
Cost-effective fixed-point hardware support for RISC-V embedded systems

Davide Zoni∗, Andrea Galimberti

Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano,
P.zza L. Da Vinci 32, 20133 Milan, Italy

Abstract

With the ever-increasing energy-efficiency requirements for the computing platforms at the edge, precision tuning techniques high-
light the possibility of improving the efficiency of floating-point computations by selectively lowering the precision of intermediate
operations without affecting the accuracy of the final result. Recent trends also demonstrated the possibility of successfully em-
ploying fixed-point computations in place of floating-point ones to further optimize the efficiency in the high-performance com-
puting (HPC) domain. However, the use of integer functional units to support the execution of fixed-point operations in embedded
platforms can severely degrade the energy-delay product (EDP). This work presents a cost-effective architecture to efficiently
support fixed-point computations in embedded systems with two goals. On the one hand, it allows replacing the floating-point
computations, with meaningful area and EDP improvements. On the other hand, it can complement the FPU, providing flexibility
in selecting the best arithmetic for the target applications depending on their accuracy and performance requirements. Experimen-
tal results were collected from a representative set of floating-point-intensive applications executed on six variants of the baseline
system-on-chip (SoC). We compared the efficiency of different floating- and fixed-point architectures in terms of accuracy, area,
and EDP. Our fixed-point solution demonstrated a 0.651 EDP, normalized with respect to a SoC that featured a binary32 FPU, while
achieving a negligible accuracy loss, i.e., 0.0003% on average (0.004% peak), compared to binary32 execution. In contrast, a SoC
employing the integer functional units for fixed-point execution reports a 1.796 normalized EDP to achieve the same accuracy loss.
Compared to the baseline SoC implementing only the integer units, the proposed architecture shows an area overhead limited to
4%, while the SoC featuring binary32 floating-point hardware support requires 32% more resources.

Keywords: Fixed-point arithmetic, Efficient computing, Power-performance, Embedded systems, Compilers, Microarchitecture

1. Introduction

Modern embedded systems, especially those at the edge, are
no longer only smart sensors but also general-purpose comput-
ing platforms in charge of efficiently performing a large variety
of computationally intensive tasks. Apart from using system-
wide energy-performance optimization policies [1, 2] employ-
ing run-time power monitors either in hardware [3] or soft-
ware [4], a vast amount of research targets the optimization of
the floating-point computations executed in such tasks. Approx-
imate computing techniques operate at compile-time to leverage
the error tolerance of several emerging applications by trad-
ing the accuracy of the computed data with their energy con-
sumption [5]. However, the reduced accuracy of the results
imposed by approximate computing techniques prevented their
adoption across a wide range of application scenarios. Rather
than tolerating the accuracy errors due to the limited precision
of the hardware and software components, transprecision com-
puting systematically delivers, by design, the correct amount
of precision to all the intermediate computing steps of the ap-
plications [6]. In particular, it works by allowing a reduction

∗Corresponding author
Email addresses: davide.zoni@polimi.it (Davide Zoni),

andrea.galimberti@polimi.it (Andrea Galimberti)

in the precision of the intermediate computations until when
the final result meets any accuracy constraints. Considering
transprecision computing, precision tuning defines the set of
compile-, i.e., static, and run-time, i.e., dynamic, precision tun-
ing strategies, that allow fine-grained control of the precision
of the intermediate steps of the computation. Precision tuning
techniques were extensively used to optimize the floating-point
computations [7, 8, 9, 10] by means of novel low-precision
floating-point data formats [11, 12, 13] and the use of fixed-
point arithmetic in place of the floating-point one [14]. No-
tably, carefully tuned fixed-point data formats were success-
fully employed to optimize the run-time energy-efficiency in
the high-performance computing (HPC) [14] and GPU [15] sce-
narios. In contrast, the use of fixed-point precision tuning tech-
niques in embedded computing platforms severely affect both
performance and efficiency due to the use of integer functional
units, i.e., ALU and multiplication-division, to perform fixed-
point computations [14]. Notably, efficient embedded systems
make use either of ad-hoc 8- and 16-bit hardware accelera-
tors or general-purpose transprecision units still using 8 and 16
bits operands [16], thus preventing the execution of accuracy-
sensitive applications.
Contributions - The paper presents a cost-effective fixed-point
architecture to support precision tuning and approximate com-

Preprint submitted to Journal of Systems Architecture

puting techniques with two contributions to the state of the art:

• Efficient fixed-point architecture - We introduce an ex-
tension (Zm) of the RISC-V ISA that implements eight
fixed-point multiplication/division instructions, each cor-
responding to an instruction from the RISC-V ISA M stan-
dard extension, and provide hardware support for each of
them. Our lightweight architecture supports fixed-point
computations for any 32-bit fixed-point format with an
area overhead limited to 4% compared to the baseline
SoC without the FPU.

• Architectural design space exploration - We compared
the proposed fixed-point support in terms of area, EDP,
and accuracy, against a variety of implementations pro-
viding hardware support for integer operations only, for
floating-point operations with different formats, and for
fixed-point operations. Compared to native floating-point
execution, our solution exhibits an average EDP of 0.651
and negligible accuracy loss, i.e., 0.0003% on average (0.004%
peak). The EDP improvement and the low area overhead
enable fixed-point precision tuning in embedded systems
with the potential goal of replacing or complementing the
floating-point hardware support.

The rest of the manuscript is organized into four parts. Sec-
tion 2 reviews the background and the state of the art related
to precision tuning and hardware design involving floating- and
fixed-point formats. Section 3 presents the cost-effective fixed-
point architecture. The compiler support as well as the experi-
mental results in terms of EDP, accuracy, and resource utiliza-
tion, considering different floating-point and fixed-point imple-
mentations, are discussed in Section 4. Conclusions are drawn
in Section 5.

2. Background and related works

The goal of this section is twofold. Section 2.1 discusses
the background on floating- and fixed-point data formats. Sec-
tion 2.2 reviews the state-of-the-art considering hardware and
software proposals related to precision tuning and transpreci-
sion computing.

2.1. Background

The floating- and fixed-point formats define the internal rep-
resentation of real numbers in digital computing systems, re-
gardless of whether the computation is performed in either soft-
ware or hardware. Floating- and fixed-point data formats share
the limitation of only approximating real values due to the finite
amount of bits available to represent each number. Tradition-
ally, floating-point data formats offer a wide dynamic range at
the cost of complex arithmetic that imposes the use of special-
ized and high-latency computing platforms. In contrast, fixed-
point data formats offer simpler arithmetic that, in general, can
be computed employing the already available integer functional

units. However, the latter solution presents two critical draw-
backs. First, the fixed-point representation offers a smaller dy-
namic range than the floating-point representation. Second, the
use of integer functional units to execute fixed-point computa-
tions can severely affect the energy-efficiency metric. Notably,
the logarithmic number system (LNS) [17] offers an alternative
number representation which simplifies multiplications and di-
visions as well as powers and roots at the cost of more complex
additions, subtractions, and conversions between logarithmic
and absolute values. The use of LNS is thus convenient only in
applications that require few conversions and where most oper-
ations are multiplications and divisions, as in the case of digital
signal processing [18] while fixed- and floating-point notations
are advantageous in all the other application scenarios.
Floating-point representation - The floating-point data format
specifies the encoding of a floating-point number f as defined
by Equation (1), where S is the sign, M is the mantissa (or
significand), i.e., the fractional part, E is the exponent, and b is
the base.

f = (−1)S · M · bE (1)

The precision of the floating-point representation increases
with the number of bits used to encode the mantissa since the
maximum distance between the encoded value and the real num-
ber decreases. Moreover, the dynamic range, i.e., the ratio be-
tween the largest and the smallest representable floating-point
numbers, increases with the number of bits used for the expo-
nent and, to a lesser extent, with the number of bits used to en-
code the mantissa. However, the growth of size in the floating-
point format can negatively affect the energy consumption and
performance of the computation [19].

bfloat16

E (11 bits) M (52 bits)S

E (8 bits) M (7 bits)S

E (5 bits) M (10 bits)S

binary64

15 7

63 52

0

15 10

E (8 bits) M (23 bits)S

31 23

51

22

9

6

14

62

30

14

binary32

binary16

E (15 bits) M (112 bits)S

binary128
127 112 111126

0

0

0

0

float24

E (8 bits)S

18 10 917
float19

E (8 bits)S

23 15 1422

M (15 bits)

0

M (10 bits)

0

Figure 1: Encoding of floating-point formats. Each floating-point number is
represented by a sign (S), an exponent (E), and a mantissa (M), according to
Equation 1. The sign is encoded by 1 bit, while the bitwidth of the exponent
and the mantissa depend on the specific floating-point format.

In order to offer different combinations of precision and dy-
namic range, the IEEE 754-2019 standard defines three floating-
point formats, i.e., binary32, binary64, and binary128. Each
format shares the binary base and a 1-bit sign encoding, while

2

the sizes of exponent and mantissa are different (see Figure 1).
The binary32, binary64, and binary128 floating-point formats
are respectively encoded by 32, 64, and 128 bits. Tradition-
ally, the use of binary32 represents the de-facto choice to de-
liver a wide dynamic range and reasonable precision in embed-
ded systems. binary64 extends the format precision while bi-
nary128 is usually reserved for scientific computations where
no compromises on precision and dynamic range can be al-
lowed. Moreover, the 16-bit IEEE binary16 format was in-
troduced to support floating-point computations in embedded
applications for which dynamic range and precision reductions
are allowed. However, the limited dynamic range offered by
the binary16 format represents an obstacle in those applications
that require a wide dynamic range and that are not precision-
sensitive, e.g., deep learning applications. To this extent, the
brain-inspired floating-point format (bfloat16) emerged as an
effective alternative to binary16. bfloat16 is a 16-bit floating-
point format that offers a wider dynamic range than binary16
at the cost of a precision reduction. The bfloat16 exponent
is encoded by 8 bits instead of 5, while its mantissa is en-
coded by 7 bits instead of 10. Moreover, conversions to and
from the binary32 format can be easily performed by right-
padding and truncating the mantissa, respectively. Likewise,
other non-standard floating-point data formats can be defined to
support precision tuning methodologies. For example, float19
and float24 are characterized by an 8-bit exponent, while their
mantissa is encoded by 10 and 15 bits, respectively (see Fig-
ure 1).
Fixed-point representation - The fixed-point data format spec-
ifies a fixed-point number Q as composed by the integral (I)
and the fractional (K) parts. A radix point separates the inte-
gral and the fractional parts, and its position is almost always
implicit, i.e., the radix point is not explicitly encoded. Indeed,
the programmer, by means of the compiler, assigns the radix
point position and tracks it through every fixed-point computa-
tion. Equation (2) defines the formula to retrieve the encoded
value from a fixed-point representation, where s is the sign and
b is the base used in the encoding.

Q = (−1)s ·

I+K−1∑
j=0

x j · b j−K

 (2)

From the implementation viewpoint, fixed-point numbers
are stored as integers, and, in general, the hardware to imple-
ment integer instructions can also be reused to perform fixed-
point computations. Figure 2 depicts the layout for unsigned (UI+K,K)
and signed (S ∗I+K,K) fixed-point numbers. The numbers are en-
coded using I + K bits, where the integral part uses I bits while
the fractional part uses K bits. We note that the signed fixed-
point format can employ either the sign-magnitude (S s/m) or the
two’s complement (S 2c) representation.The two’s complement
representation is the de-facto standard to encode signed fixed-
point numbers, since it avoids the dual representation of the
zero also allowing to use the standard integer functional units
to perform fixed-point computations. In general, using the same

S

SI+K+1,K

UI+K,K

I bits K bits
SI+K,K

I bits K bits

K
K

-1

I+
K

-1 0

I bits K bits

2c

s/m

radix point

I+
K

K
K

-1 0

I+
K

-1

K
K

-1 0

I+
K

-1

unsigned

signed

Figure 2: Structure of unsigned (U) and signed (S) fixed-point formats. Each
fixed-point number is encoded using I bits for the integral part and K bits for
the fractional part. For sign-magnitude-encoded fixed-point numbers (S s/m),
the sign bit is explicit and borrowed from the integral part.

number of bits, the fixed-point representation offers a narrower
dynamic range than the floating-point one since the number of
bits used to encode the fixed-point number limits the dynamic
range. The dynamic range is characterized by a maximum value
of b|I| − b−|K| and b|I+1| − b−|K| for signed and unsigned formats,
respectively, and a minimum value (excluding zero) of b−|K| for
both signed and unsigned fixed-point formats.

