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Abstract—Exoscopes have emerged as a promising visual
solution within the field of microneurosurgery. However, manual
repositioning poses a challenge causing interruptions that disrupt
the surgical flow. Thus, the need for hands-free exoscope control
arises. This paper introduces a position-based visual-servoing
control approach, comprising a detection module, a hybrid
tracking module, and a control module that adjusts a robotic
camera holder to follow a surgical tool. The hybrid module was
integrated to track and predict the surgical tool’s future position
to minimize system latency. The proposed system is composed of
a 7 Degree-of-Freedom robotic manipulator with an eye-in-hand
stereo camera. A comparative analysis with three alternative
approaches (Convolutional Neural Network - CNN, Particle Filter
- PF, Optical Flow - OF) was assessed using Tracking Error
and Center Error metrics. Results showed improved tracking
accuracy with an average error of 9.84 ± 0.08 mm for slow
movements (2.5 cm/s) and 13.11±0.39 mm for rapid movements (4
cm/s). Finally, a User Study was conducted to investigate whether
the proposed system effectively reduced the users’ workload
compared to the manual repositioning of the camera.

Index Terms—Robotic Surgery, Collaborative Robotics, Visual
Servoing, Tool Tracking

I. INTRODUCTION

EXOSCOPES have gained widespread acceptance in neu-
rosurgical settings, and their ergonomic benefits have

been well-established [1]. The exoscope includes an external
scope that streams surgical field images onto an external 2D or
3D monitor, and allows surgeons to maintain a neutral, upright
spinal position, leading to better ergonomics [2]. However,
their manual repositioning disrupts surgical flow, potentially
extending operation durations and increasing cognitive load
for the surgeon [3]. Alternatives, including voice, joysticks,
and gaze control, have been implemented [4]. In the field
of surgical exoscopes, the most prevalent method, currently
used in devices like AESCULAP Aeos (Braun, Melsungen,
Germany) and ORBEYE (Olympus, Tokyo, Japan), involves
a foot-operated joystick controller to control the movement of
the exoscope mounted on a robotic arm. While this approach
allows surgeons to maintain ambidexterity during procedures,
its complexity has emerged as a limiting factor [5]. The
inconvenience due to repositioning underscores the importance
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of minimizing the need for direct intervention in camera
control to perform uninterrupted bimanual surgery. Synaptive
Medical’s 2017 Modus V introduced autonomous control
using optical tracking systems with passive markers attached
to the suction cannula to enable robotic camera movement
[6]. However, obstructions between the instrument and the
tracking system, and the need to attach passive markers can
limit instrument maneuverability [7]. Instrument localization
has been investigated with various techniques, including robot
kinematics-based [8] [9] and image-based tracking [10]. A
marker-based approach for the automation of the da Vinci
endoscope was proposed by [11]. Here, the detection of the
tool was achieved via ArUco which may fail in a real scenario
when blood or other fluids are present. Markerless approaches
provide an accurate reconstruction of the instrument’s position
in real-time and can be incorporated into robotic controls
[12]. [13] presented an autonomous system employing the
endoscope to track surgical instruments, utilizing a visual
servo approach for endoscope movements. [14] introduced
a markerless position-based visual-servoing (VS), utilizing a
stereo microscope to track the tip of a manipulator. However,
this study used colored markings for tip identification, which
may not align with actual surgical scenarios. Additionally,
a markerless framework for an autonomous vision-guided
camera holder was developed in [15]. This system tracked
and followed a selected surgical instrument using a markerless
VS technique. However, a significant challenge was the low
processing speed of the Convolutional Neural Network (CNN)
used for tool detection in the images. This limitation resulted
in decreased system responsiveness to tool movements, leading
to slow and unstable tracking of the surgical instrument.

In this study, we introduce a novel hybrid tracking module
to enable real-time tool tracking in an autonomous exoscope
system. The key contributions of this work are:

• A novel hybrid tracking module that combines an optical
flow tracking component with a particle filter predictor to
forecast the future position of the tracked tool.

• Comprehensive experiments designed to compare the
system’s performance with traditional approaches.

• Exploration of user experiences associated with manual
and autonomous control modalities through a user study.

The remainder of this paper is organized as follows. Section
II describes the materials and methods of the system. Section
III depicts the experimental setup for system validation and
usability. Experimental results are illustrated and discussed in
Section IV. Finally, conclusions are reported in Section V.

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2024.3400124

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Milano. Downloaded on May 14,2024 at 09:07:14 UTC from IEEE Xplore.  Restrictions apply. 



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MAY, 2024

II. MATERIALS AND METHODS

The proposed system is divided into three modules: a
Tool Detection Module that can recognise a selected surgical
instrument, a Hybrid Tracking Module that tracks and predicts
the future position of the target tool, and a Visual-Servoing
(VS) Control Module responsible for zeroing the error between
the desired and actual pose of the robot to ensure that the
instrument remains positioned near the center of the camera
image. The overall system is illustrated in Fig. 1.

Fig. 1. Overall System: images acquired by the stereo camera are sent
to a convolutional neural network to detect the surgical tool’s position,
denoted as (𝑥𝑡,𝑅 , 𝑦𝑡,𝑅 ) for the right image and (𝑥𝑡,𝐿 , 𝑦𝑡,𝐿 ) for the left
image. These 2D coordinates are then passed to a hybrid tracking module
which uses optical flow to track the tool’s movement across successive
frames, producing tracked positions (𝑥𝑜 𝑓 ,𝑅 , 𝑦𝑜 𝑓 ,𝑅 ) and (𝑥𝑜 𝑓 ,𝐿 , 𝑦𝑜 𝑓 ,𝐿 ) .
Subsequently, a particle filter prediction module estimates the tool’s future
position in image space, indicated by (𝑥𝑝,𝑅 , 𝑦𝑝,𝑅 ) and (𝑥𝑝,𝐿 , 𝑦𝑝,𝐿 ) .
Finally, triangulation is used to determine the 3D position of the tool from its
predicted 2D positions, which is then fed into a VS controller to guide the
robot’s motion.

