Finally, a fine-tuning training step is also operated on real images.
This iterative process of fine-tuning with synthetic and real data helps
create a more reliable and accurate object detection model that can
successfully operate in industrial applications.

The training of the CNN model should be conducted using an
established deep learning framework providing a wide range of func-
tionalities. Herein, the TensorFlow? framework provided by Google was
employed, together with the Python module Keras.® Furthermore, the
cloud platform Google Colaboratory* was used, providing the possibil-
ity to run Python code in the cloud using Python notebooks.

The last aspect to be addressed is the selection of the CNN model
to be trained. The decision to operate on a cloud platform influences
the decision on the CNN model for object detection and the resolu-
tion of the images to be processed, considering constraints related to
computational load, memory, and running time. The landscape of Al-
based object detection models is diverse and continuously evolving.
Widely used frameworks like TensorFlow and PyTorch offer compre-
hensive libraries and tools for developing and deploying these models.
Collections like COCO (Common Objects in Context) and ImageNet
provide extensive datasets crucial for training and validating object
detection algorithms. Additionally, cutting-edge object detection mod-
els are readily available. Presently, it is possible to select a specific
object detection model and access repositories offering pre-trained
versions ready for used. Examples are the TAO toolkit by NVIDIA,® the
Tensorflow Object Detection APL° Model Zoo.” These models can detect
multiple classes of objects in images, thus providing the required degree
of flexibility (cfr. requirement NFR3).

As the focus of the current manuscript is on the definition of a
general framework approach based on a DT model of a factory, the
selection of the optimal object detection model is not a central aspect,
particularly considering their availability through the mentioned li-
braries and repositories. To demonstrate the feasibility of the proposed
framework, the YOLO-v3 model has been used. Although it may not
be the most recent object detection model available, it provides good
accuracy and a inference speed of less than 50ms [67], making it
suitable for real-time object detection in videos at up to 20 fps (cfr.
requirement NFR1). This choice takes into account the limitations
introduced by the use of a cloud-based implementation. The selection
of the YOLO-v3 model, together with the use of RGB images with a
resolution of 416 x 416 pixels, is in line with the objective of achieving
an optimal trade-off between inference speed and accuracy [67] (cfr.
requirement TR3).

https://www.tensorflow.org
https://keras.io
https://colab.research.google.com
https://developer.nvidia.com/tao-toolkit
https://github.com/tensorflow/models/tree/master/research/object_
detection

7 https://modelzoo.co
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4.4. Testing and validation

Once the object detection model has been trained on synthetic
or a combination of synthetic-real data, its performance is evaluated
by operating the detection of objects on images. The evaluation is
carried out using the COCO evaluation metrics [68], which align with
standard practices in the field. The primary indicator of the model
effectiveness in object identification is the intersection-over-union (IoU),
which evaluates the agreement between a ground truth bounding box
B, and a predicted bounding box B,. The IoU measures the overlap
between the two bounding boxes, and it is widely used to assess the
accuracy and quality of object detection models. The IoU is defined as:

B, NB
ue[(),]]

1
B,UB,

ToU B,.B,) =
Upon the definition of a threshold T, the calculation of the IoU can
define:

e IoU > T: the detection is valid (TP: True Positive);

e ToU < T: the detection is not valid (FP: False Positive);

» IoU = 0: it could be both a False Negative (FN) or a False Positive
(FP).

Building upon these values, two additional metrics can be defined:
precision (P), which assesses the ability of the model to accurately
detect objects, and recall (R), which evaluates the capability of the
model to correctly identify if an object is present in the image.

Furthermore, by plotting the P values as a function of the R values,
obtained over the entire dataset, an average precision AP can be
computed. By calculating the average precision AP for all classes of
objects to be identified, the mean average precision mAP is derived.
This comprehensive metric will be used to evaluate the performance of
the trained models.

Multiple definitions exist for the mean average precision mAP.
Specifically, the COCO challenge [68] proposes the definition in Eq. (2),
i.e., the average of the values mA Ps obtained by varying the threshold
T for the IoU from 0.5 to 0.95 in steps of 0.05, yielding ten different
values.

MAP(16=0.5:005:0.95)
10

As the threshold T increases, the mA P is expected to decrease. Thus,
the values of mA Ppp o will generally be lower than the ones calculated
for ToU = 0.5. In this work, we will use both the metrics: mA P and
mAP 05

The evaluation of the approach will be carried out under two
distinct operating conditions. Firstly, a test on synthetic images will be
executed to verify the success of training on synthetic data. The trained
model will be employed to identify objects in synthetic images sampled
from the original dataset that has not been used for the training.
Secondly, since the ultimate goal is to enable monitoring in a real
factory setting, a separate test will be performed using real images. The
models will be evaluated on real images to assess their capability to
perform detections in a real-world environment.

Certainly, models trained using the mixed training scheme will
not be tested on synthetic images. On the other hand, models that
were exclusively trained on synthetic data will undergo evaluation in
both scenarios. This approach aims to understand if a possible poor
performance is primarily a result of the training on synthetic images
or the subsequent domain transfer phase when dealing with real-world
images.