However, fixed-point arithmetic offers two critical advan-
tages over the floating-point one. First, it allows to freely con-
figure the radix point at the granularity of the single fixed-point
instruction can deliver more precise representations of data of
which the dynamic range is not a concern. Indeed, a 32-bit
fixed-point format has a 32-bit precision, while the 32-bit bi-
nary32 standard floating-point format has a 24-bit precision,
which corresponds to the 23-bit mantissa. Second, fixed-point
arithmetic enables faster and efficient computations without the
need to convert between floating and integer data formats. How-
ever, the actual energy-efficiency due to the reuse of the hardware-
level integer support to perform fixed-point computations de-
pends on the actual microarchitecture. Considering embed-
ded computing platforms, our research demonstrates the ineffi-
ciency of reusing the already available integer support for scalar
fixed-point computations since, compared to binary32 floating-
point versions of the application, the normalized EDP worsens
to 1.796 on average with a maximum of 6.854 when executing
floating-point-intensive benchmarks (see experimental results
in Section 4).

2.2. State of the art
This part reviews the state of the art of i) precision tuning

frameworks and of ii) fixed- and floating-point computing plat-
forms that support precision-tuned applications.
Precision tuning - Precision tuning techniques aim to max-
imize the run-time energy-efficiency by tuning the bit-width
used to store and compute program data without affecting the
accuracy of the final result. The majority of the precision tuning
techniques in the literature target floating-point computations
since they significantly contribute to the power consumption of
the computing platforms.

Precision tuning techniques can be classified as either static
or dynamic. Static precision tuning techniques deliver a mixed-
precision version of the application that optimizes the energy-
performance trade-off according to precision requirements de-

3

fined by the user. In contrast, dynamic precision tuning tech-
niques can adapt the mixed-precision version of the application
at run-time depending both on the run-time conditions of the
computing platform and on the input data. Several state-of-the-
art static precision tuning methodologies are available, but few
of them leverage the possibility of reconfiguring the application
at run-time, i.e., adopting a dynamic precision tuning approach.

Considering static precision-tuning methodologies, fpPre-
cisionTuning [20] proposes a near-optimal, distributed preci-
sion tuning approach for large floating-point applications. The
framework allows to specify the accuracy of the final results,
and then it iteratively executes the program to fine-tune the pre-
cision of each variable in the intermediate steps. However, the
emitted code is restricted to binary32 and binary64 floating-
point formats, forcing the compiler to several time-consuming
conversions that severely limit the energy-performance gain of
the precision tuning methodology. Similarly, Promise [9] and
Precimonious [8] discuss precision tuning techniques target-
ing binary32 and binary64 floating-point data formats. FP-
Tuner [10] offers automatic precision tuning of real-valued ex-
pressions, generating a mixed-precision version of the applica-
tion that uses single, double, and quad precision floating-point
data formats. FlexFloat [7] presents a precision tuning library
that enables the design of transprecision applications. It sup-
ports multiple floating-point data formats to allow controlling
at a fine grain the bitwidth of the exponent and mantissa of each
variable of the program. [21] presented a tool that transformed
the floating-point computations within a ANSI C code into a C
code that leverages a fixed-point data type added by the authors
as an extension to ANSI C. Such transformation from floating-
point to fixed-point C code is part of the larger FRIDGE frame-
work [22] , that translates a floating-point C code description
into a fixed-point implementation that targets either dedicated
hardware or programmable DSPs. TAFFO [14] discusses a
precision tuning technique that allows converting the floating-
point computation into the corresponding fixed-point version.
Experimental results demonstrated significant performance im-
provements when the methodology is applied in the HPC do-
main. In contrast, little or no performance gain is shown in the
embedded domain. [23] proposed a methodology to identify the
optimal bitlength for fixed-point and floating-point operands in
a hardware implementation, given the corresponding software
description of the computation to be performed.

Considering dynamic precision-tuning methodologies, the
PetaBricks [24] compiler allows the user to specify different
mixed-precision versions of the application at compile time.
The PetaBricks optimizer then decides dynamically which ver-
sion to execute depending on the run-time conditions. We note
that PetaBricks forces the user to define the mixed-precision
versions of the applications manually. In contrast, [25] extends
the TAFFO framework to support dynamic precision tuning. It
offers i) a compile-time component that automatically generates
multiple mixed-precision versions of the applications and ii) a
run-time optimizer that selects the best candidate to execute.
Transprecision computing platforms - Traditionally, the com-
puting platforms at the edge implement energy-efficient, general-

purpose micro controllers to efficiently manage lightweight tasks.
In this scenario, the use of ad-hoc hardware accelerators rep-
resents the de-facto solution to deliver the computational ca-
pacity required to support medicine [26, 27], security [28, 29],
and deep learning [30, 31] applications without degrading the
energy-efficiency of the embedded computing platform. In-
deed, hardware accelerators offer the highest energy-efficiency,
but their application-specific nature hinders their scalability and
reusability.

However, the constant evolution of IoT applications im-
poses the design of scalable and reusable computing platforms
to meet tight time-to-market deadlines. Thus, recent trends
shifted from employing specialized hardware accelerators to
designing efficient and flexible general-purpose computing plat-
forms that implement either fixed-point [16] or floating-point [32]
transprecision units. The FloPoCo framework [33, 34] allows
designing complex floating-point operations in the form of cus-
tom accelerators that can be integrated into a general-purpose
CPU. [35] presented a tool to automatically generate FPU de-
signs for CPUs, emphasizing the optimization of the Wallace
tree multiplier and the other basic logic blocks to maximize the
efficiency of the generated FPU.

[36] proposes an FPU design employing a custom width
for the operand. [13, 37] present different FPU microarchitec-
tures considering the bfloat16 format, while [12] proposes an
FPU targeting a custom 16-bit floating-point format. [19] dis-
cusses a single instruction, multiple data (SIMD) transprecision
FPU that can adapt the precision of the floating-point compu-
tation at run-time to maximize the efficiency. [32, 38] extend
the work in [19] to trade the accuracy of the results with the
possibility of performing low-precision SIMD floating-point in-
structions. In particular, [32] allows computing either multiple
low-precision operations, i.e., bfloat16 or binary32, or a single
binary64 floating-point instruction. Similarly, the work in [39]
presents a fused multiply–accumulate (FMAC) design for trans-
precision computing that allows executing multiple concurrent
FP operations at low precision. The work in [40] proposes
SMURF, a scalar multi-precision floating-point unit that allows
fine-tuning the width of the mantissa up to 512 bits.

Considering fixed-point arithmetic in the transprecision do-
main, [16] presents a near-threshold computing platform im-
plementing low-precision fixed-point SIMD instructions. How-
ever, it targets ultra-low power platforms processing 8- and 16-
bit data signals and does not consider the optimization of 32-
bit scalar fixed-point hardware. In contrast, our manuscript
presents a scalar fixed-point architecture that delivers higher ef-
ficiency than both current fixed- and floating-point solutions in
terms of area, EDP, and accuracy.

The RISC-V P extension [41], currently in draft status, ex-
tends the RISC-V ISA by introducing a set of packed SIMD
instructions, among which there are some fixed-point instruc-
tions. However, such instructions support a set of fixed-point
formats limited to Q1.63, Q1.31, Q1.15, and Q1.7. [42] added
support for the RISC-V packed SIMD P draft extension [41]
to the RISC-V 64-bit CVA6 processor [43]. [44] presented an
end-to-end compiler to optimize the code generation behavior
of quantized neural networks that leverages the RISC-V P ex-

4

1 ...
2 ; load operands
3 lui a0 ,%hi(a)
4 flw ft0 ,%lo(a)(a0)
5 lui a0 ,%hi(b)
6 flw ft1 ,%lo(b)(a0)
7 ; floating -point multiplication
8 fmul.s ft0 ,ft0 ,ft1
9

10

11

12

13 ; store result
14 lui a0 ,%hi(res)
15 fsw ft0 ,%lo(res)(a0)
16 ...
17

(a) Floating-point mul using F

1 ...
2 ; load operands
3 lui a0 ,%hi(a.fixp)
4 lw a0 ,%lo(a.fixp)(a0)
5 lui a1 ,%hi(b.fixp)
6 lw a1 ,%lo(b.fixp)(a1)
7 ; fixed -point multiplication
8 mul a2,a0,a1
9 srli a2,a2 ,10

10 mulh a0,a0 ,a1
11 slli a0,a0 ,22
12 or a0,a0,a2
13 ; store result
14 lui a1 ,%hi(res.fixp)
15 sw a0 ,%lo(res.fixp)(a1)
16 ...
17

(b) Fixed-point mul using M

1 ...
2 ; load operands
3 lui a0 ,%hi(a.fixp)
4 lw a0 ,%lo(a.fixp)(a0)
5 lui a1 ,%hi(b.fixp)
6 lw a1 ,%lo(b.fixp)(a1)
7 ; fixed -point multiplication
8 z.mul a0 ,a0,a1 ,10
9

10

11

12

13 ; store result
14 lui a1 ,%hi(res.fixp)
15 sw a0 ,%lo(res.fixp)(a1)
16 ...
17

(c) Fixed-point mul using Zm

Listing 1: RISC-V assembly code for (a) a 32-bit floating-point multiplication using the F extension, (b) a 32-bit fixed-point multiplication using the M extension,
and (c) a 32-bit fixed-point multiplication using the optimized Zm ISA extension proposed in this work.

tension [41] to optimize quantized neural network applications.

3. Fixed-point architecture

This section presents the cost-effective architecture to ef-
ficiently perform scalar fixed-point computations splitting the
discussion into three parts. First, Section 3.1 shows the limita-
tions of executing a fixed-point version of the application with
the traditional integer functional units. Second, Section 3.2 in-
troduces the proposed Zm extension to the RISC-V ISA, that
is meant to enable scalar fixed-point instructions. Last, Sec-
tion 3.3 discusses the proposed hardware design. In the follow-
ing, we target the 32-bit RISC-V ISA [45] since, without loss of
generality, it provides a representative use case for our research
and it is becoming a de-facto industry and academic standard
due to its extensibility, efficiency, and its royalty-free license.

3.1. Comparing fixed- and floating-point binaries

By analyzing different assembly versions of the same appli-
cation, this section discusses the limitations of using standard
integer hardware to execute fixed-point computations on 32-bit
embedded systems. In particular, we analyze the baseline op-
erations, i.e., multiplication, division, addition-subtraction, and
comparison, considering the RISC-V ISA and three assembly
versions, respectively exploiting the floating-point (F), integer
(M), and fixed-point (Zm) extensions.
Fixed-point multiplication - Considering the 32-bit RISC-V
ISA, Listing 1 details three assembly versions that perform a
multiplication between the values stored in the a and b vari-
ables and store the result in the res variable. In particular, List-
ing 1(a) details the floating-point implementation, Listing 1(b)
details the fixed-point version using the integer multiplication
support, i.e., the M extension to the RISC-V ISA, and List-
ing 1(c) details the fixed-point implementation using a dedi-
cated mul instruction, i.e., the proposed Zm extension to the

RISC-V ISA. We use global variables for both the operands and
the result to uniform the structure of each assembly fragment
and, thus, to focus on the implementation of the mul instruc-
tion. In particular, the code in Listing 1(a) uses the binary32
format, while, without loss of generality, fixed-point codes in
Listing 1(b) and Listing 1(c) use a 32-bit fixed-point format
with 10 bits for the fractional part.