A. Tool Detection Module

A pre-trained Convolutional Neural Network (CNN), specif-
ically YoloV5 [16] was employed to identify the tip of a
grasping forceps through a bounding box. Two concatenated
RGB frames from a stereo camera, with a total resolution of
1920 × 1080 pixels, were divided into right and left frames,
each sized at 960 × 1080 pixels. The frames were further
downsampled to 640 × 640 pixels and sent to the CNN. The
output of the CNN included coordinates for the upper-right and
lower-left corners of the bounding box, the confidence score
of the prediction, and the predicted class (i.e., the instrument’s
tip). A model pre-trained on the object detection NN on the
Common Objects in Context (COCO) [17] was fine-tuned
on a custom dataset for instrument tool detection. After the
identification of the instrument through the bounding box, the
tooltip’s actual position on the image plane was determined
as the center of the bounding box, resulting in coordinates
(𝑥𝑡 ,𝑅, 𝑦𝑡 ,𝑅) for the right and (𝑥𝑡 ,𝐿 , 𝑦𝑡 ,𝐿) for the left image.

B. Hybrid Tracking Module

The hybrid tracking module consisted of two key compo-
nents: an optical flow tracking module and a modified particle
filter. By leveraging the optical flow, we achieved efficient
tool tracking between consecutive frames. Additionally, the
particle filter played a crucial role in predicting the tool’s
future position, effectively reducing system delays.

Optical flow refers to the observed pattern of apparent
motion exhibited by objects within a series of consecutive
image frames [18]. It operates under the assumption that
neighboring pixels in successive video frames move with sim-
ilar velocities, maintaining their spatial relationships. For this
study, the optical flow tracking module offered by OpenCV,
which exploits the Lukas-Kanade method with pyramids, was
chosen [19]. To calculate the optical flow, the method analyses
changes in pixel intensity values between adjacent frames to
estimate pixel displacement:

I(𝑥𝑖 , 𝑦𝑖 , 𝑡𝑖) = I(𝑥𝑖 + 𝑑𝑥, 𝑦𝑖 + 𝑑𝑦, 𝑡𝑖 + 𝑑𝑡) (1)

where 𝐼 denotes the pixel intensity, (𝑥𝑖 ,𝑦𝑖) are the pixel
coordinates of frame 𝑖 at time 𝑡, and (𝑑𝑥,𝑑𝑦) is the distance
traveled in the next frame after 𝑑𝑡 time. To determine the
displacement of points from the initial frame to the subsequent
one over time in the x-axis, 𝑢𝑖 = 𝑑𝑥/𝑑𝑡, and y-axis, 𝑣𝑖 = 𝑑𝑦/𝑑𝑡,
the least square fit method is used, and it leads to:[
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·
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(2)

where 𝑓𝑥 =
𝛿𝐼

𝛿𝑥
and 𝑓𝑦 =

𝛿𝐼

𝛿𝑦
are the image gradients

representing how the intensity of the image changes, and 𝑓𝑡
indicates the gradient over time. The Lukas-Kanade method
assumes that, given one point, the nine surrounding points
have the same motion. In our scenario, we provided the
optical flow algorithm with the instrument’s position in camera
space represented as (𝑥𝑡 ,𝑅, 𝑦𝑡 ,𝑅) and (𝑥𝑡 ,𝐿 , 𝑦𝑡 ,𝐿), alongside
eight additional neighboring reference points. These points
were placed in a cross-like configuration to guarantee com-
prehensive coverage of the surrounding area, ensuring that the
algorithm could effectively capture spatial information beyond
the instrument’s immediate vicinity. For each of these points,
the algorithm considers a 3x3 patch resulting in a total of
81 points. As a result, the optical flow algorithm generated
a vector that depicted the displacement of the nine tracked
points between successive frames. By calculating the mean
values of the x and y coordinates among these points, we
determined the tool’s coordinates in the image space, denoted
as (𝑥𝑜 𝑓 ,𝑅, 𝑦𝑜 𝑓 ,𝑅) and (𝑥𝑜 𝑓 ,𝐿 , 𝑦𝑜 𝑓 ,𝐿).

A modified particle filter was introduced to estimate the
future position of the tool in the image space, based on
its previous position, speed, and orientation. A particle filter
is an algorithm that recursively updates an estimate of the
state and finds the innovations driving a stochastic process
given a sequence of observations. It uses a set of particles to
represent possible states in a dynamic system. These particles
evolve according to the system’s dynamics and are updated
with new observations. Weights are assigned to the particles
based on their ability to explain observed data, and resampling
is performed to generate a new set of particles that better
represent the true state of the system [20]. Our particle filter
acted as follows:

1) The weight of every particle is initialized (Fig. 2A):

𝑤𝑘 |𝑖 =
1
𝑁

(3)

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2024.3400124

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Milano. Downloaded on May 14,2024 at 09:07:14 UTC from IEEE Xplore.  Restrictions apply. 



IOVENE et al.: HYBRID TRACKING MODULE FOR REAL-TIME TOOL TRACKING FOR AN AUTONOMOUS EXOSCOPE 3

Fig. 2. Particle filter workflow. The blue dots represent the particle pose.
Tool pose is identified by the black dot (𝑥𝑡 , 𝑦𝑡 ) . The green dot is the future
position (𝑥𝑝 , 𝑦𝑝 ) . 𝑑1,𝑅,𝑘 is the distance of the 𝑘𝑡ℎ particle from actual tool
position and 𝑑2,𝑅,𝑘 is the distance of the 𝑘𝑡ℎ particle from probable future
tool position

where 𝑤𝑘 |𝑖 are the weights of the 𝑘 𝑡ℎ particle at instant
𝑖, and 𝑁 is the total number of particles used.

2) A new estimation of the tool position, (𝑥𝑡 |𝑖 , 𝑦𝑡 |𝑖) at
instant 𝑖 is acquired (Fig. 2B).