(2)

mAPcoco =

5. Use case and digital twin

The proposed approach has been tested on a use case represented by
a research laboratory, the Re- and De-manufacturing (RDM) Pilot Plant.
This plant was designed to manage the end-of-life of mechatronics, in
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particular printed circuit boards (PCBs), implementing a circular man-
ufacturing approach to support product disassembly, remanufacturing
and recycling of materials [11]. The laboratory was installed at the
CNR-STIIMA institute in Milan, Italy (Fig. 2(a)).

The plant consists of three stations connected by a modular trans-
port system handling the pallets and routing them to the stations:

1. Hybrid disassembly of mechatronic components taking advan-
tage of human-robot cooperation.
2. Testing and remanufacturing of printed circuit boards (PCBs).
. Mechanical pre-treatment with low environmental impact (i.e.
shredding and materials separation processes) for the recovery
of high-value and critical raw materials from PCBs.

A key element of the pilot plant is the transport and handling of
the pallets, taking advantage of a modular and reconfigurable system
consisting of fifteen conveyor modules (Fig. 3(a)).

Pallets can host PCBs of different sizes through an adaptable fixture
(Fig. 3(b)).

The conveyor modules are equipped with sensors, but they lack the
capability to uniquely identify the position of the pallets.

The flexibility and reconfigurability of the transport system make a
vision-based monitoring system a valuable tool for tracking the pallets
and their contents. Therefore, the use case focuses on recognizing the
positions of pallets and PCBs in the transportation system.

5.1. Dataset of real images

Photographs of the real system were captured to compose the
datasets of real images. These images were taken using a Nikon D3100
camera paired with an 18-55 mm lens (Fig. 4).

When collecting real images, various scenarios were set up for the
placement of pallets and PCBs:

» Black background: 414 images. Real objects on a black back-
ground (Figs. 5(a) and 5(b)).

» White background: 82 images. Real objects on a white back-
ground (Figs. 5(c) and 5(d)).

» Random objects: 32 images. Additional objects (not targeted for
recognition) were placed against the black background to test the
capability of the model to exclusively detect the objects of interest
(Figs. 5(e) and 5(f)).

+ Context: 195 images. These images feature the pallets and PCBs
placed on the transport system, which represents the real op-
erational context where monitoring is needed (Figs. 6(a) and
6(b)).

A summary of the real dataset and its contents is reported in
Table 1. The dataset comprises a total of 722 images, encompassing
671 instances of pallets and 541 instances of PCBs. It is worth noting
that transport modules are not included in this count, as capturing
images of them in isolation was not feasible. The entire dataset has
been partitioned into two sub-datasets, namely DRO and DR1, which
serve specific phases of training and testing (see Section 7). All the
images have undergone post-processed to enhance contrast and high-
light object contrast and highlight object edges for better visibility. The
real datasets and their labelling have been made available in a data
repository [69].

5.2. Digital twin of the pilot plant
The digital twin of the RDM pilot plant was developed as described

in the first phase of the approach (cf. Section 4.1) and relevant data are
available online, including the ontology model,® the VR scene,’ and the

8 https://difactory.github.io/repository/ontoeng/VL/RdmPlant.ttl
9 https://difactory.github.io/repository/scenes/VL/RdmPlant.json
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(a) Real RDM pilot plant.

(b) Digital Twin of the RDM pilot plant.

Fig. 2. Real and Digital versions of the RDM pilot plant.

(a) A conveyor module.

(b) A pallet loaded with a PCB.

Fig. 3. Conveyor module and pallet of the RDM pilot plant.

Table 1
Dataset acquired from the real plant.
Dataset # images # pallet instances # PCB instances # total instances
DRO 522 486 393 879
DR1 200 185 148 333
Total 722 671 541 1212

e

@ vso rasm@ " 2000 43k

Fig. 4. Set-up for the collection of real images in the plant.
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3D models.!® The digital twin can be visualized'! with the VEB.js web
application (Fig. 2(b)) and supports the automatic generation of the
synthetic datasets that are described in the next subsection.

6. Testing the generation of synthetic datasets

This section focuses on the generation of synthetic datasets (i.e. the
second phase of the approach, cf. Section 4.2), providing details about
the generation process tailored to the specific use case (Section 6.1)
and testing the quality of synthetic data. Specifically, the outcomes of
automatic labelling of the images (Section 6.2) and the outcomes of
manual labelling (Section 6.3) are compared in Section 6.4.

6.1. Synthetic dataset
The generation of synthetic datasets (Section 4.2) takes advantage

of the Digital Twin of the system and its VR representation in VEB.js

10 https://github.com/difactory/repository/tree/main/models/VL/RDM
11 https://difactory.github.io/DF/scenes/VL/RdmPlant.html


https://github.com/difactory/repository/tree/main/models/VL/RDM
https://difactory.github.io/DF/scenes/VL/RdmPlant.html

M. Urgo et al.

(a) Pallet on black background.