Limiting the analysis to the actual computation, the FPU
allows to use of the fmul.s instruction to efficiently perform
the single-precision floating-point multiplication. In contrast,
current precision tuning techniques deliver fixed-point versions
of the application leveraging the integer multiplication and di-
vision support under the assumption that integer computations
are faster than floating-point ones. We note that the argument
is valid only if the target platform implements a 64-bit architec-
ture.

Indeed, from the theoretical point of view, the multiplica-
tion between two 32-bit operands results in a 64-bit product.
If the two operands are QI+K,K fixed-point numbers, then the
full-precision 64-bit result will have a Q2(I+K),2K fixed-point en-
coding. The leftmost I and rightmost K bits must be discarded
to obtain a result with the same encoding as the two operands,
thus resulting in truncation and precision loss. However, a 32-
bit architecture can not implement a 32x32-bit multiplication
that directly returns a 64-bit product. Instead, the M extension of
the RISC-V ISA implements two distinct instructions, mul and
mulh, that return the least and the most significant halves of the
product of two signed operands, respectively. The two halves
of the product must then be composed to obtain the fixed-point
product by means of additional instructions, i.e., a pair of shift
operations and the logical OR between the two shifted halves of
the result (see Figure 3). Without loss of generality, Listing 1(b)
shows that the fixed-point multiplication between two Q32,10
operands on a 32-bit processor requires five instructions, with a
negative impact on both the energy and performance metrics. In
contrast, our solution delivers an efficient fixed-point hardware
support through a dedicated fixed-point multiplication instruc-

5

1 ...
2 ; load operands
3 lui a0 ,%hi(a)
4 flw ft0 ,%lo(a)(a0)
5 lui a0 ,%hi(b)
6 flw ft1 ,%lo(b)(a0)
7 ; floating -point division
8 fdiv.s ft0 ,ft0 ,ft1
9

10

11

12

13

14

15 ; store result
16 lui a0 ,%hi(res)
17 fsw ft0 ,%lo(res)(a0)
18 ...
19

(a) Floating-point div using F

1 ...
2 ; load operands
3 lui a0 ,%hi(a.fixp)
4 lw a0 ,%lo(a.fixp)(a0)
5 lui a1 ,%hi(b.fixp)
6 lw a2 ,%lo(b.fixp)(a1)
7 ; fixed -point division
8 srai a1,a0 ,31
9 srai a3,a2 ,31

10 srli a4,a0 ,22
11 slli a1,a1 ,10
12 or a1,a1,a4
13 slli a0,a0 ,10
14 call __divdi3@plt
15 ; store result
16 lui a1 ,%hi(res.fixp)
17 sw a0 ,%lo(res.fixp)(a1)
18 ...
19

(b) Fixed-point div using M

1 ...
2 ; load operands
3 lui a0 ,%hi(a.fixp)
4 lw a0 ,%lo(a.fixp)(a0)
5 lui a1 ,%hi(b.fixp)
6 lw a1 ,%lo(b.fixp)(a1)
7 ; fixed -point division
8 z.div a0 ,a0,a1 ,10
9

10

11

12

13

14

15 ; store result
16 lui a1 ,%hi(res.fixp)
17 sw a0 ,%lo(res.fixp)(a1)
18 ...
19

(c) Fixed-point div using Zm

Listing 2: RISC-V assembly code for (a) a 32-bit floating-point division using the F extension, (b) a 32-bit fixed-point division using the M extension, and (c) a
32-bit fixed-point division using the optimized Zm ISA extension proposed in this work.

a0a1a2

b0b1b2 =

p0p1p2p3p4p5 .

.

.

p3p4p5mulh a0, a0, a1

mul a2, a0, a1 p0p1p2

srli a2, a2, 1 p1p20

slli a0, a0, 2 0 0p3

or a0, a0, a2 p3 p1p2

a0a1a2

b0b1b2

.

.

a

b

Fixed-point format Q3,1

z.mul a0, a0, a1, 1 p3 p1p2

.

.

Fixed-point multiplication with Zm

Fixed-point multiplication with M

8

10

9

11

12

8

p1p2p3 .res

Figure 3: Example of fixed-point multiplication between two Q3,1 operands
a and b. It shows how the Q3,1 product res is composed starting from the
mul and mulh integer instructions and lists the results of each instruction from
Listing 1(b) and Listing 1(c).

tion, i.e., z.mul (see Listing 1(c)).
Fixed-point division - Similarly to multiplication, using the
hardware support for integer multiplication and division to im-
plement the fixed-point division severely affects the execution
latency (see Listing 2). In particular, Listing 2(a) details the
floating-point implementation leveraging the FPU, while List-
ing 2(b) and Listing 2(c) detail the implementation of the fixed-
point division using the integer functional units and the pro-
posed hardware fixed-point support, respectively.

Notably, the fixed-point division between the two 32-bit
fixed-point operands requires the execution of a 64-bit inte-
ger division, when hardware support is limited to the M exten-
sion for integer multiplication and division. 32-bit embedded
platforms must therefore resort to the software implementation
of the 64-bit integer division (see line 14 in Listing 2(b)). In
this scenario, the use of the integer functional units to perform
fixed-point divisions is far more detrimental than the multiplica-
tion scenario due to the use of a software-implemented routine,
whose execution takes a number of clock cycles in the order of
hundreds. This costly penalty further motivates using the pro-

posed fixed-point support to optimize the energy-efficiency (see
Listing 2(c)).
Other fixed-point operations - Concerning the remaining base-
line fixed-point operations, we note that addition-subtraction
and comparison operations directly correspond to their equiv-
alent integer instructions, merely treating the fixed-point num-
bers as if they were plain integers. This equivalence is valid for
binary operators when the two operands implement the same
fixed-point format. Otherwise, there is a need to shift one of
the two operands to have the same fixed-point encoding before
performing the actual computation. However, we have not op-
timized such instructions since the cumulative latency of such
fixed-point operations is still better than the one of the corre-
sponding floating-point instructions (see Table 2 in Section 4).

3.2. Fixed-point ISA extension

This section details the extension to the RISC-V ISA to sup-
port the scalar fixed-point operations. Once more, we note that
the use of the 32-bit RISC-V ISA [45] is motivated by its wide
adoption in both industry and research, even if our research is
not tied to any specific ISA.

Table 1 details the instruction formats for the standard ISA
extensions as well as the fixed-point one introduced by our re-
search, i.e., Zm-type. The Zm-type instruction format makes
use of the 7b’0001011 opcode to lie in the cust0 ISA map,
that represents one of the available ISA mapping spaces for ex-
perimental RISC-V ISA non-standard extensions [45]. The Zm
ISA extension implements the fixed-point version of the eight
instructions belonging to the standard M ISA extension. As
shown in Section 3.1, the proposed Zm ISA extension supports
otherwise time-consuming fixed-point instructions, i.e., divi-
sions and multiplications, without considering those that can be
efficiently implemented by means of the baseline integer sup-
port, i.e., additions-subtractions and comparisons. We note that

6

Table 1 Instruction formats of the standard and Zm RISC-V ISA extensions.
The Zm fixed-point extension uses the cust0 opcode map, i.e., insn[6 : 0] =
00_010_11.

31 24 19 14 11 6 0

funct7 rs2 rs1 funct3 rd opcode R-type

imm[11:0] rs1 funct3 rd opcode I-type

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type

imm[{12,10:5}] rs2 rs1 funct3 imm[{4:1,11}] opcode B-type

imm[31:12] rd opcode U-type

imm[{20,10:1,11,19:12}] rd opcode J-type

31 24 19 14 11 6 0

imm7 rs2 rs1 funct3 rd 00_010_11 Zm-type

the M ISA extension makes use of the R-type instruction for-
mat to implement the 32-bit integer multiplication and division
instructions between two values stored in rs1 and rs2. The
MUL and MULH instructions execute the integer multiplication
between 32-bit signed operands and return the lower and upper
32-bit halves of the 64-bit product. The MULHU and MULHSU in-
structions compute the multiplication between unsigned-unsigned
and signed-unsigned operands, respectively, and return the up-
per 32 bits of the 64-bit product. DIV and DIVU perform the
32-bit signed and unsigned integer division, rounding towards
zero, and return the 32-bit quotient. REM and REMU return the
32-bit remainder of the corresponding integer divisions.

We note that the fixed-point instructions must encode the
position of the radix point. To this end, the Zm-type defines
a new register-register-immediate instruction format, where the
computation is executed by processing the values from two reg-
isters, i.e., rs1 and rs2, and the 7-bit immediate, i.e., imm7,
and the result is stored in the rd register. Moreover, the 3-bit
funct3 field allows to encode the 8 instructions of the Zm ISA
extension. In particular, the 8 instructions of the Zm ISA exten-
sion offer the same semantic of the corresponding instructions
in the M ISA extension, while the former make use of the fixed-
point arithmetic. To this end, the Zm instructions have the same
name as the corresponding M instructions with the additional
z. prefix, e.g., z.mul implements the 32-bit fixed-point mul-
tiplication. Considering the Zm-type instruction format, we
note that the values stored in the registers of any Zm instruc-
tion are considered to be fixed-point, and the 7-bit immediate
field encodes the position of the radix point. Moreover, each
instruction assumes a common fixed-point format for both the
operands and the result, that share a radix point position that is
specified by the 7-bit immediate. Thus, additional shift instruc-
tions are eventually required to uniform the fixed-point format
of all the values before performing any Zm instruction.

3.3. Scalar fixed-point architecture

This section presents our modular architecture to support
the M and the Zm extensions of the RISC-V ISA to efficiently

perform integer and fixed-point multiplication-division instruc-
tions. To maximize the computational efficiency, the fixed-
point additional logic leverages the already available integer
multiplication-division support and a user-defined design-time
parameter controls its implementation. The design targets the
embedded computing platforms, where the fixed-point support
represents a viable computing option to complement or to re-
place the floating-point unit (FPU). Our solution delivers a novel
cost-effective architecture for integer and fixed-point multiplication-
division instructions and allows a configurable integration of
the additional logic supporting the fixed-point instructions.

The proposed architecture extends an existing functional
unit devoted to supporting integer multiplication and division
instructions from the RISC-V M extension. Figure 4 depicts the
top view of the three-stage architecture that implements both
the M and Zm extensions of the RISC-V ISA. The black blocks
and wires compose the functional unit that supports the M exten-
sion, i.e., integer multiplications and divisions, while the blocks
and wires highlighted in red provide the additional logic to sup-
port the Zm extension, i.e., fixed-point multiplications and divi-
sions. The architecture takes five inputs, i.e., the operands (OpA
and OpB), the 7-bit immediate (imm7), the 3-bit funct3, and the
flag to signal whether the operation is an integer or a fixed-point
one (isFixed), and produces one output, i.e., the result (res).
The rest of this part details the three stages of the architecture.
Operands pre-processing stage - Starting from the value of
the funct3 and isFixed signals, this stage prepares the operands
to perform one of the sixteen instructions, split into eight in-
teger and eight fixed-point multiplication-division instructions.
funct3 (insn[14:12] in Table 1) determines the actual in-
struction, and we note that the funct3 values of the Zm instruc-
tions have the same encoding as the corresponding instructions
in the M ISA extension. isFixed signals instead whether the
instruction is either a fixed-point (isFixed = 1) or integer
one (isFixed = 0). The value of isFixed is determined by
the opcode (see insn[6:0] in Table 1) of the instruction en-
coding, and it is set to 1 if opcode is equal to 00_010_11 and
to 0 otherwise.