3) The direction and the speed of the movement of the
tool are computed (Fig. 2C). To compute the speed, 𝑣𝑡 |𝑖 ,
the discrete derivative between two consecutive positions
was used:

𝑣𝑡 |𝑖 =

√︃
Δ2
𝑥 |𝑖 + Δ2

𝑦 |𝑖

Δ𝑡 |𝑖
(4)

where Δ𝑥 |𝑖 , Δ𝑦 |𝑖 , and Δ𝑡 |𝑖 are the variation of the tool’s
𝑥 and 𝑦 coordinates, and time 𝑡, respectively, at instant
𝑖 and 𝑖 − 1. Moreover, the estimated speed was filtered
through a low-pass FIR filter of the first order [21].
The direction of motion, ℎ𝑡 |𝑖 , was determined as:

ℎ𝑡 |𝑖 = 𝑎𝑡𝑎𝑛(Δ𝑦 |𝑖 ,Δ𝑥 |𝑖) (5)

4) The future position of the particles is predicted in both
images (Fig. 2D) using odometry. In particular, if the
variation of the direction of the tool was under a certain
threshold, the Runge–Kutta odometry was used:

𝑥𝑡 ,𝑘 |𝑖+1 = 𝑥𝑡 |𝑖 + 𝑣𝑡 |𝑖 · 𝑑𝑡 · cos
(
ℎ𝑡 |𝑖 +

Δℎ,𝑡 |𝑖 · 𝑑𝑡
2

)
(6)

where 𝑥𝑡 |𝑖 is the x coordinate of the tool at instant 𝑖,
𝑣𝑡 |𝑖 is the estimated tool velocity, ℎ𝑡 |𝑖 is the heading of
the tool, Δℎ,𝑡 |𝑖 is the difference of the tool’s heading be-
tween two consecutive instants, and 𝑑𝑡 is the prediction
horizon.
When the variation of the direction of the tool was above
a certain threshold, the exact odometry was used:

𝑥𝑡 ,𝑘 |𝑖+1 = 𝑥𝑡 |𝑖 +
𝑣𝑡 |𝑖 [sin (ℎ𝑡 |𝑖 + Δℎ,𝑡 |𝑖 · 𝑑𝑡) − sin (ℎ𝑡 |𝑖)]

Δℎ,𝑡 |𝑖
(7)

For simplicity, only the calculation of the x coordinate
is reported, but the same holds true for the y coordinate.

5) The weighted average of the particles’ predicted posi-
tions is computed (Fig. 2E):

𝑥𝑝 |𝑖 =
∑𝑁

𝑘=1 𝑤𝑘 |𝑖 · 𝑥𝑡 ,𝑘 |𝑖+1∑𝑁
𝑘=1 𝑤𝑘 |𝑖

(8)

with 𝑁 number of particles.
6) The weight of the particles is updated (Fig. 2F):

𝑤𝑅,𝑘 |𝑖 =
max (𝑑𝑖𝑠𝑡𝑘) − 𝑑𝑖𝑠𝑡𝑘∑𝑁

𝑘=1 (max (𝑑𝑖𝑠𝑡𝑘) − 𝑑𝑖𝑠𝑡𝑘)
(9)

where 𝑘 indicates the 𝑘 𝑡ℎ particle and 𝑑𝑖𝑠𝑡𝑘 takes into
account the Euclidean distance between the predicted
particle position and both the actual tool position and a
potential future position of the tool.

The predicted positions in both images (𝑥𝑝,𝑅, 𝑦𝑝,𝑅),
(𝑥𝑝,𝐿 , 𝑦𝑝,𝐿) were used to extract the 3D position of the tool
that was then sent to the robot controller.

C. Control Module

Once the 2D predicted coordinates were extracted in the
left and right frames, the 3D position of the instrument,
T𝐶
𝑡𝑜𝑜𝑙

∈ R4×4, was computed by triangulation with respect to
(w.r.t.) the camera reference frame, {C}. The 3D position of
the tool was then transformed into the robot’s reference frame,
{B}: T𝐵

𝑡𝑜𝑜𝑙
= T𝐵

𝐶
× T𝐶

𝑡𝑜𝑜𝑙
. Here, T𝐵

𝐶
= T𝐵

𝐸𝐸
× T𝐸𝐸

𝐶
∈ R4×4

represents the transformation matrix describing the camera’s
position in {B}; T𝐵

𝐸𝐸
represents the end effector’s (EE) posi-

tion in {B} obtained from the kinematic chain, and T𝐸𝐸
𝐶

is the
camera’s position w.r.t the EE of the manipulator, calculated
through the calibration procedure [15]. Since the goal was to
keep the instrument near the center of the camera image at a
fixed vertical distance, the desired position of the tool in the
camera frame was expressed as T𝐶𝑑𝑒𝑠

𝑡𝑜𝑜𝑙
=
[
𝐼 | 0 0 𝑧 1

]
, where

𝐼 is a 3 × 3 identity matrix, and z represents the camera’s
constant position along the z-axis (Fig. 3). Consequently, the
desired position of the camera in the robot frame was derived
as T𝐵

𝐶𝑑𝑒𝑠
= (T𝐶𝑑𝑒𝑠

𝑡𝑜𝑜𝑙
)−1 × T𝐵

𝑡𝑜𝑜𝑙
. The transformation among

reference frames is shown in Fig. 3. The 3D position of the

Fig. 3. Coordinate transformation to calculate the desired camera pose in the
robot’s reference frame

tool, P𝐵
𝐶𝑑𝑒𝑠

, was then fed into a VS controller that calculated
the desired joint velocities to move the robot. To address
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Fig. 4. Control System Overview: the tool position (𝑥𝑡,𝑅 , 𝑦𝑡,𝑅 ) ,
(𝑥𝑡,𝐿 , 𝑦𝑡,𝐿 ) , extracted from the tool detection module, is sent to the hy-
brid tracking module which outputs the predicted position, (𝑥𝑝,𝑅 , 𝑦𝑝,𝑅 ) ,
(𝑥𝑝,𝐿 , 𝑦𝑝,𝐿 ) . The 3D position, T𝐶