(c) PCB on white background.
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(e) Pallet and random objects on black background.

(f) PCB and random objects on black background.

Fig. 5. Examples of images containing the objects to be identified (e.g., pallets, PCBs) on white and black backgrounds and in different scenarios (e.g, a single object, multiple

objects, or together with other objects).

(Section 5.2). This VR environment facilitates the automatic generation
and labelling of data.

Regarding the use case, the generation of synthetic data is limited
to the transport modules and two specific classes of objects present in
the system: pallets and PCBs. The process of generating synthetic data
follows the following steps:

» The digital twin of the RDM pilot plant is updated, potentially
including a subset of assets that are relevant to the training
dataset. This specific subset is visualized within the corresponding
VR scene using VEB,js.

+ The virtual representations of assets are placed either on a neu-
tral background (white, black or grey), or within the virtual
representation of the building where the plant is actually located.

Shadows are enabled to enhance the realism.

PCBs are considered both in isolation and when loaded onto
pallets.

Lighting conditions, including tone and intensity, can be adjusted.
A single asset is chosen at random from the set of relevant assets
available in the VR scene.

Screenshots are captured by moving the viewpoint along a spher-
ical pattern, consistently oriented towards the selected asset.

Some examples of the synthetic images generated for the training
dataset are shown in Figs. 7 and 8.

Seven datasets (DS1,..., DS7) have been generated by varying the
number and type of objects (pallet, PCB, and conveyor) in the scene,
considering different contexts for asset placement, and incorporating
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(a) Pallet on the transport system.

(b) Pallet on the transport system.

Fig. 6. Context.

(a) PCB on grey background.

(d) Pallet on grey background.

(g) Conveyor on grey background.

(b) PCB on white background.

(h) Conveyor on white background.

(c) PCB on black background.

(f) Pallet on black background.

(i) Conveyor on black background.

Fig. 7. Examples of synthetically generated images of PCBs, pallets and conveyors on neutral backgrounds.

randomization elements. Table 2 summarizes the characteristics of the
datasets, while Table 3 reports the total number of generated images
and instances of the different classes of objects.

The first dataset DSI was generated to assess the effectiveness of au-
tomatic labelling based on the information available in the digital twin
and the VR scene. This was achieved by comparing the automatically
generated labels with the manually annotated ones.

Additionally, three datasets (DS2, DS3, and DS4) were generated,
each involving different combinations of object types within the scene.
These combinations included a single conveyor, a single pallet, a single
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PCB, a conveyor with a pallet on it, a pallet with a PCB on it, and
a conveyor with a pallet loaded with a PCB. The three datasets have
a neutral light/dark grey, white or black background, for DS2, DS3
and DS4 respectively. For these datasets, the position and lighting have
been randomized, except for the one with a black background, where
different lighting has not been used, due to the minimal impact on the
rendering.

The fifth dataset DS5 contains images with the tree classes of objects
placed in the realistic context, i.e., the virtual representation of the pilot
plant. Dataset DS6 was formulated to replicate the real configuration of
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(a) A pallet loaded with a PCB.

(d) A pallet and multiple conveyors.

(b) A pallet on a conveyor.

(e) Multiple pallets and conveyors.

(c) A pallet loaded with a PCB, on a conveyor.

(f) A pallet loaded with a PCB on a table.

Fig. 8. Synthetically generated data within the realistic virtual representation of the building.

Table 2
Characteristics of the synthetically generated datasets.
Dataset #pallets #PCBs #conveyors Randomization Context
DS1 0-1 0-1 0-6 Position Real environment
DS2 0-1 0-1 0-1 Position, light Grey background
DS3 0-1 0-1 0-1 Position, light White background
DS4 0-1 0-1 0-1 Position Black background
DS5 0-1 0-1 1 Position, light Real environment
DSs6 1-2 1-2 2-6 Position Real environment
DS7 0-1 0-1 0 Position Real environment
Table 3
Synthetically generated datasets.
Dataset # images # pallet # PCB # conveyor # other # total
instances instances instances instances instances
DS1 4960 4640 2784 8960 0 16384
DS2 10176 8896 3840 2560 0 15296
DS3 7616 6336 3840 2560 0 12736
DS4 6400 5120 3840 2560 0 11520
DS5 5304 4244 3764 2544 0 10552
DS6 3448 3448 3448 18136 0 25032
DS7 2880 1920 1920 0 5760 9600

the pilot plant by including multiple instances of conveyors, pallets and
PCBs.

Finally, dataset DS7 was defined considering a single empty pallet,
a single pallet loaded with a PCB and a single PCB on a table, together
with other objects that do not need to be detected.

All the synthetically generated datasets, except DS1, and their la-
belling, have been made available in a data repository [69].

6.2. Automatic labelling

The phase of the approach described in Section 4.2 involves the
automatic labelling of synthetically generated images. To assess the
performance and quality of this automatic labelling, dataset DS1 is par-
titioned into nine sub-datasets. Each sub-dataset contains images with
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varying numbers of objects to be labelled. The images are classified
based on the degree of complexity of the rendered scene, categorized
as low, medium and high complexity.