Depending on the executed instruction, MUXA−D propagate
the magnitude of each operand. The unsigned operands are for-
warded to the next stage unmodified, while signed operands
are converted to the sign-magnitude format, since the actual
computation is performed sign-less. Finally, the position of the
radix point is stored in the fBits register, that contains either
0, for integer instructions, or the value of the imm7 input, for
fixed-point ones.
Integer/fixed-point computation stage - The IMul block per-
forms the multiplication between the two unsigned values stored
in AM and BM inter-stage registers, treating them as plain bi-
nary integers. Considering fixed-point multiplication instruc-
tions, the programmable shift S RLP then adjusts the radix point
of the result, right-shifting the 64-bit output from the IMul unit
by a number of bits equal to the imm7 field. We note that a right
shift by zero bits is performed in case of an integer multiplica-
tion, i.e., f Bits = 0, leaving the 64-bit product unchanged. For
signed multiplications, the sign can be computed as either the

7

Two's Complement
➔ Sign & Magnitude

MUL[H[SU]]MULHU

32

Two's Complement
➔ Sign & Magnitude

MUL[H]MULH[S]U

32

64

7

[63:32]

MULHU

3

Two's Complement
➔ Sign & Magnitude

DIV/REMDIVU/REMU

Two's Complement
➔ Sign & Magnitude

DIV/REMDIVU/REMU

32

>>

Sign & Magnitude
➔ Two's Complement

Sign & Magnitude
➔ Two's Complement

REM

01

1

0

32'b0

64

>> IDiv

IMul

32 32

32 32

QM

(32 bits)
RM

(32 bits)
PM

(64 bits)

Operands
pre-

processing

Integer/
fixed-point

computation

Result
post-

processing

64

32 32

AM

(32 bits)
BM

(32 bits)

32 32

32 32

AM

(32 bits)
BM

(32 bits)

32 32

64

64 32 3264

6464

M M
1 1

S S
32 32

M M
1 1

S S

M MS S

BS

(1 bit)
AS

(1 bit)

QRS

(1 bit)

BS

(1 bit)
AS

(1 bit)

PS

(1 bit)
AS

(1 bit)

MUL[H]MULHSU

1

11

1

11 11

1

fBits
(7 bits)

7

funct3
(3 bits)

funct3
(3 bits)

MUXA MUXB MUXC MUXD

MUXE

MUXF

REMUDIVDIVU

32 32 1

Sign & Magnitude
➔ Two's Complement

MULH[SU]

M S

64

[63:32]

MUL

[31:0]

SRLP

SRLB

MUXG

OpA
(32 bits)

OpB
(32 bits)

funct3
(3 bits)

OpB
(32 bits)

Res
(32 bits)

isFixed
(1 bit)

imm7
(7 bits)

Figure 4: Top view of the proposed functional unit for the hardware support of the integer (M) and fixed-point (Zm) multiplication and division. The hardware
required to implement the M extension of the RISC-V ISA is drawn in black, while red blocks and wires show the additional components that enable the Zm
extension for fixed-point arithmetic.

sign of the rs1 operand, i.e., the value stored in the AS flip-
flop, or the exclusive OR (XOR) between the signs of the two
operands, i.e., the value stored in the PS flip-flop.

The IDiv block performs the division between the two un-
signed values stored in AM and BM and outputs the 32-bit quo-
tient (QM) and the 32-bit remainder (RM). For signed division
and remainder instructions, the sign of the result is the XOR be-
tween the signs of the two operands and is stored in the QRS

flip-flop. Before the actual unsigned division carried out by
the IDiv block, the divisor is adjusted through a programmable
logical right shift (S RLB) by a number of bits equal to the value
contained in the fBits register. The IDiv block implements
the radix-16 restoring division algorithm [18], which takes eight
clock cycles to perform the unsigned division. Notably, even if
the actual division is performed on 32-bit operands, the pro-
posed IDiv architecture leverages a 64-bit internal structure,
allowing to accommodate any 32-bit fixed-point format for the
operands without increasing the computational latency and with
minimum impact on the resource utilization.
Result post-processing stage - Starting from the intermedi-
ate values computed by means of either the IMul or the IDiv
blocks, the MUXF outputs one out of the eight results. The
eight results correspond to the outputs of the eight integer or
fixed-point instructions implemented in the M and Zm ISA ex-

tensions, respectively.
Depending on the executed operation, the MUXF inputs are

unsigned or signed results obtained either from the inter-stage
registers or from the conversion blocks. In particular, the con-
version blocks transform a sign-magnitude pair into the corre-
sponding two’s complement signed value.

4. Experimental Evaluation

This section discusses the experimental results of the pro-
posed scalar fixed-point architecture in terms of area, EDP, and
accuracy. The fixed-point architecture has been integrated into
an embedded-class RISC-V system-on-chip (SoC) [46] to de-
liver an FPGA implementation of the entire computing plat-
form. To provide a consistent comparison, we explored differ-
ent SoC variants implementing multiple FPUs and the baseline
hardware support for the integer multiplication and division (M)
extension of the RISC-V ISA [45].

The rest of the discussion is organized into three parts. Sec-
tion 4.1 details the experimental software setup. Section 4.2
presents the experimental hardware setup and discusses the la-
tency of the integer, fixed-, and floating-point instructions. Sec-
tion 4.3 presents the experimental results in terms of area, EDP,
and accuracy.

8

Table 2 Operations latency of the different SoC implementations. For each hardware configuration, the number of clock cycles is reported for integer, fixed-point,
and floating-point operations. Operations latency is detailed for additions-subtractions, multiplications, and divisions. The sf annotation highlights that soft-float
function calls carry out the corresponding floating-point operations on S oCIM and S oCIM+Zm.

Operations latency
HW Integer, Zm fixed-point M fixed-point Floating-point

config. AddSub Mul Div Cmp AddSub Mul Div Cmp AddSub Mul Div Cmp
S oCIM 1 5 14 1 1 14 >350 1 sf sf sf sf

S oCIM+F32 1 5 14 1 1 14 >350 1 5 5 12 4
S oCIM+F24 1 5 14 1 1 14 >350 1 5 5 12 4
S oCIM+F19 1 5 14 1 1 14 >350 1 4 4 10 4
S oCIM+F16 1 5 14 1 1 14 >350 1 4 4 8 4
S oCIM+Zm 1 5 14 1 1 5 14 1 sf sf sf sf

4.1. Experimental software setup

The proposed fixed-point architecture was evaluated by em-
ploying a set of applications from the PolyBench/C 4.2 bench-
mark suite [47], all of which contain a significant component
of floating-point instructions. In particular, we configured the
PolyBench/C 4.2 benchmarks to use their “small dataset” prob-
lem size.
Fixed- and floating-point binaries - Each application is writ-
ten in ANSI C, and it was compiled using the LLVM 12.0 com-
piler toolchain to emit different fixed- and floating-point bina-
ries. We note that the manuscript addresses the problem of ef-
ficiently supporting scalar fixed-point arithmetic in 32-bit em-
bedded computing platforms. Thus, the design of a new preci-
sion tuning strategy falls outside the scope of our research.

For each application, we consider a floating-point binary
and two distinct fixed-point versions. The floating-point binary
targets the binary32 data format and it is executed by four dif-
ferent FPUs, implementing hardware support for the binary32,
float24, float19, and bfloat16 floating-point formats, respec-
tively. The first fixed-point version uses the hardware support
for integer multiplication and division, while the second one
also exploits the proposed architecture for fixed-point arithmetic.
For both fixed-point versions, the fixed-point data format was
selected through a static design space exploration between four
32-bit fixed-point formats, i.e., Q32,23, Q32,15, Q32,10, and Q32,7.
For each application, we selected the fixed-point format deliv-
ering the best accuracy compared to the one delivered by the
binary32 version of the same application. Appendix A de-
tails the experimental results in terms of energy-delay prod-
uct (EDP) and accuracy obtained by the bare-metal execution
of all the applications. Table A.4 and Table A.5 report data for
nine binary versions, i.e., a floating-point one, four fixed-point
ones leveraging the M ISA extension, and four fixed-point ones
using the proposed Zm ISA extension. The floating-point binary
is executed on four FPUs implementing different formats.
LLVM compiler support - The LLVM compiler takes the C
sources of the target applications annotated using the TAFFO
precision tuning framework [14] at the granularity of the single
floating-point instruction to select the fixed- or floating-point
format to use. Such annotations are propagated to the LLVM
IR level as part of the TAFFO precision tuning strategy. Adding

support for the proposed Zm fixed-point ISA extension (see Sec-
tion 3) required us to modify two parts of the LLVM compiler
back-end: the CodeGen module and the Target-dependent
machine code module. The CodeGen module transforms the
high-level, target-independent LLVM intermediate representa-
tion (IR) into low-level, target-dependent machine language.
The Target-dependent machine code module generates the
machine-dependent code and emits the final binary RISC-V ob-
ject. Within CodeGen, we created a new code generation path to
generate fixed-point binaries that made use of the fixed-point in-
structions from the Zm extension. Within Target-dependent
machine code, we created a new set of instruction formats and
the corresponding matching rules to generate the binary form
of the added Zm instructions. To this end, starting from the
IR decorated with the annotations from TAFFO, our modified
LLVM can generate binaries containing floating-point instruc-
tions, fixed-point ones with support for instructions from the I
and M extensions only, and fixed-point ones with support for Zm
fixed-point multiplication and division instructions.
Instructions mix - For each application, Figure 5 reports the
mix of floating-point instructions as the percentage of the total
number of instructions executed by the kernel, i.e., the region
of interest of the application. The instructions are classified
as additions-subtractions (AddSub), multiplications (Mul), di-
visions (Div), and comparisons (Cmp). We note that addition-
subtraction and multiplication instructions dominate the instruc-
tions mix, while the number of executed division and compari-
son instructions is negligible but in few benchmarks.

To this end, the efficient support for both fixed-point additions-
subtractions and multiplications is critical to optimize the energy-
efficiency. From a different but related perspective, the hard-
ware support for fixed-point divisions is also critical since they
require the software execution of a 64-bit integer division if the
computing platform exclusively implements the support to the
M ISA extension, thus resulting in a significant EDP penalty.

4.2. Experimental hardware setup

We employed a configurable state-of-the-art SoC meant for
FPGA targets [46] to deliver a complete evaluation of the pro-
posed ISA extension. In particular, we considered an instance
of the reference SoC that features a 32-bit in-order RISC-V

9

0%
5%

10%
15%
20%
25%

2m
m

3m
m

bic
g

ch
ole

sk
y

do
itg

en

ge
mm

ge
su

mmv lu mvt

sy
mm

sy
r2

k
sy

rk

tri
so

lv
trm

m

Ave
rag

eF
P

in
st

ru
ct

io
ns

Application

AddSub Mul Div Cmp

Figure 5: Percentage of floating-point instructions for each benchmark applica-
tion. Floating-point instructions are split into additions-subtractions (AddSub),
multiplications (Mul), divisions (Div), and comparisons (Cmp).

CPU, a 32-bit Wishbone bus, a 64KB BRAM-based main mem-
ory, a user-space UART for application input and output, and
the debug infrastructure to allow the communication between
the host and either the prototyping board or the simulation en-
vironment.