𝑡𝑜𝑜𝑙
, is estimated and transformed in {B},

T𝐵
𝑡𝑜𝑜𝑙

. This position together with the desired one, T𝐶𝑑𝑒𝑠

𝑡𝑜𝑜𝑙
, gives the desired

position of the camera in {B}, T𝐵
𝐶𝑑𝑒𝑠

, that is sent to the robot controller.
The desired position, P𝐵

𝐶𝑑𝑒𝑠
, and orientation, R𝐵

𝐶𝑑𝑒𝑠
, are compared with

the actual position, P𝐵
𝐶

, and orientation, R𝐵
𝐶

extracted from the robot’s
forward kinematics (FK). The discrepancies are formulated as positional error,
e𝑝𝑜𝑠 , and rotational error, e𝑟𝑜𝑡 . These errors are fed into a resolved-velocity
controller to compute the joint velocities required to correct the robot’s motion.

the differing needs of the surgical environment, two control
strategies have been defined. The first focuses on camera trans-
lation, managing larger-scale movements such as repositioning
instruments or transitioning between different areas of the
surgical field. In contrast, camera orientation is specifically
tailored to address micromovements within confined spaces,
which are typical of brain surgery scenarios. Considering that,
a position and orientation control were designed:

1) Position Control: The control strategy focused on the
translation of EE, maintaining a fixed orientation. A propor-
tional gain matrix, K𝑝𝑜𝑠 ∈ R3×3, was fine-tuned to optimize
the system’s behavior to achieve the desired position. The error
was calculated as the difference between the desired and actual
position of the camera in {B}:

e𝑝𝑜𝑠 = P𝐵
𝐶𝑑𝑒𝑠

− P𝐵
𝐶 (10)

2) Orientation Control: The control strategy focused on the
orientation of the EE, while keeping its position fixed. A pro-
portional gain factor, K𝑟𝑜𝑡∈ R3×3, was fine-tuned to optimize
the system’s response to orientation errors. The position of
the tool, P𝐵

𝑡𝑜𝑜𝑙
, was used to compute the desired orientation

of the EE, R𝐵
𝐶𝑑𝑒𝑠

, which rotated around a fixed point located
halfway the length of the tool [22]. The orientation error was
computed as:

e𝑟𝑜𝑡 = q𝑟𝐶 · q−1
𝑟𝐶𝑑𝑒𝑠

(11)

where q𝑟𝐶 and q𝑟𝐶𝑑𝑒𝑠
are the current and desired quaternions.

The feedback error vector e = [e𝑝𝑜𝑠; e𝑟𝑜𝑡 ] ∈ R6×1 was then
fed into a resolved-velocity controller [23] that calculated the
vector of joints’ velocity profiles:

¤𝒒(𝑡) = J#
𝐴𝑊

(q)Ke (12)

where ¤𝒒(𝑡) ∈ R7×1 is the vector of desired joints’ velocity
profiles, J#

𝐴
(q) ∈ R7×6 is the Jacobian matrix pseudo-inverse,

and K = [K𝑝𝑜𝑠; K𝑜𝑟 ] ∈ R6×6 is the positive-definite gains
matrix. The overall control scheme is illustrated in Fig. 4.

III. EXPERIMENTAL SETUP

To simulate the exoscope system and validate the proposed
autonomous framework, a 7-DoFs redundant robotic manipu-
lator (LWR 4+ lightweight robot, KUKA, Germany) with an
eye-in-hand stereo camera configuration (JVC GS-TD1 Full
HD 3D Camcorder) were used. Moreover, a second 7-DoFs
redundant robotic manipulator (LBR IIWA lightweight robot,
KUKA, Germany) was considered during the validation of the
tracking and control module, to move the surgical tool on
a predefined 2D trajectory, as shown in Fig. 5. The choice
of a second robot was made to guarantee a high degree
of repeatability during the experimental phase, by providing
uniform conditions during instrument movement on a well-
defined trajectory. The control frequency was set to 200 Hz.

The first step was to validate the performance of the
proposed system in terms of instrument detection (Section
III.A) and tracking module (Section III.B). Then, a user study
was performed to evaluate whether the developed autonomous
exoscope was more effective than the traditional control strat-
egy in enhancing ergonomics and reducing workload during
task execution (Section III.C).

A. Surgical Instrument Detection

The training dataset for the model comprised a total of 5900
images. Among these, 4100 images were manually recorded
and annotated, while the rest were extracted from the 2017 En-
doVis challenge [24]. The dataset was split into approximately
80 % for training, 10 % for validation and the remaining 10
% for testing. During training, data augmentation techniques,
such as rotations, translations, brightness adjustments, and
left-right flips, were applied. The network was trained on an
Intel Xeon with a 12Gb Nvidia Titan X GPU for 400 epochs
with a learning rate set to 0.001. A mini-batch size of 8
images was used, with a hyper-parameter Intersection over
Union (IoU) set to 0.45, indicating that a predicted bounding
box overlapping more than 45% with the ground truth was
considered a True Positive (TP), otherwise a False Positive
(FP). Finally, a confidence threshold of 0.4 was employed,
signifying the minimum confidence value for a prediction
to be considered valid. The accuracy was evaluated using
the average precision (𝐴𝑃) on the testing set. The 𝐴𝑃 was
defined as the area under the precision-recall curve 𝑝(𝑟):
𝐴𝑃 =

∫ 1
0 𝑝(𝑟)𝑑𝑟 . Additionally, the detection time, measuring

the time taken to detect the position of the target object, was
computed as the mean of inference times on the testing set.

B. Surgical Instrument Tracking

The performance of the tracking and the control module
was investigated in relation to the target’s velocity. To validate
the effectiveness of the hybrid strategy (Hybr), a comparative
analysis was conducted involving three other approaches:

1) CNN: the instrument position was tracked solely using
the CNN, and sent to the robot controller.

