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A B S T R A C T

Asynchronous serial manufacturing lines that fabricate discrete parts are traditionally used in mass production,
which represents a key sector in the global economy. Recent technological solutions for the modularization and
standardization of manufacturing stations have led to this type of manufacturing system being reconfigured
more often than in the past. Therefore, synthetic but accurate performance-evaluation models have become
relevant as kernels in decision supporting tools for the continuous improvement of manufacturing systems.
This paper presents a novel analytical model for the performance evaluation of asynchronous unreliable
manufacturing lines fabricating discrete parts with finite buffers and deterministic processing times. This
approach is based on continuous-time continuous-flow Markov chains. The general concept of operational
cycles in discrete production is integrated into the modeling. The proposed model was validated using a discrete
event simulation. The results demonstrate the accuracy and robustness of this model in evaluating a wide set
of performance measures. The advantages of using this approach with respect to a purely continuous model
were demonstrated. The applicability of the model to actual industrial scenarios was also demonstrated in a
use case involving a high-volume assembly line.
1. Introduction

Modeling manufacturing systems for performance evaluation is con-
cerned with developing models that accurately capture the dynamics
of manufacturing systems and using these models to evaluate their
performance. Manufacturing systems are complex systems that involve
a range of interconnected components, such as machines, materials,
and workers, that operate in a dynamic and uncertain environment.
Modeling these systems is essential for gaining insights into their
behavior and optimizing their performance, under varying production
scenarios. Alternative modeling techniques may be used to capture
system complexity and dynamics, such as discrete event simulation [1],
data-driven meta-models [2], and analytical models [3]. Each modeling
technique has different level of details and advantages to be used
according to the situation and the system assumptions [4]. Detailed
performance evaluation models are exploited for in-line control pur-
poses, by for example integrating them into reinforcement learning
algorithms [5]. Similarly, synthetic performance evaluation models
become relevant as evaluation kernels within decision-supporting tools.
Examples refer to configuration optimization [6], proactive identifica-
tion of bottlenecks [7], integration of quality feedbacks [8], produc-
tion loss analysis [9], identification of improvement actions [10] and
reconfiguration decisions [11].

∗ Corresponding author.
E-mail address: mariachiara.magnanini@polimi.it (M.C. Magnanini).

Among manufacturing systems, automated manufacturing lines that
fabricate discrete products represent the backbone of global manufac-
turing. Their application sectors vary from automotive to machinery
and from semiconductor fabrication to customized assembled products.
This type of multi-stage line is composed of automated processing
stations that perform various operations, such as welding, riveting,
assembling, and inspection [12]. Technological evolution has caused
automated stations to be highly repetitive; hence, they are charac-
terized by a relatively steady processing time and high reliability.
Furthermore, each station has a cycle time, meaning that the result-
ing manufacturing line is asynchronous. Moreover, the overall system
configuration includes inter-operational buffers with finite capacity,
which is frequently small, causing the stations to be coupled in their
behavior. Consequently, system performance, such as throughput, is
strongly affected by the current configuration.

This paper proposes a novel analytical model for evaluating the
performance of asynchronous multi-stage serial lines that fabricate
discrete parts and are characterized by deterministic processing times,
stochastic reliability, and finite buffers. The modeling of stages is
based on continuous-time discrete state Markov chains, whereas buffers
are modeled as continuous variables. Control mechanisms mock the
peculiar dynamics of discrete production and create the basis for the
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integration of control policies at the system-level. Thus, this paper aims
to provide a methodology based on hypotheses that are extremely close
to the actual industrial context and can be used to solve problems
involving the design and operation of manufacturing systems.

The remainder of this paper is organized as follows. Section 2
describes the reference system and modeling assumptions, as well as
the peculiar characteristics of discrete production. Section 3 introduces
the proposed methodology with respect to the main modeling blocks
and the performance measures. Section 4 provides a numerical analysis
with respect to model validation, robustness and convergence, as well
as the comparison with approaches that neglect the dynamics of dis-
crete production. The application of the proposed model to an actual
industrial case is presented in Section 5. Section 6 provides the final
comments and future research directions.

1.1. Contribution to the state of the art

Analytical and approximate analytical methods represent a class
of models for performance evaluation of manufacturing systems. The
main output of these models is the evaluation of the joint influence of
phenomena propagating along the line owing to disruptive events, such
as machine stoppages, on the system performance. Owing to the avail-
ability of production data that support model validation, there has been
renewed interest in analytical performance-evaluation models for serial
manufacturing lines. Recent studies have focused on the accuracy and
robustness [13], integration of analytical models and simulation models
for multi-fidelity modeling [14] or hybrid performance evaluation [4],
analysis of lines with special features as residence time constraints [15],
mixed continuous-discrete production [16], and parallel machines in
each stage [17], as well as integration of explicit process models into
system-level evaluation [18].

Over the years, many contributions have been made to this field.
Some relevant material and detailed reviews are presented in [19–23]
including an in-depth analysis of problem formulations used in different
approaches, such as aggregation and decomposition methods, as well as

ore in general multi-stage manufacturing system models.
The concept of aggregation involves aggregating every two ma-

hines into a new aggregated machine, and continue until the end of
he line. This procedure is performed backward and forward repeat-
dly until the parameters of the aggregated machines converge, which
an be proven analytically [24]. This method is based on Bernoulli
achine characterization and has been widely used in many different

pplications [13,15]. Current research focuses on the improvement of
he model accuracy with respect to restrictive assumptions which may
inder the applicability to real systems [25], considering also peculiar
haracteristics of manufacturing lines [26].