The baseline RISC-V CPU of the reference SoC supports
both the base integer (I) and integer multiplication and divi-
sion (M) extensions, representing the bare-minimum support to
offer a computing platform that is fully functional for general-
purpose applications. Starting from the baseline CPU, we con-
sidered the additional implementation of the single-precision,
i.e., 32-bit, floating-point (F) RISC-V ISA extension. Further-
more, this work adds hardware support for scalar 32-bit fixed-
point instructions through the experimental Zm RISC-V ISA ex-
tension. We note that the integration into the reference SoC of
multiple FPU instances provides floating-point hardware sup-
port. The considered FPUs enable finding the optimal area-
energy-accuracy trade-off by implementing different floating-
point formats, and they represent the state-of-the-art solutions
for low-power, high-performance embedded systems [48].

The FPU design is not a contribution provided by this work,
and the scope of this research motivates the use of the FPUs
from [48] in place of transprecision FPUs such as [19]. The
employed FPUs target energy-efficient computing platforms,
while transprecision FPUs implement multiple floating-point
data formats within the same architecture, thus delivering flex-
ible floating-point support at the cost of a reduction in both the
energy- and area-efficiency.

The experimental results were obtained considering 6 SoC
implementations (see Table 2). The four floating-point imple-
mentations, i.e., S oCIM+F32, S oCIM+F24, S oCIM+F19, and S oCIM+F16,
support the base integer (I), integer multiplication and divi-
sion (M), and single-precision floating-point (F) extensions. In
particular, each one of the four SoCs supports a specific floating-
point data format. More in detail, S oCIM+F32, S oCIM+F24, S oCIM+F19,
and S oCIM+F16 support the binary32, float24, float19 and bfloat16
floating-point data formats, respectively. We note that all the
considered floating-point formats share the same 8-bit expo-
nent bitwidth while offering different precision, i.e., the man-
tissa bitwidth ranges from 23 to 7 bits (see Section 2.1). S oCIM

offers only the baseline integer (I) and integer multiplication
and division (M) hardware-level support, while S oCIM+Zm adds
the hardware support to the fixed-point instructions defined in
the Zm RISC-V ISA extension (see Section 3).

Instructions latency analysis - For each SoC, Table 2 de-
tails the latency required to perform arithmetic instructions, ex-
pressed in terms of clock cycles. Latency is reported for the
addition-subtraction, multiplication, division, and comparison
instructions considering the integer, fixed-point, and floating-
point data formats. We note that all the S oCIM+Fx SoCs, where
x ∈ {32, 24, 19, 16}, offer efficient hardware-level floating-point
support with a maximum latency of 12 clock cycles for the
floating-point division employing the binary32 data format. In
contrast, S oCIM and S oCIM+Zm do not offer hardware-level floating-
point support, thus any floating-point operation must be exe-
cuted in software by the corresponding soft-float function call.
However, S oCIM+Zm distinguishes itself for providing fast fixed-
point hardware support. Additions and subtractions take 1 clock
cycle, while the latency of fixed-point multiplications and di-
visions, i.e., 5 and 14 clock cycles, is almost on par with the
latency of the corresponding hardware-supported floating-point
instructions, that take up to 5 and 12 clock cycles respectively.
Notably, fixed-point division takes 14 clock cycles due to 8
clock cycles for the radix-16 restoring division algorithm im-
plemented by IDiv, 2 more clock cycles in IDiv, of which one
to prepare the operands and one to prepare the output of the
division, and 4 clock cycles due to the interstage registers (see
Figure 4). Similarly, fixed-point multiplication takes 5 clock
cycles, which can be divided into 1 clock cycle for the IMul
component and 4 clock cycles due to the interstage registers.

We note that S oCIM offers instead poor fixed-point perfor-
mance for multiplications and divisions, since multiple integer
instructions are required to implement a single fixed-point arith-
metic operation (see Section 3.1).
SoC implementations - The complete SoC was implemented
employing Xilinx Vivado 2019.2, using a 100MHz clock fre-
quency, on the Digilent Nexys 4 DDR prototyping board. The
Digilent board is equipped with a Xilinx Artix-7 100 FPGA, a
mid-range cost-effective chip that features 63400 LUTs, 126800
flip-flops, 135 BRAMs, and 240 DSPs. To provide a fair eval-
uation, we implemented each one of the six design variants
within the same SoC, employing the Vivado default synthesis
and implementation strategies. The resource utilization of the
functional units supporting the M, the F, and the Zm extensions
and the whole SoC was extracted from the post-implementation
netlist for each SoC variant. Power consumption results were
collected for each SoC and each benchmark application as the
dynamic power obtained by Vivado Report Power from post-
implementation simulation. Accordingly, the energy consump-
tion for an application executing on a SoC was computed as the
product of the corresponding power consumption and execution
time.

4.3. Area, EDP and accuracy results

Considering the six implemented SoCs, this section dis-
cusses the experimental results in terms of area (see Table 3),
EDP (see Figure 6), and accuracy (see Figure 7).

Table 3 reports, for each SoC, the resource utilization in
terms of look-up tables (LUTs), flip-flops (FFs), and digital
signal processing (DSP) elements, providing i) a breakdown

10

0

0.5

1

1.5

> 2

2m
m

3m
m

bic
g

ch
ole

sk
y

do
itg

en

ge
mm

ge
su

mmv lu mvt

sy
mm

sy
r2

k
sy

rk

tri
so

lv
trm

m

Ave
rag

e

N
or

m
al

iz
ed

 E
D

P

Application

1.796
0.940

0.812
0.792

0.651SoCIM SoCIM+F24 SoCIM+F19 SoCIM+F16 SoCIM+Zm

Figure 6: Energy-delay product (EDP), normalized with respect to S oCIM+F32, for all considered SoCs. The normalized EDP is defined according to Equation (4).

0,0003%

0,0028%
0,0979%

1,0071%
0,0003%

0%

2%

4%

6%

8%

10%

2m
m

3m
m

bic
g

ch
ole

sk
y

do
itg

en

ge
mm

ge
su

mmv lu mvt

sy
mm

sy
r2

k
sy

rk

tri
so

lv
trm

m

Ave
rag

eM
ea

n
re

la
tiv

e
er

ro
r

Application

SoCIM SoCIM+F24 SoCIM+F19 SoCIM+F16 SoCIM+Zm

Figure 7: Accuracy of the results for all considered SoCs, expressed in terms of mean relative error (MRE) with respect to the results obtained from S oCIM+F32.
The MRE is defined according to Equation (5).

Table 3 Area results for the six considered SoCs. The resource utilization for
the hardware support of the implemented RISC-V ISA extensions M, F, and
Zm and for the whole SoC is reported in terms of look-up tables (LUT), flip-
flops (FF) and digital signal processors (DSP), while Areanorm measures the
area normalized to the baseline S oCIM .

Resource utilization Areanorm
HW config. Res. M F Zm Total SoC

S oCIM

LUT 3900 - - 8474
1FF 2289 - - 5775

DSP 4 - - 4

S oCIM+F32

LUT 3900 2042 - 11223
1.32FF 2289 664 - 7599

DSP 6 6 - 10

S oCIM+F24

LUT 3900 1531 - 10713
1.26FF 2289 509 - 7444

DSP 4 2 - 6

S oCIM+F19

LUT 3900 1289 - 10498
1.24FF 2289 307 - 7312

DSP 4 3 - 7

S oCIM+F16

LUT 3900 1284 - 10493
1.24FF 2289 357 - 7292

DSP 4 0 - 4

S oCIM+Zm

LUT 3900 - 352 8859
1.04FF 2289 - 33 5810

DSP 4 - 0 4

for the hardware support of each implemented extension of the
RISC-V ISA and ii) the total amount required for the whole
system-on-chip. Since LUT are the scarcest resource, i.e., the
most used resource for implementing the whole SoC relatively
to the total resources available on Xilinx FPGAs, we defined the
area metric as the ratio between the LUT required by a SoC im-
plementation S oCi, where i ∈ {S oCIM , S oCIM+F32, S oCIM+F24,
S oCIM+F19, S oCIM+F16, S oCIM+Zm}, and the LUT required by
the baseline S oCIM . Equation (3) defines such normalized area
metric Areanorm, which allows to easily compare the resource
utilization of the different hardware configurations. We note
that smaller values of Areanorm indicate a lower amount of uti-
lized LUT resources.

Areanorm
i =

LUTi

LUTS oCIM

(3)

For each benchmark, Figure 6 and Figure 7 report the EDP and
accuracy results of all the considered SoCs. In particular, the
results are normalized to the ones obtained with S oCIM+F32.
Considering the execution of application a using the SoC im-
plementation S oCi, the EDP metric is defined as the product
between the energy consumption of the SoC and the execution
time of the application. Consistently, for each benchmark a
and each SoC implementation S oCi, EDPnorm

a,i , i.e., the EDP
normalized with respect to S oCIM+F32, is defined according
to Equation (4). We note that values of EDPnorm less than 1
indicate an improved EDP-efficiency compared to S oCIM+F32,

11

while values greater than 1 signal a worse efficiency.

EDPnorm
a,i =

EDPa,i

EDPa,S oCIM+F32

(4)

Similarly, Equation (5) defines the accuracy metric, i.e., the
mean relative error (MRE). For each application a and each
S oCi, the MRE is defined as the mean of the relative errors
computed on the Na output variables of the considered applica-
tion.

MREa,i =

∑Na
j=1 RelErra,i, j

Na
(5)

In particular, Equation (6) defines the relative error for the
output variable y j of application a by comparing its value when
executed by S oCi with the one obtained by using S oCIM+F32.
To this end, S oCIM+F32 defines the golden accuracy since bi-
nary32 represents the de-facto floating-point standard in the
embedded systems domain.

RelErra,i, j =
|ya,i, j − ya,IM+F32, j|

ya,IM+F32, j
(6)

Area discussion - We start by considering S oCIM as the base-
line computing platform. S oCIM supports both the base in-
teger instructions (I) and the integer multiplication and divi-
sion instructions (M). In this scenario, the implementation of the
floating-point ISA extension (F) supports the execution of mod-
ern data-processing applications. However, the floating-point
computation was shown as the first contribution to power con-
sumption, thus motivating several methodologies to optimize
the energy-performance trade-off. In particular, precision tun-
ing techniques optimize the precision of intermediate floating-
point computations to optimize the energy-budget without af-
fecting the accuracy of the final result. To explore different
precision-area trade-offs, we considered four SoCs with hard-
ware support for floating-point arithmetic, S oCIM+F32, S oCIM+F24,
S oCIM+F19, and S oCIM+F16. The implementation of the bi-
nary32 FPU within S oCIM+F32 highlights the use of 2042 LUTs,
664 FFs, and 6 DSPs. By lowering the precision of the floating-
point format, we observe a corresponding reduction in resource
utilization. In particular, the FPU in S oCIM+F16, which im-
plements the bfloat16 floating-point data format, requires 1284
LUT, i.e., 63% of the 2042 LUT required by the FPU of S oCIM+F32,
which implements the binary32 floating-point data format. While
the whole S oCIM+F32 requires 1.32× the area of S oCIM , the
normalized area metric Areanorm for S oCIM+F16 decreases to
1.24×.