2) OF: the instrument was initially tracked by the CNN, and
then Optical Flow was used to track the instrument’s po-
sition between consecutive frames. The tracked position
was sent to the robot controller.
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Fig. 5. Experimental setup of validation phase from different points of view.
The KUKA LWR 4+ robotic arm moves the stereo camera to track the surgical
tool attached to the EE of the KUKA LBR iiwa robot. The camera view shows
what the camera sees during the experiments.

3) PF: the instrument was tracked by the CNN, and then
its future position was predicted by the Particle Filter.
The predicted position was sent to the robot controller.

The strategies were tested within two different velocities: 2.5
cm/s (low speed) and about 4 cm/s (high speed), based on
typical brain surgery velocities. Moreover, two different back-
grounds were considered: a green background for easy tool
detection and a realistic background representing a portion of
the brain during a surgical operation. During the experiments,
the camera had to follow the tool that was moved in a constant
trajectory consisting of the six sequential steps depicted in
Fig. 6. All the tests were repeated five times for each strategy

Fig. 6. Six consecutive steps of the trajectory traveled by the tool during the
experiments.

and for every scenario. The performance indexes evaluated for
these tests were the Tracking Error and the Center Error. The
Tracking Error, 𝑇𝐸𝑥𝑦 , was defined as the 𝑥𝑦 distance between
the position of the tool and the position of the camera:

𝑇𝐸𝑥𝑦 = | |P𝐵
𝐶 − P𝐵

𝑡𝑜𝑜𝑙 | | [𝑚𝑚] (13)

where P𝐵
𝐶
(𝑋𝐵

𝐶
, 𝑌𝐵

𝐶
) and P𝐵

𝑡𝑜𝑜𝑙
(𝑋𝐵

𝑡 , 𝑌
𝐵
𝑡 ) are the positions of

the camera and of the tool respectively expressed in the base
frame. The Center Error, 𝐶𝐸𝑥𝑦 , was defined as the distance
between the tool position in the camera frame, P𝐶

𝑡𝑜𝑜𝑙
(𝑋𝐶

𝑡 , 𝑌𝐶
𝑡 ),

and the center of the image P𝐶𝑑𝑒𝑠

𝑡𝑜𝑜𝑙
(𝑋𝐶𝑑𝑒𝑠

𝑡 , 𝑌
𝐶𝑑𝑒𝑠

𝑡 ):

𝐶𝐸𝑥𝑦 = | |P𝐶
𝑡𝑜𝑜𝑙 − P𝐶𝑑𝑒𝑠

𝑡𝑜𝑜𝑙
| | [𝑚𝑚] (14)

In the Orientation mode, the tracking errors for roll, 𝑇𝐸𝑟 ,
and pitch, 𝑇𝐸𝑝 , were calculated to assess the accuracy in
aligning the camera’s angles with the desired orientation. The
error in the camera’s roll angle, 𝑒𝑟𝑜𝑙𝑙 = 𝑟𝑜𝑙𝑙𝑐𝑎𝑚 − 𝑟𝑜𝑙𝑙𝑑𝑒𝑠 ,

was defined as the difference between the camera’s actual
roll angle, 𝑟𝑜𝑙𝑙𝑐𝑎𝑚, and the desired roll angle, 𝑟𝑜𝑙𝑙𝑑𝑒𝑠 . The
tracking error, 𝑇𝐸𝑟 , was then computed as:

𝑇𝐸𝑟 = min(|𝑒𝑟𝑜𝑙𝑙 | , 2𝜋 − |𝑒𝑟𝑜𝑙𝑙 |) [𝑑𝑒𝑔]

𝑇𝐸 𝑝 was computed in the same way, while it was not
calculated for the yaw angle since it was kept fixed.

Finally, the following proportional gains were selected:

K𝑝𝑜𝑠 = 4.0 · I3 K𝑟𝑜𝑡 = 0.7 · I3

C. User Study

A User Study was conducted to check if the developed
system was effective in reducing the users’ workload during
task execution when compared to the traditional exoscope
control mode.

1) Experimental Protocol: Eighteen non-medical users
were asked to perform a bimanual task using two surgical
instruments and the camera holder in three different modes:

• Manual: users manually moved the camera keeping the
tools at the image center. Every time they needed to move
the camera, they had to switch between moving the tools
and controlling the robot.

• Auto - Translation: the autonomous exoscope was con-
trolled with the Position control mode (Section II.C).

• Auto - Rotation: the autonomous camera was controlled
with the Orientation control mode (Section II.C).

For the autonomous camera modalities, users could decide
when to move the camera by pressing a pedal. All users
had to perform the tests using all the modalities and they
had to repeat the experiments three times for each mode.
Participants underwent a training session before the exper-
iments, to familiarize themselves with the different camera
control modalities and the task itself. The order in which the
modalities were presented to users was randomly selected from
a set of permutations. All users provided informed consent
before participating. The experimental protocol was approved
by the ethics committee from Politecnico di Milano, Italy
(No.2023-5069). The experimental setup is shown in Fig. 7.

The workspace consisted of a 35x35 cm wooden board
adorned with multiple images of a human brain. Atop these
images, four distinct targets were fastened. Each target com-
prised two pieces of tissue partially affixed to the underlying
structure, with some overlap to conceal the object which was
represented by a rubber gasket. The workspace also featured
designated initial and final positions for surgical instruments
and a release zone for the rubber ring.

2) Task: A bimanual pick and place of a hidden object was
the task considered in this study to mimic a scenario in which
the surgeon employs both hands for the procedure. The tests
started with the tools in the initial position (Fig. 7a). Users
were tasked with locating a plastic ring hidden beneath one of
the four targets (Fig. 7b). After locating the ring, they were
instructed to grasp it with a surgical instrument and release it
into the designated release zone (Fig. 7c). The task finished
when the user returned the tools to its initial position (Fig. 7d).
During the tests, users were asked to look only at the external
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Fig. 7. User Study Setup (left-hand side) including all the elements utilized
in the study: the robotic camera controller, the stereo camera, the external
monitor for camera image display, the workspace for task execution, two
surgical tools, and a pedal, to decide when to move the robot in the automatic
control modes. The User Study workspace (right-hand side - top) was divided
into 4 different targets, a release zone, and the initial/final position of the
surgical instrument. On the bottom, a representation of the phases is shown.

monitor which displayed images in 2D format and ensure both
surgical tools remained centered in the image. All the phases
of the task are shown in Fig. 7.