The time required for generating annotations is presented in Ta-
ble 4. It takes about 19.15 s to label a single image while labelling
a single instance within an image takes around 5.79 s on average. It is
worth noting that the time needed to label images increases with the
complexity of the scene. Indeed, the labelling process relies on defining
bounding boxes for objects in the images, which is achieved through the
rendering engine. Thus, scenes with more objects (higher complexity)
take longer to render and label.

Furthermore, the time required for labelling the images is more
closely related to the number of images rather than the number of
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Table 4
Automatic labelling empirical data.
Dataset Scene # images # instances Total time Mean time Mean time
complexity [t/100 inst.] [t/100 imgs]
DS1-1 Low 640 1920 1m54s 593 s 17.81 s
DS1-2 Low 640 640 1m39s 15.46 s 15.46 s
DS1-3 Low 640 1280 1mb52s 875 s 17.50 s
DS1-4 Medium 1 216 2 432 3m57s 9.74 s 19.49 s
DS1-5 Medium 320 320 1mO00s 18.75 s 18.75 s
DS1-6 Medium 320 320 53 s 16.56 s 16.56 s
DS1-7 High 320 2 560 1mO07s 2.62 s 20.93 s
DS1-8 High 432 3 456 1m43s 298 s 23.84 s
DS1-9 High 432 3 456 1m45s 3.04 s 24.30 s
Overall 4 960 16 384 15m 50 s 579 s 19.15 s
Table 5
Manual labelling empirical data.
Individual # images # instances time [min] Mean time Mean time
to label [min/100 imgs] [min/100 inst.]

P1 200 218 96 44.04 48.00

P2 235 590 312 52.88 132.76

P3 287 457 107 23.41 37.28

Overall 722 1 265 515 40.11 72.68

instances. For example, the average time needed to create 100 images
for datasets DS1-1 and DS1-2 is similar, even though DSI-1 has three
times the number of instances compared to DS1-2.

6.3. Manual labelling

The manual labelling of images to support the training of object
recognition models is a common practice. Nonetheless, due to its
highly extremely time-consuming nature, it also poses a significant
barrier to adopting these approaches. To address this challenge, various
software applications have been developed to streamline this phase
(e.g., Labellmg, VoTT, VGG Image Annotator).

Three individuals were tasked with the manual labelling process for
two classes of objects, i.e. pallets and PCBs. Upon completing it, the
time taken for labelling was documented, and participants were queried
about any potential physical or psychological stress encountered during
the task.

Similarly to the assessment of automatic labelling (Section 6.2),
the time taken to identify (define the bounding box) and label 100
instances, along with the time needed to annotate 100 images, was used
as an evaluation metric. The outcomes of this assessment are reported
in Table 5, showing an average of roughly 40 min to label 100 object
instances, while the average processing time is approximately 73 min
for 100 images. Furthermore, the time to accomplish the task seems
mostly dependent on the number of instances rather than the number
of images.

Furthermore, participants reported the potential occurrence of phys-
ical and psychological stress, notably:

« Psychological stress. All participants noted that the task was
highly repetitive while demanding a significant level of concen-
tration. Consequently, they found it necessary to take frequent
breaks to remain focused.

 Physical stress. Each participant mentioned experiencing eye
strain due to the requirement of closely scrutinizing small ele-
ments on the screen. Some also reported experiencing tired eyes
and mild headaches.

6.4. Manual vs automatic labelling

The comparison between automatic and manual labelling is con-
ducted based on both time and quality performance.
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In terms of time, the results show that manually locating and
labelling 100 images takes an average of 40.11 min, whereas the
automatic approach demands only 5.79 s on average.

Therefore, the automatic approach provides a substantial advantage
in terms of time and cost savings. Additionally, it eliminates the po-
tential for psychological or physical stresses, as well as the impact of
human factors that could introduce errors during the labelling process.

Regarding the quality of labelling, the automatic generation of
bounding boxes followed the procedure outlined in Section 4.2. As a
result, these automatically generated bounding boxes were used as the
ground truth after validating the automatic labelling process.

The quality of the labels is determined by how accurately the
bounding box has been drawn around the object to be labelled. Ideally,
a perfect bounding box should have its edges aligned with the edges
of the object, without excluding any part of the target, while also
minimizing the area enclosed by the bounding box.

The comparison is made between the manually annotated dataset
(see Section 6.3) and the same images annotated automatically (see
Section 6.2). The accuracy is measured by calculating the IoU (Eq. (1))
between the two bounding boxes (manually and automatically gener-
ated) for the same object.

The results of the comparison are reported in Table 6, showing a
high overall average IoU value (see Fig. 9a). This suggests that the
manually labelled bounding boxes align closely with those obtained
through automatic labelling. However, it is worth noting that despite
the participants in the analysis being trained for image labelling, some
variability in human-executed processes cannot be entirely eliminated.