From a different but related perspective, precision tuning
solutions optimize the energy-performance trade-off by replac-
ing floating-point computations with fixed-point ones. In par-
ticular, S oCIM represents the baseline solution to support the
execution of the fixed-point versions of the application. We
note that removing the FPU from the implemented SoC pro-
vides a significant saving in terms of area, as can be seen from
the lower resource utilization for S oCIM . However, the perfor-
mance overhead resulting from the use of standard integer func-
tional units to perform fixed-point computations significantly

exceeds the area gain (see instruction latencies in Table 2 and
EDP in Figure 6). S oCIM+Zm implements the Zm ISA exten-
sion, which we introduced to overcome such efficiency penalty.
Our architecture optimizes the execution of scalar fixed-point
computations with limited area overhead, since the additional
support for the Zm instructions requires 352 LUTs, 33 FFs, and
no DSPs, i.e., i.e., 17% of the 2042 LUT required by the FPU
of S oCIM+F32, with the whole S oCIM+Zm requiring just 1.04×
the area of S oCIM , i.e., 4% more LUT resources, as shown in
Table 2.
EDP discussion - Figure 6 reports the EDP results obtained
for the six considered SoCs and for each application. As de-
fined in Equation (4), such EDP values are normalized to the
ones obtained using S oCIM+F32, which offers hardware sup-
port for binary32, i.e., the IEEE-754 single-precision floating-
point data format. As expected, by limiting the analysis to
the considered floating-point formats, the EDP improves by re-
ducing the precision of the floating-point computations. In par-
ticular, we report an average normalized EDP of 0.940, 0.812,
and 0.792 for S oCIM+F24, S oCIM+F19, and S oCIM+F16, respec-
tively. The EDP improvement is motivated by the faster execu-
tion (see Table 2) and lower resource utilization (see Table 3)
of low-precision FPUs. Compared to S oCIM+F32, for example,
S oCIM+F16 highlights a 37% smaller FPU, in terms of LUT, and
a latency reduction of the floating-point instructions by 1 clock
cycle for additions, subtractions, and multiplications, and by 4
clock cycles for divisions.

In contrast, S oCIM reports an average normalized EDP of
1.370. For each application, S oCIM executes the optimal
fixed-point version of the application, i.e., the one that ensures,
in the first place, the maximum accuracy and, in the second
place, the best EDP. The degradation in the EDP is due to the
higher latency needed to perform fixed-point multiplications
and divisions by means of integer instructions (see Table 2).
S oCIM takes 14 clock cycles to perform a fixed-point multipli-
cation, i.e., almost three times slower than the SoCs support-
ing hardware-level floating-point computations, and few hun-
dreds of clock cycles to perform a fixed-point division, i.e., a
slowdown by more than an order of magnitude. We note that
the EDP degradation is compensated neither by the speedup in
performing the addition-subtraction instructions, which take 1
clock cycle for S oCIM and at least 4 clock cycles for the SoCs
implementing the FPUs, nor by the lower resource utilization,
although S oCIM saves up to 2749 LUTs compared to the SoCs
implementing floating-point hardware support. We note that the
implementation of the Zm extension to the RISC-V ISA delivers
an average normalized EDP of 0.651 (see S oCIM+Zm results in
Figure 6). The sharp EDP improvement is due to i) the shallow
area overhead, which is limited to 352 LUTs on top of S oCIM ,
and ii) the low latency to execute the fixed-point instructions.
In particular, S oCIM+Zm requires only 1 clock cycle to exe-
cute addition-subtraction and comparison instructions, while
the SoCs implementing the floating-point support take between
4 and 5 clock cycles, depending on their precision. Moreover,
the latency to perform fixed-point multiplications and divisions
is on par with the one required by the SoCs implementing the

12

hardware support for floating-point arithmetic.
Accuracy discussion - Several state-of-the-art proposals high-
lighted the emergence of precision-tolerant applications in dif-
ferent use case scenarios. This trend of accepting some accu-
racy loss in the output motivated the introduction of approxi-
mate computing and of precision tuning strategies that aim to
optimize the efficiency by selectively lowering the precision of
the computations.

Our experimental results confirm such a trend, highlighting
an average accuracy loss within 1% for most executed applica-
tions and regardless of the computing platform. Considering the
SoCs executing the floating-point versions of the applications,
i.e., S oCIM+F32, S oCIM+F24, S oCIM+F19, and S oCIM+F16, the
accuracy loss increases with the decrease in the precision of the
implemented FPU.

We note that the choice of employing a low-precision floating-
point unit to optimize the efficiency metric, i.e., the EDP, rep-
resents a limiting design strategy. In particular, the execution
of precision-sensitive floating-point applications will suffer the
use of low-precision FPUs, therefore requiring to resort to soft-
float function calls to achieve full precision, at the cost of a
significant drop-off in execution time. In contrast, the pro-
posed Zm ISA extension can effectively support advanced pre-
cision tuning techniques to optimize both precision-sensitive
and precision-tolerant applications at the cost of a tolerable area
overhead in the order of 350 LUTs. The proposed fixed-point
support ensures a significant EDP improvement, while the use
of software-level precision tuning techniques can further opti-
mize the already acceptable accuracy loss.

5. Conclusions

This work introduced a cost-effective architecture targeting
embedded systems to efficiently perform integer and fixed-point
computations. To this end, we introduced a RISC-V ISA ex-
tension that implements eight fixed-point multiplication/divi-
sion instructions, each corresponding to an instruction from the
RISC-V ISA M standard extension. The proposed design al-
lows either to replace the floating-point computations to achieve
a meaningful area reduction and EDP improvement or to com-
plement the FPU to provide flexibility in the selection of the
best arithmetic to use given a target application and its require-
ments. Experimental results in terms of area, EDP, and accu-
racy were collected from a representative set of floating-point
intensive applications executed by means of six variants of the
baseline SoC. In particular, we compared the efficiency of dif-
ferent floating- and fixed-point architectures. Each variant of
the SoC was implemented on the Xilinx Artix-7 100 FPGA and
validated by means of the Digilent Nexys 4 DDR board. Com-
pared to the SoC implementing the sole integer support, the
SoC implementing the binary32 floating-point arithmetic uses
32% more resources while our fixed-point design limits the re-
source overhead to 4%. Compared to the SoC implementing
the floating point support, our fixed-point architecture offers an
average normalized EDP of 0.651 within a negligible accuracy
loss, i.e., lower than 0.0003% on average. In contrast, the use of

integer support to perform fixed-point computations degrades
the normalized EDP up to 1.796, on average.

References
[1] D. Zoni, L. Cremona, W. Fornaciari, All-digital control-theoretic scheme

to optimize energy budget and allocation in multi-cores, IEEE Transac-
tions on Computers 69 (5) (2020) 706–721. doi:10.1109/TC.2019.
2963859.

[2] D. Zoni, L. Cremona, W. Fornaciari, All-digital energy-constrained con-
troller for general-purpose accelerators and cpus, IEEE Embedded Sys-
tems Letters 12 (1) (2020) 17–20. doi:10.1109/LES.2019.2914136.

[3] L. Cremona, W. Fornaciari, D. Zoni, Automatic identification and hard-
ware implementation of a resource-constrained power model for em-
bedded systems, Sustainable Computing: Informatics and Systems 29
(2021) 100467. doi:https://doi.org/10.1016/j.suscom.2020.
100467.
URL https://www.sciencedirect.com/science/article/pii/
S2210537920301918

[4] M. J. Walker, S. Diestelhorst, A. Hansson, A. K. Das, S. Yang, B. M.
Al-Hashimi, G. V. Merrett, Accurate and stable run-time power modeling
for mobile and embedded CPUs, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 36 (1) (2017) 106–119.

[5] Q. Xu, T. Mytkowicz, N. S. Kim, Approximate computing: A survey,
IEEE Design Test 33 (1) (2016) 8–22. doi:10.1109/MDAT.2015.
2505723.

[6] A. C. I. Malossi, M. Schaffner, A. Molnos, L. Gammaitoni, G. Tagli-
avini, A. Emerson, A. Tomás, D. S. Nikolopoulos, E. Flamand, N. Wehn,
The transprecision computing paradigm: Concept, design, and applica-
tions, in: 2018 Design, Automation Test in Europe Conference Exhibition
(DATE), 2018, pp. 1105–1110. doi:10.23919/DATE.2018.8342176.

[7] G. Tagliavini, A. Marongiu, L. Benini, Flexfloat: A software library for
transprecision computing, IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems 39 (1) (2020) 145–156. doi:
10.1109/TCAD.2018.2883902.

[8] C. Rubio-González, Cuong Nguyen, Hong Diep Nguyen, J. Demmel,
W. Kahan, K. Sen, D. H. Bailey, C. Iancu, D. Hough, Precimonious:
Tuning assistant for floating-point precision, in: SC ’13: Proceedings of
the International Conference on High Performance Computing, Network-
ing, Storage and Analysis, 2013, pp. 1–12. doi:10.1145/2503210.
2503296.

[9] P. Srivastava, M. Kang, S. K. Gonugondla, S. Lim, J. Choi, V. Adve,
N. S. Kim, N. Shanbhag, Promise: An end-to-end design of a pro-
grammable mixed-signal accelerator for machine-learning algorithms, in:
2018 ACM/IEEE 45th Annual International Symposium on Computer Ar-
chitecture (ISCA), 2018, pp. 43–56. doi:10.1109/ISCA.2018.00015.

[10] W.-F. Chiang, M. Baranowski, I. Briggs, A. Solovyev, G. Gopalakrish-
nan, Z. Rakamarić, Rigorous floating-point mixed-precision tuning, SIG-
PLAN Not. 52 (1) (2017) 300–315. doi:10.1145/3093333.3009846.
URL https://doi.org/10.1145/3093333.3009846

[11] J. Johnson, Rethinking floating point for deep learning, CoRR
abs/1811.01721. arXiv:1811.01721.
URL http://arxiv.org/abs/1811.01721

[12] A. Agrawal, B. Fleischer, S. Mueller, X. Sun, N. Wang, J. Choi,
K. Gopalakrishnan, Dlfloat: A 16-b floating point format designed for
deep learning training and inference, in: 2019 IEEE 26th Symposium
on Computer Arithmetic (ARITH), 2019, pp. 92–95. doi:10.1109/
ARITH.2019.00023.

[13] N. Burgess, J. Milanovic, N. Stephens, K. Monachopoulos, D. Mansell,
Bfloat16 processing for neural networks, in: 2019 IEEE 26th Symposium
on Computer Arithmetic (ARITH), 2019, pp. 88–91. doi:10.1109/
ARITH.2019.00022.

[14] S. Cherubin, D. Cattaneo, M. Chiari, A. D. Bello, G. Agosta, Taffo: Tun-
ing assistant for floating to fixed point optimization, IEEE Embedded Sys-
tems Letters 12 (1) (2020) 5–8. doi:10.1109/LES.2019.2913774.

[15] C.-L. Lee, M.-Y. Hsu, B.-S. Lu, M.-Y. Hung, J.-K. Lee, Experiment and
enabled flow for gpgpu-sim simulators with fixed-point instructions, Jour-
nal of Systems Architecture 111 (2020) 101783. doi:https://doi.
org/10.1016/j.sysarc.2020.101783.
URL https://www.sciencedirect.com/science/article/pii/
S1383762120300771

13

http://dx.doi.org/10.1109/TC.2019.2963859
http://dx.doi.org/10.1109/TC.2019.2963859
http://dx.doi.org/10.1109/LES.2019.2914136
https://www.sciencedirect.com/science/article/pii/S2210537920301918
https://www.sciencedirect.com/science/article/pii/S2210537920301918
https://www.sciencedirect.com/science/article/pii/S2210537920301918
http://dx.doi.org/https://doi.org/10.1016/j.suscom.2020.100467
http://dx.doi.org/https://doi.org/10.1016/j.suscom.2020.100467
https://www.sciencedirect.com/science/article/pii/S2210537920301918
https://www.sciencedirect.com/science/article/pii/S2210537920301918
http://dx.doi.org/10.1109/MDAT.2015.2505723
http://dx.doi.org/10.1109/MDAT.2015.2505723
http://dx.doi.org/10.23919/DATE.2018.8342176
http://dx.doi.org/10.1109/TCAD.2018.2883902
http://dx.doi.org/10.1109/TCAD.2018.2883902
http://dx.doi.org/10.1145/2503210.2503296
http://dx.doi.org/10.1145/2503210.2503296
http://dx.doi.org/10.1109/ISCA.2018.00015
https://doi.org/10.1145/3093333.3009846
http://dx.doi.org/10.1145/3093333.3009846
https://doi.org/10.1145/3093333.3009846
http://arxiv.org/abs/1811.01721
http://arxiv.org/abs/1811.01721
http://arxiv.org/abs/1811.01721
http://dx.doi.org/10.1109/ARITH.2019.00023
http://dx.doi.org/10.1109/ARITH.2019.00023
http://dx.doi.org/10.1109/ARITH.2019.00022
http://dx.doi.org/10.1109/ARITH.2019.00022
http://dx.doi.org/10.1109/LES.2019.2913774
https://www.sciencedirect.com/science/article/pii/S1383762120300771
https://www.sciencedirect.com/science/article/pii/S1383762120300771
http://dx.doi.org/https://doi.org/10.1016/j.sysarc.2020.101783
http://dx.doi.org/https://doi.org/10.1016/j.sysarc.2020.101783
https://www.sciencedirect.com/science/article/pii/S1383762120300771
https://www.sciencedirect.com/science/article/pii/S1383762120300771

[16] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi,
E. Flamand, F. K. Gürkaynak, L. Benini, Near-threshold risc-v core with
dsp extensions for scalable iot endpoint devices, IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 25 (10) (2017) 2700–2713.
doi:10.1109/TVLSI.2017.2654506.