3) Performance Metrics: The performance indexes evalu-
ated during the tests were:

• A score assigned based on the distance, 𝑑 = | |P𝐶
𝑡𝑜𝑜𝑙

−
P𝐶𝑑𝑒𝑠

𝑡𝑜𝑜𝑙
| |, of the tool from the image center:

𝑠 =


0 if 𝑑 < 5cm
−1 if 𝑑 > 5 cm
−5 if the tool is outside the FoV

(15)

The total score, S, was normalized by the number of
attempts needed to complete the task: 𝑆𝑟 =

∑
𝑖

𝑠𝑖
𝑁𝐴,𝑟

. The
number of attempts, 𝑁𝐴,𝑟 , was defined as the number of
targets the user explored before successfully locating the
ring. Finally, the total score was further normalized to fall
within the range [0,100].

• The duration of the movements:

𝑡𝑟 =
∑︁
𝑖

𝑡𝑟 (𝑀 𝑖)
𝑁𝐴,𝑟

(16)

where 𝑡𝑟 represents the duration corresponding to the
𝑟 𝑡ℎ repetition, and 𝑡𝑟 (𝑀 𝑖) is the time needed to perform
a specific movement, 𝑀 𝑖 . These movements included
motions between the initial and target positions, motions
between two different targets, and the movement from
the release zone to the final position. Certain movements
were excluded from the time duration computation. This
included motions on the same target, as they heavily
rely on the user’s ability to grasp the object, as well as
movements from the target to the release zone.

• The path length traveled by the tool:

𝑙𝑟 =
∑︁
𝑖

𝑙𝑟 (𝑀 𝑖)
𝑁𝐴,𝑟

(17)

where 𝑙𝑟 (𝑀) =
∑

𝑘 | |P𝐶
𝑡𝑜𝑜𝑙

(𝑘) − P𝐶
𝑡𝑜𝑜𝑙

(𝑘 − 1) | | is the
length of a single movement computed as the distance
of the tool between consecutive 𝑘 positions.

• A NASA Task Load Index survey in which the user was
asked to rate on a scale from 0 to 100 six different
categories (Mental Demand, Physical Demand, Temporal
Demand, Performance, Effort, and Frustration) for each
control strategy [25].

• A post-experiment questionnaire to investigate the users’
preferences in controlling the camera.

IV. RESULTS & DISCUSSION

A. Surgical Instrument Detection Results

The experimental results demonstrate that the instrument
detection model achieves an average precision (AP) of 99.3 %
for the selected confidence threshold. Furthermore, the average
detection time per frame is 0.066 ± 0.01 seconds, resulting in
a processing speed of 15 Hz.

B. Surgical Instrument Tracking Results

Table I presents the mean and standard deviation of 𝑇𝐸𝑥𝑦

and 𝐶𝐸𝑥𝑦 for all strategies in both slow and fast scenarios with
real background. Among the strategies, the Hybrid approach

TABLE I
MEAN AND SD OF TRACKING ERROR (𝑇𝐸𝑥𝑦 ) AND CENTER ERROR

(𝐶𝐸𝑥𝑦 ) FOR CONVOLUTIONAL NEURAL NETWORK (CNN), PARTICLE
FILTER (PF), OPTICAL FLOW (OP), AND HYBRID STRATEGY (HYBR)

𝑇𝐸𝑥𝑦 [mm] 𝐶𝐸𝑥𝑦 [mm]
Strat. Low Speed High Speed Low Speed High Speed
CNN 24.07 ± 0.27 33.09 ± 0.43 36.32 ± 0.18 47.80 ± 0.20
PF 24.14 ± 0.17 32.89 ± 0.65 36.46 ± 0.10 43.97 ± 0.57
OF 23.82 ± 0.35 28.49 ± 0.95 35.24 ± 0.07 41.60 ± 0.48

Hybr 22.12 ± 0.15 27.06 ± 0.55 31.01 ± 0.11 35.35 ± 0.47

consistently demonstrates the lowest 𝑇𝐸𝑥𝑦 in both slow and
fast scenarios. This finding underscores the effectiveness of the
Hybrid strategy in accurately tracking the surgical instrument’s
movement when compared to the other ones. Furthermore,
the Hybrid strategy exhibits low standard deviations in both
tracking and center errors, highlighting its consistency and
robustness in tracking and centering the surgical instrument
across various scenarios. To assess the differences among
the strategies, we conducted a Wilcoxon signed-rank test
with statistical significance set at 𝑝 < 0.05. The results
revealed a statistically significant difference in both 𝑇𝐸𝑥𝑦

and 𝐶𝐸𝑥𝑦 among all the strategies, as illustrated in Fig.
8. Furthermore, during the experimental phase, instability
issues were identified in the strategies based on CNN (CNN
and PF). Specifically, when the surgical tool moved at high
speeds, these strategies exhibited detection failures, resulting
in divergent position estimates and camera misalignments. In
contrast, both the Optical Flow and Hybrid strategies remained
stable and did not exhibit such instabilities.
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Fig. 8. Tracking Error (above) and Center Error (below). (**, 𝑝-value < 0.01)

After the tuning of the controller, both position and orien-
tation control modes, using the Hybrid strategy and the tuned
gain (Section III.B), were evaluated. The results of the tracking
error and center error for the position and orientation control
are reported in Table II.