Another notable observation is the lower average IoU achieved
in the labelling of PCBs. This discrepancy can be attributed to the
small size of PCBs (see Fig. 9b). The relatively low image resolution
(416 x 416) chosen to match the input requirements of the YOLO-v3
model (see Section 4.3) makes it difficult to accurately place bounding
boxes around these small objects. Although attempts to zoom in and
locate the edges of small PCBs are made during the labelling process,
inaccuracies may arise due to the limitations imposed by the resolution.
A potential solution to this issue might involve increasing the resolution
of images to enhance the rendering quality of the rendering of small
objects.

7. Training a CNN model on synthetic dataset

The second set of tests involves training CNNs for object detec-
tion using synthetic data (i.e. the third phase of the approach, cf.
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(b) Examples of an image with a PCB

Fig. 9. Dataset examples.

Table 6
Results.
Class # instances Max IoU Min IoU Average IoU
Pallet 351 1 0.067 0.94
PCB 273 1 0.63 0.84
Total 819 1 0.90 0.91

Section 4.3). It must be noted that a comprehensive and quantitative
analysis to optimize parameters and hyperparameters is not within the
scope of this study and will be addressed in future developments.

The training process will make use of both synthetic (Section 6.1)
and real data (Section 5.1). As the conducted experiments are not
exhaustive, a stepwise approach is adopted, assessing the viability of
various alternative options and proceeding accordingly.

The training and testing of the CNN model will be conducted
using various strategies. To support the experiments, the following
alternative training and testing approaches have been defined:

+ Virtual Training: training on synthetic data.

» Mixed Training: training on synthetic data plus a fine-tuning on
real data.

+ Real Training: training on real data.

» Virtual Testing: testing on synthetic data.

+ Real Testing: testing on real data.

Table 7 outlines the alternative training and testing schemes. Based
on these schemes, a set of experiments have been designed and exe-
cuted. The specifics of these experiments are defined in Table 8. In the
ensuing subsections, the outcomes of the experiments are detailed and
analysed, aiming to demonstrate the efficacy of the proposed workflow.

All the experiments have been executed in the cloud on a Google
Colaboratory'? instance equipped with an NVIDIA Tesla V100-SXM2
with 16 GB RAM and NVIDIA CUDA'® libraries version 11.0. These
instances provide a Jupiter Notebook IDE in the cloud for rapid Python
development.

A YOLO-v3 model has been implemented, leveraging the open
source library Keras'* version 2.2.3 and the TensorFlow'® deep learning
environment. The model developed has been based on an existing
implementation of the YOLO-v3 model [70].

12
13
14
15

https://colab.research.google.com
https://developer.nvidia.com/cuda-toolkit
https://keras.io
https://www.tensorflow.org
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7.1. SO: Training and testing on real data

A first set of experiments has been conducted to establish a baseline
for training on synthetic data. In this context, the conventional training
methodology has been employed. The dataset encompassing images
acquired from the real plant (Section 5.1) has been used for training,
validation, and testing ( Table 8).

The training process for the model was divided into two steps.
During the first step, which lasted 30 epochs, only the last layers of the
CNNs were made trainable. Subsequently, the entire model was trained
during the second step, which lasted for 45 epochs.

The train and validation loss graph is shown in Fig. 10(a). The graph
exhibits a spike in both the train and validation loss around epoch
30. This is due to the transition into the fine-tuning phase, where all
layers of the CNN are unfrozen. Thus, the loss computation involves
parameters that have not been previously trained with the current
dataset and require convergence. The total training time is 6 h and
25 min. At the end of the training, the training and validation losses
are equal to 6.160 and 6.229, respectively ( Table 9).

The trained model underwent testing using the images from the
designated testing dataset (Table 8). The resulting performance values
are reported in Fig. 10(b), displaying a COCO mean average precision
of 34.66% and a mean average precision (mAP) of 71.77. It must be
noted that the low values of the loss functions and mean average pre-
cision indicate that the current dataset might be insufficient to achieve
good results. This emphasizes the importance of using synthetically
generated data to enhance the training of these models.

The low mean average precision is reflected in the set of detections
made by the model, as shown in Fig. 11: Fig. 11(a) shows a correct
detection for both the pallet and the PCB, while the PCB detection is
missing in Fig. 11(b). There are also two examples of false positives,
where objects are detected (e.g., a PCB) even when they are not present
in the image, as in Fig. 11(c) and (d).

7.2. SA: Virtual training and testing

In the second set of experiments, the object detection model is
trained exclusively on synthetic data (Table 8). Similar to the previous
experiments, the training of the model has been carried out in two steps
lasting 15 and 8 epochs, respectively.