[17] E. Swartzlander, A. Alexopoulos, The sign/logarithm number system,
IEEE Transactions on Computers C-24 (12) (1975) 1238–1242. doi:
10.1109/T-C.1975.224172.

[18] I. Koren, Computer Arithmetic Algorithms, 2nd Edition, A. K. Peters,
Ltd., Natick, MA, USA, 2001.

[19] G. Tagliavini, S. Mach, D. Rossi, A. Marongiu, L. Benini, A transpreci-
sion floating-point platform for ultra-low power computing, in: 2018 De-
sign, Automation Test in Europe Conference Exhibition (DATE), 2018,
pp. 1051–1056. doi:10.23919/DATE.2018.8342167.

[20] N. Ho, E. Manogaran, W. Wong, A. Anoosheh, Efficient floating point
precision tuning for approximate computing, in: 2017 22nd Asia and
South Pacific Design Automation Conference (ASP-DAC), 2017, pp. 63–
68. doi:10.1109/ASPDAC.2017.7858297.

[21] M. Willems, V. Bürsgens, H. Keding, T. Grötker, H. Meyr, System level
fixed-point design based on an interpolative approach, in: Proceedings of
the 34th Annual Design Automation Conference, DAC ’97, Association
for Computing Machinery, New York, NY, USA, 1997, p. 293–298. doi:
10.1145/266021.266105.
URL https://doi.org/10.1145/266021.266105

[22] H. Keding, M. Willems, M. Coors, H. Meyr, Fridge: a fixed-point design
and simulation environment, in: Proceedings Design, Automation and
Test in Europe, 1998, pp. 429–435. doi:10.1109/DATE.1998.655893.

[23] A. Gaffar, O. Mencer, W. Luk, Unifying bit-width optimisation for fixed-
point and floating-point designs, in: 12th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines, 2004, pp. 79–88.
doi:10.1109/FCCM.2004.59.

[24] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman,
S. Amarasinghe, Petabricks: A language and compiler for algorithmic
choice, SIGPLAN Not. 44 (6) (2009) 38–49. doi:10.1145/1543135.
1542481.
URL https://doi.org/10.1145/1543135.1542481

[25] S. Cherubin, D. Cattaneo, M. Chiari, G. Agosta, Dynamic precision au-
totuning with taffo, ACM Trans. Archit. Code Optim. 17 (2). doi:
10.1145/3388785.
URL https://doi.org/10.1145/3388785

[26] Y. Zhang, F. Zhang, Y. Shakhsheer, J. Silver, A. Klinefelter, M. Nagaraju,
J. Boley, J. N. Pandey, A. Shrivastava, E. J. Carlson, A. Wood, B. H.
Calhoun, B. P. Otis, A batteryless 19 µw mics/ism-band energy harvesting
body sensor node soc for exg applications, IEEE J. Solid State Circuits
48 (1) (2013) 199–213. doi:10.1109/JSSC.2012.2221217.
URL https://doi.org/10.1109/JSSC.2012.2221217

[27] S. R. Sridhara, M. DiRenzo, S. Lingam, S. Lee, R. Blazquez, J. Maxey,
S. Ghanem, Y. Lee, R. Abdallah, P. Singh, M. Goel, Microwatt embedded
processor platform for medical system-on-chip applications, IEEE Jour-
nal of Solid-State Circuits 46 (4) (2011) 721–730. doi:10.1109/JSSC.
2011.2108910.

[28] D. Zoni, A. Galimberti, W. Fornaciari, Efficient and scalable fpga-
oriented design of qc-ldpc bit-flipping decoders for post-quantum cryp-
tography, IEEE Access 8 (2020) 163419–163433. doi:10.1109/
ACCESS.2020.3020262.

[29] D. Zoni, A. Galimberti, W. Fornaciari, Flexible and scalable fpga-oriented
design of multipliers for large binary polynomials, IEEE Access 8 (2020)
75809–75821. doi:10.1109/ACCESS.2020.2989423.

[30] L. Lai, N. Suda, V. Chandra, Cmsis-nn: Efficient neural network kernels
for arm cortex-m cpus (2018). arXiv:1801.06601.

[31] K. Majumder, U. Bondhugula, A flexible FPGA accelerator for convolu-
tional neural networks, CoRR abs/1912.07284. arXiv:1912.07284.
URL http://arxiv.org/abs/1912.07284

[32] G. Tagliavini, S. Mach, D. Rossi, A. Marongiu, L. Benini, Design and
evaluation of smallfloat simd extensions to the risc-v isa, in: 2019 De-
sign, Automation Test in Europe Conference Exhibition (DATE), 2019,
pp. 654–657. doi:10.23919/DATE.2019.8714897.

[33] F. de Dinechin, B. Pasca, Designing custom arithmetic data paths with
FloPoCo, IEEE Design & Test of Computers 28 (4) (2011) 18–27.

[34] F. de Dinechin, Reflections on 10 years of FloPoCo, in: 26th IEEE Sym-
posium of Computer Arithmetic (ARITH-26), 2019.

[35] S. Galal, O. Shacham, J. S. Brunhaver II, J. Pu, A. Vassiliev, M. Horowitz,
Fpu generator for design space exploration, in: 2013 IEEE 21st Sympo-
sium on Computer Arithmetic, 2013, pp. 25–34. doi:10.1109/ARITH.
2013.27.

[36] F. Glaser, S. Mach, A. Rahimi, F. K. Gürkaynak, Q. Huang, L. Benini, An
826 mops, 210uw/mhz unum alu in 65 nm, in: 2018 IEEE International
Symposium on Circuits and Systems (ISCAS), 2018, pp. 1–5. doi:10.
1109/ISCAS.2018.8351546.

[37] G. Henry, P. T. P. Tang, A. Heinecke, Leveraging the bfloat16 artificial
intelligence datatype for higher-precision computations, in: 2019 IEEE
26th Symposium on Computer Arithmetic (ARITH), 2019, pp. 69–76.
doi:10.1109/ARITH.2019.00019.

[38] S. Mach, D. Rossi, G. Tagliavini, A. Marongiu, L. Benini, A transpreci-
sion floating-point architecture for energy-efficient embedded computing,
in: 2018 IEEE International Symposium on Circuits and Systems (IS-
CAS), 2018, pp. 1–5. doi:10.1109/ISCAS.2018.8351816.

[39] H. Kaul, M. Anders, S. Mathew, S. Hsu, A. Agarwal, F. Sheikh, R. Kr-
ishnamurthy, S. Borkar, A 1.45ghz 52-to-162gflops/w variable-precision
floating-point fused multiply-add unit with certainty tracking in 32nm
cmos, in: 2012 IEEE International Solid-State Circuits Conference, 2012,
pp. 182–184. doi:10.1109/ISSCC.2012.6176987.

[40] A. Bocco, Y. Durand, F. De Dinechin, Smurf: Scalar multiple-precision
unum risc-v floating-point accelerator for scientific computing, in: Pro-
ceedings of the Conference for Next Generation Arithmetic 2019,
CoNGA’19, Association for Computing Machinery, New York, NY, USA,
2019. doi:10.1145/3316279.3316280.
URL https://doi.org/10.1145/3316279.3316280

[41] Risc-v "p" extension proposal, version 0.9.11-draft20211209 (2019).
URL https://github.com/riscv/riscv-p-spec/
raw/5a12c90b2c206c501a4489eb79e5d4d46afa1014/
P-ext-proposal.pdf

[42] D. Koene, Implementation and evaluation of packed-simd instructions
for a risc-v processor, Master’s thesis, Delft University of Technology
(2021).
URL https://repository.tudelft.nl/islandora/object/
uuid%3Ac4162ff8-9419-4434-852d-c1c3297df808

[43] F. Zaruba, L. Benini, The cost of application-class processing: Energy
and performance analysis of a linux-ready 1.7-ghz 64-bit risc-v core in
22-nm fdsoi technology, IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems 27 (11) (2019) 2629–2640. doi:10.1109/TVLSI.
2019.2926114.

[44] Y.-R. Chen, H.-H. Liao, C.-H. Chang, C.-C. Lin, C.-L. Lee, Y.-M. Chang,
C.-C. Yang, J.-K. Lee, Experiments and optimizations for tvm on risc-
v architectures with p extension, in: 2020 International Symposium on
VLSI Design, Automation and Test (VLSI-DAT), 2020, pp. 1–4. doi:
10.1109/VLSI-DAT49148.2020.9196477.

[45] A. Waterman, K. Asanovíc, The RISC-V Instruction Set Manual, Volume
I: User-Level ISA, Document Version 2.2 (2019).
URL https://riscv.org/wp-content/uploads/2017/05/
riscv-spec-v2.2.pdf

[46] G. Scotti, D. Zoni, A fresh view on the microarchitectural design of fpga-
based risc cpus in the iot era, Journal of Low Power Electronics and Ap-
plications 9 (2019) 19. doi:10.3390/jlpea9010009.