TABLE II
MEAN AND SD OF THE TRACKING ERROR (𝑇𝐸𝑥𝑦 , 𝑇𝐸𝑟,𝑝 ) AND CENTER

ERROR (𝐶𝐸𝑥𝑦 ) OF THE HYBRID STRATEGY

Position Control
Metrics Low Speed High Speed

𝑇𝐸𝑥𝑦 [mm] 9.84 ± 0.08 13.11 ± 0.39
𝐶𝐸𝑥𝑦 [mm] 16.14 ± 0.14 20.80 ± 0.16

Orientation Control
𝑇𝐸𝑟 [deg] 4.29 ± 0.06 5.68 ± 0.08
𝑇𝐸𝑝 [deg] 4.63 ± 0.08 5.65 ± 0.08
𝐶𝐸𝑥𝑦 [mm] 22.41 ± 0.39 27.62 ± 0.43

C. User Study Results

The average of the performance metrics from the three
repetitions was computed for subsequent statistical analysis
since there was not learning curve among the repetitions. Data
were compared using the Kruskal-Wallis test, with statistical
significance set at 𝑝-𝑣𝑎𝑙𝑢𝑒 < 0.05, followed by a post-hoc
Dunn-Sidak test. In all metrics, the automatic control modes
showed a significant difference from the manual control mode
while no distinction was observed between the two automatic
modes. Specifically, the mean durations were 17.51 ± 2.71 s
for Manual, 9.72 ± 1.58 s for Automatic - Translation, and
6.87 ± 1.62 s for Automatic - Rotation (Fig. 9 - center). The
reduced execution time in autonomous mode was attributed to
the user’s ability to focus solely on the primary task while the
camera’s repositioning was handled by the robotic manipula-
tor, consequently lowering mental workload [26]. The Scores
(Fig. 9 - left) were significantly higher in the autonomous
modalities, with mean values of 77.46 ± 9.69, 98.06 ± 2.61,

and 96.76 ± 4.17 for Manual, Automatic - Translation, and
Automatic - Rotation, respectively. The higher score indicated
that users had the instrument inside the FoV for a longer time
compared to the Manual mode. In a real surgical scenario, this

Fig. 9. Score (left), Duration (center), and Path length (right). (**, 𝑝-value
< 0.01; ***, 𝑝-value < 0.001)

poses a risk of complications due to instruments becoming
invisible through the exoscope, increasing the potential for
inadvertent contact with delicate structures [27]. Regarding
the path length (Fig. 9 - right), a significant difference was
noted among modalities, with mean values of 0.51 ± 0.25 m,
0.21 ± 0.10 m, and 0.20 ± 0.08 m, respectively. This differ-
ence underscores the efficiency of the autonomous modalities
in reducing the overall distance traveled by the instrument
during task execution. Such optimization is indicative of the
effectiveness of autonomous control in reducing the movement
of the instrument, potentially contributing to shorter procedural
times. The qualitative analysis employed the NASA-TLX
survey, where users assessed perceived workload across six
subscales (Distraction, Mental Demand, Physical Demand,
Situational Stress) for all modalities, as depicted in Fig. 10.
The automatic modalities exhibited reduced frustration and de-
manded less mental and physical effort compared to manually
repositioning the camera. Lower scores in the autonomous
control modes suggest potential for enhanced performance
compared to traditional control. High workload and stress can
adversely affect decision-making and motor skills, potentially
causing errors in surgery. By alleviating the surgeon’s work-
load and stress, the proposed system may enhance surgical
outcomes, enabling more accurate task execution. Moreover,
the post-experiment questionnaire indicated that users found
the automatic modes to be the easiest to use (42 % for
Automatic - Rotation, 58 % for Automatic - Translation),
offering a better field of view (8 % for Manual, 25 % for
Automatic - Rotation, 67 % for Automatic - Translation),
and being more suitable for accomplishing the task (8 % for
Manual, 42 % for Automatic - Rotation, 50 % for Automatic
- Translation).

V. CONCLUSION

This study introduces a new position-based visual-servoing
control method for a robotic camera in brain surgery, aimed
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Fig. 10. Results of the NASA - TLX survey across the six subscales for all
modalities. (*, 𝑝-value < 0.05; **, 𝑝-value < 0.01; ***, 𝑝-value < 0.001;)

at real-time tool tracking to enhance ergonomics and re-
duce mental workload. The hybrid module optimized system
performance by predicting future tool positions, resulting in
lower tracking errors compared to other strategies. A user
study was conducted to test whether the proposed system
could better support users compared to traditional manual
control. From the results emerged that the automatic control
modes improve overall performance. Moreover, users found
automatic control less physically, temporally demanding, and
stressful. Finally, a questionnaire highlighted that automatic
modalities facilitated task completion and offered the best
field of view during the testing. However, it’s important to
note that while the task prioritizes assessing performance
obtained with the autonomous camera against manual control,
it may not fully replicate the complexity of real clinical
scenarios. Future work should incorporate tasks that better
reflect neurosurgical scenarios with the involvement of medical
subjects. In addition, using a dataset consisting of real clinical
images of brain surgery would be essential to effectively train
the neural network.The observed tracking error rates remain
high. Therefore, the optimization of control algorithms and
the use of high-performance hardware resources would be
necessary in future development.

REFERENCES

[1] A. N. Mamelak, D. Drazin, A. Shirzadi, K. L. Black, and G. Berci,
“Infratentorial supracerebellar resection of a pineal tumor using
a high definition video exoscope (vitom®),” Journal of Clinical
Neuroscience, vol. 19, no. 2, pp. 306–309, 2012. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0967586811004024

[2] N. Montemurro, A. Scerrati, L. Ricciardi, and G. Trevisi, “The exoscope
in neurosurgery: an overview of the current literature of intraoperative
use in brain and spine surgery,” Journal of Clinical Medicine, vol. 11,
no. 1, p. 223, 2021.

[3] R. Berguer, J. Chen, and W. D. Smith, “A Comparison of the Physi-
cal Effort Required for Laparoscopic and Open Surgical Techniques,”
Archives of Surgery, vol. 138, no. 9, pp. 967–970, 09 2003.

[4] A. Pandya, L. A. Reisner, B. King, N. Lucas, A. Composto, M. Klein,
and R. D. Ellis, “A review of camera viewpoint automation in robotic
and laparoscopic surgery,” Robotics, vol. 3, no. 3, pp. 310–329, 2014.