The graph for the train and validation loss is shown in Fig. 10(a). A
discontinuity of the validation loss occurs as the fine-tuning phase starts
after epoch 15. The train (orange) and validation (blue) loss curves
converge around epoch 10. The total training time is 9 h and 42 min,
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Table 7
Training and testing schemes.
1d Training Testing Description
SO Real Real This is the classic training and testing scheme. It provides a benchmark for alternative strategies supported by synthetic data.
SA Virtual Virtual This scheme completely relies on synthetic data. It serves to test the effectiveness of the training.
SB Virtual Real This scheme entails a domain transfer of a model trained on synthetic data.
SC Mixed Real This scheme assesses the benefits of an additional training step on real data to support the domain transfer.
Table 8
Experimental structure.
Scheme Training Training Validation Initial Optimizer Testing Testing
dataset dataset learning rate dataset
SO Real 75% 12.5% 1073 Adam Real 12.5%
(All DR) (All DR) (All DR)
SA Virtual 70% 20% 1074 Adam Virtual 10%
(All DS) (All DS) (All DS)
SB Virtual 70% 20% 1074 Adam Real 100%
(All DS) (All DS) (DR1)
SsC Mixed 70% 20% 1073 Adam Real 100%
(All DS) + (All DS) + (DR1)
90% (DRO) 10% (DRO)
fine-tuning fine-tuning
COCO AP = 34.66%
0.5 71.773072
Loss 0.55 70.011656
160 0.6 60.423363
0.65
120
0.7 42.948713
80 0.75 31.462281
0.8 13.991834
40 0.85
| 0.90.53
0 0.95 {0.04
0 10 20 30 40 50 60 70 0 0 20 3 4 s e 70 8
(a) Loss function (b) mean Average Precision
Fig. 10. Results for training and testing on real data.
Table 9
Results for the training and testing in the different schemes.
Epochs Time Epochs Time Total time Loss Validation mAP mAP
training training Fine-tuning fine-tuning loss IoU=0.5 COCO
S0 30+45 6 h 35 min - - 6 h 35 min 6.160 6.229 71.77 34.66
SA 15+8 9 h 42 min - - 9 h 42 min 1.279 1.269 99.05 73.52
SB 15+8 9 h 42 min - - 9 h 42 min 1.279 1.269 54.49 33.25
SC 15+8 9 h 42 min 35 2 h 16 min 11 h 58 min 3.241 4.470 90.00 48.52

with a final value for the train loss and validation loss equal to 1.279
and 1.269, respectively (Table 9).

The trained model has been tested on the images of the testing
dataset (Table 8). The obtained performance values are reported in
Fig. 12(b) with a COCO mean average precision of 73.52% and a mean
average precision (mAP) of 99.05. These values are extremely positive,
denoting a very good capability of the model to identify the presence
and position of the considered objects. Furthermore, these values align
with the ones obtained by the YOLO-v3 model in the COCO challenge
2019 leaderboard for detecting common objects [22].

7.3. SB: Virtual training and testing on real data
The third set of experiments is focused on the main objective of the
proposed approach, i.e., training a CNN for object recognition using

synthetic data and subsequently applying it to monitor a real system.
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The trained model is the same as the one trained in Section 7.2, but the
testing phase is carried out using a dataset containing only real data,
specifically DR1 as indicated in Table 1.

The resulting performance values are reported in Table 9 with
mAPcoco equal to 33.25% and mAP;, ;-5 equal to 54.49%. These
obtained results are unsatisfactory and highlight that training solely on
synthetic data does not ensure sufficient detection performance on real
images.

To understand the reasons for the poor performance, a deeper
investigation was conducted by assessing the accuracy of the detections
on images within the dataset. This qualitative analysis revealed that the
model frequently experiences difficulties in accurately detecting objects
in complex scenes with multiple objects and heterogeneous framing,
resulting in missed and incorrect detections (Fig. 13). Conversely, the
detection performance was higher for objects placed against a neutral
background (black, white or grey) and positioned at the centre of the
image.
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(a) Correct detection. (b) Missing PCB detection.
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A
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(c) False positive for a PCB. (d) False positive for a PCB and a pallet.

Fig. 11. Examples of detections operated on the test dataset.
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Fig. 12. Results for virtual training and testing.
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(a) Missing detections. (b) False positives

Fig. 13. Examples of wrong detections in the testing dataset.
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Fig. 14. SC: Training and testing.

(a) Detection in a real environment (confidence: PCB transport system
0.97, PCB table 0.76, Pallet transport system 0.99, Pallet table 0.88).

(b) Detection in a real environment (confidence: PCB 0.96, Pallet 1.00).

Fig. 15. Detection of objects in a real environment.

7.4. SC: Mixed training and testing on real data

To address the challenges experienced with the training scheme in
Section 7.3, a different scheme has been adopted. Training is performed
on a mixed dataset, containing both synthetic and real images. The
CNN is initially trained on synthetic data, using the same dataset and
methodology used in Section 7.3. Subsequently, a fine-tuning process
is conducted on a dataset consisting of real images. The characteristics
of the training dataset are outlined in Table 8.

The diagram of the loss function is plotted in Fig. 14(a). The graph
illustrates the fine-tuning phase of the training, therefore the initial
15 epochs are not included since they relate to the first training. The
fine-tuning process lasts 35 epochs, resulting in a combined total of
50 epochs for both training stages. The final value of the train and
validation loss are 3.241 and 4.470, respectively.

The training time for the mixed training scheme is notably lower in
comparison to the one presented in Section 7.1.