[47] L. N. Pouchet, PolyBench/C 4.1.
URL http://web.cse.ohio-state.edu/~pouchet.2/software/
polybench/

[48] D. Zoni, A. Galimberti, W. Fornaciari, An fpu design template to optimize
the accuracy-efficiency-area trade-off, Sustainable Computing: Informat-
ics and Systems 29 (2021) 100450. doi:https://doi.org/10.1016/
j.suscom.2020.100450.
URL https://www.sciencedirect.com/science/article/pii/
S2210537920301761

Appendix A. EDP and MRE raw data

This appendix contains the results in terms of energy-delay
product (see Table A.4) and mean relative error (see Table A.5)
collected during the design space exploration (DSE) campaign.
For each application, we analyzed nine binary versions, i.e., a

14

http://dx.doi.org/10.1109/TVLSI.2017.2654506
http://dx.doi.org/10.1109/T-C.1975.224172
http://dx.doi.org/10.1109/T-C.1975.224172
http://dx.doi.org/10.23919/DATE.2018.8342167
http://dx.doi.org/10.1109/ASPDAC.2017.7858297
https://doi.org/10.1145/266021.266105
https://doi.org/10.1145/266021.266105
http://dx.doi.org/10.1145/266021.266105
http://dx.doi.org/10.1145/266021.266105
https://doi.org/10.1145/266021.266105
http://dx.doi.org/10.1109/DATE.1998.655893
http://dx.doi.org/10.1109/FCCM.2004.59
https://doi.org/10.1145/1543135.1542481
https://doi.org/10.1145/1543135.1542481
http://dx.doi.org/10.1145/1543135.1542481
http://dx.doi.org/10.1145/1543135.1542481
https://doi.org/10.1145/1543135.1542481
https://doi.org/10.1145/3388785
https://doi.org/10.1145/3388785
http://dx.doi.org/10.1145/3388785
http://dx.doi.org/10.1145/3388785
https://doi.org/10.1145/3388785
https://doi.org/10.1109/JSSC.2012.2221217
https://doi.org/10.1109/JSSC.2012.2221217
http://dx.doi.org/10.1109/JSSC.2012.2221217
https://doi.org/10.1109/JSSC.2012.2221217
http://dx.doi.org/10.1109/JSSC.2011.2108910
http://dx.doi.org/10.1109/JSSC.2011.2108910
http://dx.doi.org/10.1109/ACCESS.2020.3020262
http://dx.doi.org/10.1109/ACCESS.2020.3020262
http://dx.doi.org/10.1109/ACCESS.2020.2989423
http://arxiv.org/abs/1801.06601
http://arxiv.org/abs/1912.07284
http://arxiv.org/abs/1912.07284
http://arxiv.org/abs/1912.07284
http://arxiv.org/abs/1912.07284
http://dx.doi.org/10.23919/DATE.2019.8714897
http://dx.doi.org/10.1109/ARITH.2013.27
http://dx.doi.org/10.1109/ARITH.2013.27
http://dx.doi.org/10.1109/ISCAS.2018.8351546
http://dx.doi.org/10.1109/ISCAS.2018.8351546
http://dx.doi.org/10.1109/ARITH.2019.00019
http://dx.doi.org/10.1109/ISCAS.2018.8351816
http://dx.doi.org/10.1109/ISSCC.2012.6176987
https://doi.org/10.1145/3316279.3316280
https://doi.org/10.1145/3316279.3316280
http://dx.doi.org/10.1145/3316279.3316280
https://doi.org/10.1145/3316279.3316280
https://github.com/riscv/riscv-p-spec/raw/5a12c90b2c206c501a4489eb79e5d4d46afa1014/P-ext-proposal.pdf
https://github.com/riscv/riscv-p-spec/raw/5a12c90b2c206c501a4489eb79e5d4d46afa1014/P-ext-proposal.pdf
https://github.com/riscv/riscv-p-spec/raw/5a12c90b2c206c501a4489eb79e5d4d46afa1014/P-ext-proposal.pdf
https://github.com/riscv/riscv-p-spec/raw/5a12c90b2c206c501a4489eb79e5d4d46afa1014/P-ext-proposal.pdf
https://repository.tudelft.nl/islandora/object/uuid%3Ac4162ff8-9419-4434-852d-c1c3297df808
https://repository.tudelft.nl/islandora/object/uuid%3Ac4162ff8-9419-4434-852d-c1c3297df808
https://repository.tudelft.nl/islandora/object/uuid%3Ac4162ff8-9419-4434-852d-c1c3297df808
https://repository.tudelft.nl/islandora/object/uuid%3Ac4162ff8-9419-4434-852d-c1c3297df808
http://dx.doi.org/10.1109/TVLSI.2019.2926114
http://dx.doi.org/10.1109/TVLSI.2019.2926114
http://dx.doi.org/10.1109/VLSI-DAT49148.2020.9196477
http://dx.doi.org/10.1109/VLSI-DAT49148.2020.9196477
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
http://dx.doi.org/10.3390/jlpea9010009
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://www.sciencedirect.com/science/article/pii/S2210537920301761
https://www.sciencedirect.com/science/article/pii/S2210537920301761
http://dx.doi.org/https://doi.org/10.1016/j.suscom.2020.100450
http://dx.doi.org/https://doi.org/10.1016/j.suscom.2020.100450
https://www.sciencedirect.com/science/article/pii/S2210537920301761
https://www.sciencedirect.com/science/article/pii/S2210537920301761

Table A.4 Energy-delay product (EDP) results for all considered SoCs, normalized with respect to the EDP for S oCIM+F32, as defined according to Equation (4).
Normalized EDP values of S oCIM and S oCIM+Zm are reported for four different fixed-point formats, i.e., Q32,23, Q32,15, Q32,10, and Q32,7, while normalized EDP
values for floating-point execution are reported for SoCs with F32, F24, F19, and F16 hardware support.

Normalized EDP (with respect to S oCIM+F32)
S oCIM S oCIM+F S oCIM+Zm

Bench Q32,23 Q32,15 Q32,10 Q32,7 F32 F24 F19 F16 Q32,23 Q32,15 Q32,10 Q32,7

2mm 1, 357 1, 298 1, 192 1, 192 1, 000 0, 923 0, 806 0, 784 0, 636 0, 620 0, 606 0, 606
3mm 1, 121 1, 060 1, 026 1, 026 1, 000 0, 927 0, 798 0, 776 0, 656 0, 618 0, 618 0, 599
bicg 1, 194 1, 162 1, 090 1, 090 1, 000 0, 949 0, 790 0, 768 0, 674 0, 652 0, 631 0, 631

cholesky 6, 854 5, 988 5, 615 5, 167 1, 000 0, 923 0, 809 0, 831 0, 764 0, 721 0, 910 1, 045
doitgen 1, 111 1, 146 1, 146 1, 146 1, 000 0, 973 0, 894 0, 845 0, 666 0, 667 0, 667 0, 667
gemm 1, 257 1, 219 1, 236 1, 196 1, 000 0, 952 0, 832 0, 811 0, 645 0, 625 0, 638 0, 638

gesummv 1, 169 1, 157 1, 138 1, 138 1, 000 0, 971 0, 861 0, 837 0, 691 0, 671 0, 644 0, 644
lu 2, 462 2, 361 2, 282 2, 280 1, 000 0, 913 0, 787 0, 761 0, 613 0, 603 0, 586 0, 586

mvt 1, 083 1, 051 1, 019 0, 986 1, 000 0, 930 0, 801 0, 781 0, 632 0, 624 0, 606 0, 606
symm 1, 466 1, 423 1, 334 1, 334 1, 000 0, 923 0, 770 0, 748 0, 637 0, 599 0, 580 0, 580
syr2k 1, 549 1, 499 1, 450 1, 450 1, 000 0, 947 0, 790 0, 768 0, 673 0, 650 0, 629 0, 629
syrk 1, 414 1, 414 1, 354 1, 354 1, 000 0, 973 0, 848 0, 824 0, 692 0, 670 0, 684 0, 684

trisolv 4, 132 3, 634 3, 466 3, 347 1, 000 0, 927 0, 765 0, 755 0, 617 0, 596 0, 600 0, 600
trmm 1, 038 0, 987 0, 958 0, 958 1, 000 0, 933 0, 818 0, 798 0, 719 0, 657 0, 637 0, 637

Average 1, 943 1, 814 1, 736 1, 690 1, 000 0, 940 0, 812 0, 792 0, 665 0, 641 0, 645 0, 654

Table A.5 Accuracy of the results for all considered SoCs, expressed in terms of mean relative error (MRE) with respect to the results obtained from S oCIM+F32, as
defined according to Equation (5). MRE values of S oCIM and S oCIM+Zm are reported for four different fixed-point formats, i.e., Q32,23, Q32,15, Q32,10, and Q32,7,
while MRE values for floating-point execution are reported for SoCs with F32, F24, F19, and F16 hardware support.

Mean Relative Error (with respect to S oCIM+F32)
S oCIM S oCIM+F S oCIM+Zm

Bench Q32,23 Q32,15 Q32,10 Q32,7 F32 F24 F19 F16 Q32,23 Q32,15 Q32,10 Q32,7

2mm 0, 000% 0, 013% 0, 376% 2, 995% 0, 000% 0, 001% 0, 045% 0, 343% 0, 000% 0, 013% 0, 376% 2, 995%
3mm 0, 004% 0, 852% 25, 46% 100, 0% 0, 000% 0, 003% 0, 065% 0, 753% 0, 004% 0, 852% 25, 46% 100, 0%
bicg 0, 000% 0, 011% 0, 340% 2, 907% 0, 000% 0, 001% 0, 040% 0, 343% 0, 000% 0, 011% 0, 340% 2, 907%

cholesky 0, 000% 0, 003% 0, 082% 0, 604% 0, 000% 0, 005% 0, 154% 0, 967% 0, 000% 0, 003% 0, 092% 0, 695%
doitgen 0, 000% 0, 000% 0, 000% 0, 000% 0, 000% 0, 000% 0, 045% 0, 000% 0, 000% 0, 000% 0, 000% 0, 000%
gemm 0, 000% 0, 010% 0, 264% 2, 687% 0, 000% 0, 001% 0, 051% 0, 286% 0, 000% 0, 010% 0, 264% 2, 687%

gesummv 0, 000% 0, 001% 0, 036% 0, 794% 0, 000% 0, 001% 0, 069% 0, 651% 0, 000% 0, 001% 0, 036% 0, 794%
lu 0, 000% 0, 001% 0, 033% 0, 251% 0, 000% 0, 005% 0, 108% 0, 893% 0, 000% 0, 001% 0, 033% 0, 251%

mvt 0, 000% 0, 010% 0, 273% 2, 329% 0, 000% 0, 001% 0, 036% 0, 486% 0, 000% 0, 010% 0, 273% 2, 329%
symm 0, 000% 0, 003% 0, 111% 0, 898% 0, 000% 0, 001% 0, 034% 0, 429% 0, 000% 0, 003% 0, 111% 0, 898%
syr2k 0, 000% 0, 007% 0, 183% 1, 678% 0, 000% 0, 001% 0, 048% 0, 378% 0, 000% 0, 007% 0, 183% 1, 678%
syrk 0, 000% 0, 001% 0, 034% 1, 178% 0, 000% 0, 000% 0, 037% 0, 384% 0, 000% 0, 001% 0, 034% 1, 178%

trisolv 0, 000% 0, 007% 0, 211% 1, 934% 0, 000% 0, 018% 0, 589% 7, 870% 0, 000% 0, 007% 0, 211% 1, 934%
trmm 0, 000% 0, 007% 0, 211% 1, 700% 0, 000% 0, 001% 0, 048% 0, 316% 0, 000% 0, 007% 0, 211% 1, 700%

Average 0, 000% 0, 066% 1, 972% 8, 568% 0, 000% 0, 003% 0, 098% 1, 007% 0, 000% 0, 066% 1, 973% 8, 575%

floating-point one, four fixed-point ones leveraging the M ISA
extension, and four fixed-point ones using the proposed Zm ISA
extension. The floating-point binary is executed on four FPUs
implementing different formats. We note that no precision tun-
ing optimization was employed to optimize the fixed-point data
format, since such research falls outside the scope of the manuscript.
The four employed fixed-point formats were chosen to span
across the range of bitwidth for the integer and fractional parts,
maintaining the overall bitwidth equal to 32 bits. To this end,
the obtained results are conservative with respect to the ones

that could have been obtained by combining our fixed-point ar-
chitecture with a precision tuning framework.

Davide Zoni is Assistant Professor at Politecnico di Milano,
Italy. He published more than 50 papers in journals and con-
ference proceedings. His research interests include RTL design
and optimization of complex embedded systems with emphasis
on low power methodologies and hardware security. He filed
two patents on cyber-security and he won the Switch2Product

15

competition in 2019.

Andrea Galimberti, MSc, is a PhD student at Politecnico di
Milano, Italy. He received his MSc degree in 2019 in Computer
Science and Engineering at Politecnico di Milano. His research
interests include computer architectures, hardware-level coun-
termeasures to side-channel attacks and design of hardware ac-
celerators.

16

	Introduction
	Background and related works
	Background
	State of the art

	Fixed-point architecture
	Comparing fixed- and floating-point binaries
	Fixed-point ISA extension
	Scalar fixed-point architecture

	Experimental Evaluation
	Experimental software setup
	Experimental hardware setup
	Area, EDP and accuracy results

	Conclusions
	EDP and MRE raw data