[5] B. Fiani, R. Jarrah, F. Griepp, and J. Adukuzhiyil, “The role of 3d
exoscope systems in neurosurgery: An optical innovation.” Cureus,
vol. 13, no. 6, 06 2021.

[6] D. J. Langer, T. G. White, M. Schulder, J. A. Boockvar, M. Labib,
and M. T. Lawton, “Advances in intraoperative optics: a brief review
of current exoscope platforms,” Operative Neurosurgery, vol. 19, no. 1,
pp. 84–93, 2020.

[7] C. Gruijthuijsen, L. C. Garcia-Peraza-Herrera, G. Borghesan, D. Rey-
naerts, J. Deprest, S. Ourselin, T. Vercauteren, and E. Vander Poorten,
“Robotic endoscope control via autonomous instrument tracking,” Fron-
tiers in Robotics and AI, vol. 9, 2022.

[8] T. Da Col, G. Caccianiga, M. Catellani, A. Mariani, M. Ferro,
G. Cordima, E. De Momi, G. Ferrigno, and O. De Cobelli, “Automating
endoscope motion in robotic surgery: a usability study on da vinci-
assisted ex vivo neobladder reconstruction,” Frontiers in Robotics and
AI, vol. 8, p. 707704, 2021.

[9] I. Avellino, G. Bailly, M. Arico, G. Morel, and G. Canlorbe, “Multimodal
and mixed control of robotic endoscopes,” in Proceedings of the 2020
CHI Conference on Human Factors in Computing Systems, 2020, pp.
1–14.

[10] A. Al-Shanoon and H. Lang, “Robotic manipulation based on 3-d visual
servoing and deep neural networks,” Robotics and Autonomous Systems,
vol. 152, p. 104041, 2022.

[11] C. Molnár, T. D. Nagy, R. N. Elek, and T. Haidegger, “Visual servoing-
based camera control for the da vinci surgical system,” in 2020 IEEE
18th International Symposium on Intelligent Systems and Informatics
(SISY). IEEE, 2020, pp. 107–112.

[12] D. Bouget, M. Allan, D. Stoyanov, and P. Jannin, “Vision-based and
marker-less surgical tool detection and tracking: a review of the litera-
ture,” Medical image analysis, vol. 35, pp. 633–654, 2017.

[13] C. Gruijthuijsen, L. C. Garcia-Peraza-Herrera, G. Borghesan, D. Rey-
naerts, J. Deprest, S. Ourselin, T. Vercauteren, and E. Vander Poorten,
“Robotic endoscope control via autonomous instrument tracking,” Fron-
tiers in Robotics and AI, vol. 9, 2022.

[14] B. C. Becker, V. Sandrine, R. A. MacLachlan, G. D. Hager, and C. N.
Riviere, “Active guidance of a handheld micromanipulator using visual
servoing,” IEEE International Conference on Robotics and Automation,
pp. 339–344, 2009.

[15] E. Iovene, A. Casella, A. V. Iordache, J. Fu, F. Pessina, M. Riva, G. Fer-
rigno, and E. De Momi, “Towards exoscope automation in neurosurgery:
A markerless visual-servoing approach,” IEEE Transactions on Medical
Robotics and Bionics, vol. 5, 05 2023.

[16] Ultralytics, “Yolov5 by Ultralytics,” https://github.com/ultralytics/
yolov5.

[17] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays,
P. Perona, D. Ramanan, C. L. Zitnick, and P. Dollár, “Microsoft coco:
Common objects in context,” 2015.

[18] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

[19] ——, “The opencv library,” Dr. Dobb’s Journal of Software Tools, 2000.
[20] A. Doucet, S. Godsill, and C. Andrieu, “On sequential monte carlo

sampling methods for bayesian filtering,” Statistics and Computing,
vol. 10, 04 2003.

[21] M. B. Trimale and Chilveri, “A review: Fir filter implementation,” in
2017 2nd IEEE International Conference on Recent Trends in Elec-
tronics, Information Communication Technology (RTEICT), 2017, pp.
137–141.

[22] J. Sandoval, H. Su, P. Vieyres, G. Poisson, G. Ferrigno, and E. De Momi,
“Collaborative framework for robot-assisted minimally invasive surgery
using a 7-dof anthropomorphic robot,” Robotics and Autonomous Sys-
tems, vol. 106, pp. 95–106, 2018.

[23] B. S. et al., Robotics - Modelling, Planning and Control. Springer-
Verlag London Limited, 2009, pp. 447–448.

[24] M. Allan, A. Shvets, T. Kurmann, Z. Zhang, R. Duggal, Y.-H. Su,
N. Rieke, I. Laina, N. Kalavakonda, S. Bodenstedt, L. Herrera, W. Li,
V. Iglovikov, H. Luo, J. Yang, D. Stoyanov, L. Maier-Hein, S. Speidel,
and M. Azizian, “2017 robotic instrument segmentation challenge,”
2019.

[25] S. G. Hart, “Nasa-task load index (nasa-tlx); 20 years later,” Human
Factors and Ergonomics Society Annual Meeting, vol. 50, no. 9, pp.
904–908, 2006.

[26] J. Wang, J. Cabrera, K.-L. Tsui, H. Guo, M. Bakker, and J. B. Kostis,
“Clinical and nonclinical effects on operative duration: Evidence from
a database on thoracic surgery,” J Healthc Eng, 02 2020.

[27] A. Krupa, M. De Mathelin, C. Doignon, J. Gangloff, G. Morel, L. Sole,
J. Leroy, and J. Marescaux, “Automatic positioning of surgical instru-
ments during laparoscopic surgery with robots using automatic visual
feedback,” ESAIM: Proceedings, vol. 12, pp. 75–83, 01 2002.

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2024.3400124

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Milano. Downloaded on May 14,2024 at 09:07:14 UTC from IEEE Xplore.  Restrictions apply. 