The testing of the model was conducted on the test dataset DR1 (Sec-
tion 7.3). The obtained performance values are reported in Fig. 14(b)
and in Table 9 with a mAP oo equal to 48.52% and (mAP;,y—gs)
equal to 90.00%. These results underscore the efficacy of the mixed
training approach, leading to significant improvement in comparison
to the performance obtained in Section 7.3.

7.5. Final comments and remarks

The experiments carried out using the proposed training and val-
idation schemes shows that, pursuing scheme SC, it is possible to
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reach an mA P equal to 48.52% and (mA P ,—g 5) equal to 90.00%.
This degree of accuracy is adequate for concrete applications of the
object detection model to real application scenarios. This means that
the model trained taking advantage of synthetic data is capable of
correctly detecting the objects of interest in their real-world context,
ensuring accurate localization of pallets and PCBs with respect to the
transport system within the RDM plant (cf. requirements FR1, NFR2,
and NFR3). To provide visual evidence of the experiment results, some
examples are shown in Fig. 15, where blue bounding boxes indicate
pallets, while red ones represent PCBs.

Some further remarks are worth to be provided to cover possible
limitations, constraints and applicability of the proposed approach.
The effectiveness and reliability of transfer learning approaches and
training on synthetic images strongly depends on the variety and am-
plitude of the training dataset. Factors influencing this are the number
of synthetic images, and their variety in terms of: framing, number and
classes of objects, background objects, background environment (floor,
walls, etc.), lighting conditions, etc. The proposed approach for the
generation of synthetic data using a DT model of a factory is aimed at
supporting the automatic generation of a very large number of images
with higher variety. Nevertheless, the generated images are still real-
istic, i.e., they show the objects to be identified in realistic conditions
as they are likely to happen in the factory. Additional approaches has
been proposed generating unrealistic images that can push towards
the variety of the dataset, contributing to obtain a higher effectiveness
of the object detection models [41,71]. Pursuing these strategies is a
mandatory option to improve the performance and effectiveness of the
proposed class of approaches.
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Position 4

Position 5

Position 6

Position 1

Fig. 16. Definition of positions within the transportation system.

Other factors, such as image rendering quality, resolution, and the
specific characteristics of the objects to be detected, also influence the
training effectiveness. For instance, PCBs, with their distinct textures
and colours, are easier to detect, whereas metallic objects might require
more careful consideration regarding rendering and resolution due to
their differing appearance in virtual and real environments.

Regarding lighting conditions, both synthetic and real test images
were subjected to varying levels of brightness. During the experiments,
no significant impact of lighting variations on detection quality was
observed.

However, the size and location of the objects in the image play a
crucial role. Objects at the image’s edge or smaller in size were more
challenging to detect, particularly in dataset D.S6. This limitation can
be mitigated by using multiple cameras or high-resolution cameras in
the factory, allowing multiple parallel detections on different portions
of the same image.

8. Application to the monitoring of transportation and handling
operations

The model trained and tested in Section 7.3 has been applied to
demonstrate the feasibility of using a CNN for tracking parts as they
move through a manufacturing system (fourth phase of the approach,
cf. Section 4.4).

The proposed hypothesis involves the replacement of traditional
position sensors with a network of cameras and trained CNN models.
Although position sensors might be cost-effective, their integration into
industrial monitoring systems can still incur significant expenses. Fur-
thermore, relying on cameras and software-driven methods offers the
monitoring system greater flexibility, particularly in scenarios where
the system layout or transportation equipment might undergo changes.

The proof of concept is realized to monitor the movement of pallets
along the conveyors within the transportation system of the RDM pilot
plant (Section 5).

In addition, some hypotheses are defined:

1. Cameras are installed in fixed positions.

2. Objects that need to be monitored are completely visible within
the field of view of the cameras.

. The position of an object is discrete, indicating specific pre-
defined locations (e.g., Position A or Position B), rather than
continuous spatial coordinates.

. The possible positions for objects are predetermined and known
in advance.
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For each camera, a bounding box (B;) is defined for each of the
selected possible positions of an object in the system. This can be done
manually or leverage the DT of a factory, similarly to what has been
done for the automatic labelling of synthetic images (Section 6.2). An
example is provided in Fig. 16, showing the definition of the bounding
boxes for six alternative pallet positions on the conveyors.

Thus, the trained CNN model is employed to detect the presence
of pallets within the images captured by the cameras placed in fixed
positions. Once a pallet is detected, the model predicts a bounding box
(Bp) around it, indicating its location within the image. The evaluation
of the possible presence of a pallet in a specific position is performed
using the IoU metric (Eq. (1)), where the bounding box for the ground
truth is the one associated with a position (B;). As multiple positions
are available, the prediction of the position of the pallet is executed by
selecting the position with the highest value of the IoU:

P = argmax
hell,....6)

IoU, (€))

A test was carried out by moving a single pallet on the conveyor and
collecting a set of images. Hence, the prediction of the position of the
pallet is operated according to the steps described above. The results
are reported in Table 10, showing that, at least for this simple scenario,
the proposed approach can predict the correct position of the pallet (cf.
requirement FR2). The detections associated with these images are also
reported in Fig. 17.

