

Edge functionalization of graphene layers with a 2-pyrone

Fatima Margani, Vincenzina Barbera, Maurizio Galimberti

Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Via Mancinelli 7, 20131 Milano, Italy. <u>fatima.margani@polimi.it</u>

Introduction

2-pyrones are a class of unsaturated heterocyclic C-6 sugar derivatives with versatile chemical reactivity, intriguing building blocks in organic and polymer chemistry [1, 2]. A green and efficient procedure for the preparation of 2-pyrone is available, from galactaric acid [3], also known as mucic acid.

Nowadays, two main families of GO are available, with:

1) an extended oxidation of graphene layers;

2) a selective edge oxidation [5]

Chemical Structure of 2-pyrone.

Objectives

> To prepare a new generation of edge functionalized GO, thanks to the use of a biobased molecule, a 2-pyrone, PyrCOOEt,

through the functionalization of a nano-sized graphite with high surface area (HSAG) [6], without affecting the sp² hybridization of carbon atoms. [7]

Preparation of PyrCOOEt and HSAG-PyrCOOEt adduct

Properties of HSAG-PyrCOOEt adduct, edge functionalized nanosized graphite

FT-IR on diamond crystal

X-ray Diffraction Patterns

Raman Spectroscopy

Hansen solubility parameters^a

Sample	δ_{D}	δ_P	δ_{H}	Radius	$\delta_T{}^b$
HSAG	17.8	3.1	5.7	1.0	18,95
HSAG-Pyr-COOEt	8.36	12.46	13.59	16.05	20,64

^aMeasure unit: MPa ^{1/2}; ^b $\delta_T^2 = \delta_D^2 + \delta_P^2 + \delta_H^2$

IR findings support the formation of the adduct

No expansion of the interlayer distance
Unaltered in plane order

Substantially unaltered

bulk structure

Modification of HSP after functionalization

Conclusions

Edge functionalization of graphene layers was obtained using 2-pyrone, with high atom efficiency and low E factor.

Mild sonication and centrifugation of water dispersion of HSAG-PyrCOOEt allowed to isolate few layer graphene from the supernatant.

References:

1. A. Goel, V. J. Ram, Tetrahedron, 2009, 65(38), 7865-7913.

2. C. Gambarotti, M. Lauria et al., ACS Sustain. Chem. Eng., 2020, 8(30), 11152-11161.

- 3. Leonardi, G., Li, J, et al., European Journal of Organic Chemistry, 2020, 2020(2), 241-251.
- 4 Novoselov, K. S., & Geim, A. K. (2007). The rise of graphene. Nat. Mater, 6(3), 183-191.5. Hummers Jr, W. S., &
- Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the american chemical society, 80(6), 1339-1339.
- 6. F. Margani, V. Barbera, M. Galimberti, manuscropt in preparation.
- 7. V. Barbera, L. Brambilla, A. Porta, R. Bongiovanni, A. Vitale, G. Torrisi, M. Galimberti., *Journal of Materials Chemistry A*, 2018, 6(17), 7749-7761.

Acknowledgement: Thanks to Pirelli Tyre for the financial support and Materiali Sensibili for the scale up of the synthesis of pyrone.

TEM (a) and HRTEM (b) micrographs

POLITECNICO DI MILANO

Poster for SCI2021, XXVII CONGRESSO NAZIONALE DELLA SOCIETA' CHIMICA ITALIANA