A preliminary test has also been carried out with multiple pallets,
both empty and loaded with a PCB. The results of the detections are
reported in Fig. 18, demonstrating the capability of also identifying
multiple pallets and their status (cf. requirement FR3).

The inference time for detecting the presence of the objects in the
image was on the order of tens of milliseconds, consistent with the de-
clared performance of YOLO-v3 models [67]. Considering the relatively
low speed of the pallets moving within the plant, it is reasonable to
sample a frame about every second. Thus, the proposed approach can
operate a real-time monitoring of the selected objects in the system (cf.
requirement NFR1).

Traditional and well-established monitoring methods typically rely
on basic sensors like proximity and presence detectors, which are
notably cost-effective. Implementing computer vision for monitoring in-
troduces a more intricate workflow and demands greater computational
resources, often resulting in less reliability. However, when considering
the monitoring of an entire factory, the scenario changes. While indi-
vidual sensors may be inexpensive, the cumulative cost of installing and
integrating a vast number of them can become substantial, making the
use of cameras and computer vision unexpectedly cost-effective.
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(a) Detection of a pallet in P1.

(b) Detection of a pallet in P2.

(c) Detection of a pallet in P3.

(d) Detection of a pallet in P4.

(e) Detection of a pallet in P5.

(f) Detection of a pallet in P6.

Fig. 17. Identification of the position of a pallet on the conveyor.

Table 10

Results for the prediction of the position based on the IoU.

Actual position ToUp, ToUp, ToUp; ToUp, ToUps ToUpg Predicted position
P1 0.652 0.114 0.000 0.000 0.006 0.020 P1
P2 0.266 0.646 0.025 0.000 0.000 0.000 P2
P3 0.000 0.172 0.631 0.010 0.004 0.000 P3
P4 0.000 0.004 0.010 0.656 0.173 0.000 P4
P5 0.000 0.000 0.000 0.021 0.677 0.042 P5
P6 0.000 0.000 0.000 0.000 0.000 0.671 P6

Furthermore, the key advantage of camera-based systems lies in
their flexibility and reconfigurability. In scenarios where the need arises
to monitor new parts or track different routes, cameras can be easily
adapted to these new requirements by simply retraining the object
detection models to recognize these new elements. In contrast, updating
traditional sensor-based monitoring systems could entail significant
reconfiguration costs.

9. Conclusions

This study focuses on training CNNs using synthetically generated
images to enhance object detection in a real-world setting. The mo-
tivation is to overcome two significant challenges in adopting these
methods: the requirement for large datasets and the related annotations
to train neural networks effectively.

The major challenge for using synthetic data is the definition of
suitable scenarios to generate data that exhibits adequate diversity and
volume, thus facilitating a successful domain transfer.

The proposed approach unequivocally showcases its capability to
generate large amounts of labelled data with exceedingly minimal time
and computational resources. This is a clear advantage with respect to
the traditional image collection methods and manual labelling.

A YOLO-v3 model was trained on synthetic data and tested in dif-
ferent scenarios. It was then experimentally proven that models trained
uniquely on synthetic images could achieve some correct detection on
real images, even though they could not match the requirements in
terms of accuracy. Integrating the synthetic dataset with a set of real
images was considered a viable solution to achieve optimal results. The
real images can be used for a second training phase (fine-tuning) of the
models previously trained on synthetic datasets.
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(g) Detection in frame 7/9.

(h) Detection in frame 8/9.
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(i) Detection in frame 9/9.

Fig. 18. Identification of position and state of multiple pallets.

Furthermore, it has been demonstrated that conducting an initial
training phase on a synthetic dataset significantly reduces training
duration on real images. The experimental outcomes show that the
average duration of the second training phase is less than 30% of
the training time required for training exclusively on real images (cf.
benchmark experiment in Section 7.1).

Finally, the effectiveness of the tracking operation leveraging a fine-
tuned model was evaluated through a simplified use case relative to
the transport system of the RDM pilot plant. The results indicated that
the achieved degree of accuracy enables the pallet localization within
the transport system and provides insights into its movement among
predetermined positions.

Future work will address several developments related to the
methodology and its application. First of all, although the performance
of the proposed approach is quite good, the training of CNN models on
synthetic data is likely to be influenced by multiple factors, e.g., the
characteristics of the object, the resolution of the generated images,
the randomization parameters used to generate synthetic images, the
characteristics of the scene, etc.

Thus, the proposed approach will be tested and applied to differ-
ent factory contexts, to assess its robustness in different application
domains. Nevertheless, the availability of a digital representation of the
factory offers the opportunity to fine-tune the factors described above
and, thus, address the possible weakness feasibly, without the need to
access and/or modify the real factory environment.

In addition, the output of the CNN model can be further elabo-
rated and enhanced by a tighter integration with the ontology-based
model, thus semantically representing the evolution of the monitored
production system.
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