Similarly, the concept of decomposition involves decomposing the
ine into two-machine one-buffer short lines (building blocks), each of
hich represents the whole line centered in one buffer [27]. Decompo-

ition equations link various building blocks, and a recursive algorithm
s used to align the system performance as computed from alternative
erspectives. Several decomposition approaches have been developed
ver the years based on the same iterative algorithm. A two-level
ecomposition, in which the machine and buffer levels are intertwined
o guarantee the conservation of flow throughout the system was
ntroduced based on discrete-time Markov model [28].

With respect to Markovian models, synchronous manufacturing sys-
ems are traditionally modeled using discrete-time models [29,30],
hereas asynchronous manufacturing systems are traditionally mod-
led using continuous-time models [31].

In continuous models, material flows instantaneously from one
achine to another, which function as valves. Hence, when continuous
odels are used for the performance evaluation of discrete manufactur-

ng systems, they may introduce significant inaccuracies in the model-
ng [32,33], neglecting the part space on the machine and introducing
326

ynamics not existing in the original system, i.e., slowdown.
Several works have investigated the difference between discrete and
ontinuous models, and suggested methods to translate one model into
nother [34]. For example, the loss of space at the machines can be
ompensated for by making all buffers in the continuous model larger
y one unit compared with the corresponding buffer capacities in the
iscrete model. Alternatively, the utilization of each machine in the
ine can be maintained to better approximate the work-in-progress of
he continuous model with respect to the discrete model with the same
uffer capacities. These approximations perform well when the buffer
apacities are large. For small buffers, the approximation of continu-
us models with regard to discrete manufacturing systems increases
ecause production mechanisms have a relevant effect on the dynamics.
his is particularly evident in relation to the average buffer level [35].

[36] showed that continuous models can be considered as a limiting
ase of discrete models. They also provide proof of some asymptotic
roperties for systems characterized by communication blocking. These
esults are based on sample path analysis, which enhances the use
f continuous models to approximate discrete systems. Earlier, [37]
rovided proof of the convexity of continuous models derived from
iscrete models. In recent years, interest in the use of continuous mod-
ls to approximate discrete production systems has spread, e.g., [38]
imulated a continuous model and subjected a machine to a delay to
ock the discrete material flowing out of a machine waiting for a
eriod before arriving at its downstream buffer.

More recently, analytical models of multi-stage manufacturing sys-
ems based on Markovian representation successfully addressed diverse
ystem conditions and features, from remote quality integrated as
eedback to the performance evaluation model [39] to analysis of
anufacturing systems under nonstationary conditions [40]. Mostly,
arkovian models are used when buffers are infinite or extremely

arge, thus the blocking effect is almost negligible [41], or for modeling
tages with variable cycle time.

The aim of this study is to provide a general stochastic approximate
nalytical model based on a continuous-time Markovian model that can
ntegrate control mechanisms for the accurate performance evaluation
f asynchronous unreliable serial lines producing discrete parts. With
espect to existing state of the art, this paper focuses in particular on
ddressing a sub-set of restrictive assumptions including deterministic
ycle times, finite buffer capacities and asynchronous machines.

. System description and analysis

In this section, a reference system and its characteristics and specific
eatures are presented.

The reference system consists of a highly automated multi-stage
anufacturing system (MMS), where each stage is decoupled by buffers

rom the others. Frequently, for this type of MMS, pick-and-place robots
re used for loading/unloading operations among stations and buffers,
aking the MMS fully automated. Parts often travel on dedicated rails,
hich also serve as buffers between the stations. One of the main

haracteristics of this type of MMS is modularity, i.e., each station is
onsidered a single module performing one operation on a part, such as
elding, stamping, filling, and assembling. Automation advancements
ver the years have resulted in high repeatability of operations in
ime. Therefore, the processing time is repeatable and precise; hence,
t can be considered to be deterministic. Section 5 proves this by
resenting data from an actual MMS characterized by highly repeat-
ble operations. Note that, given the wide variety of operations, the
rocessing time is hardly equal among stations. Stoppages may occur
long the line because of the mechanical and electronic dynamics of
ll the stations and feeding components. Operation-dependent failures
re frequently dependent on mechanical dynamics, such as tool wear
nd degradation of machines and components, whereas time-dependent
ailures are frequently dependent on the dynamics of electronics, such
s programmable logic controllers [42].
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Fig. 1. MMS for the assembly of domestic sockets.
High-volume MMSs, such as assembly lines, packaging lines, and
general fast automated manufacturing lines, belong to this set. An
example of a modular MMS used for the assembly of domestic sockets is
shown in Fig. 11 This line assembles six components in the main body of
the socket. Vibration feeders convey them to the insertion mechanisms.
The production rate of this line is 1800 parts/hour. Typical stoppages
are related to vibration feeders, where components may become stuck,
and some parts on the linear rails may be misplaced.

The following characteristics describe the reference MMS:

1. The first machine is never starved and the last machine is never
blocked;

2. Processing times of the machines may be different between
machines;

3. Machines are unreliable and may fail in different modes;
4. Time to failure and time to repair have a general distribution;
5. Load and unload times are negligible;
6. Parts arrive from outside and leave the system after being pro-

cessed;
7. The capacities of the buffers are finite.
8. The system is asynchronous i.e. each machine can start or finish

at any time without synchronization with the other machine.

2.1. Cyclic production dynamics

The asynchronous MMS fabrication of discrete parts is character-
ized by peculiar cyclic production dynamics. [35] defined a blocking-
operational cycle and a starvation-operational cycle for two-machine
lines.

The blocking-operational cycle occurs when the upstream machine is
faster than the downstream machine. If both machines are operational

1 Photo courtesy: www.cosberg.com.
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and do not fail, the buffer soon becomes full. Subsequently, the up-
stream machine alternates the operational and blocking periods equal
to the difference in processing times between the two machines.

The starvation-operational cycle occurs when the downstream ma-
chine is faster than the upstream one. If both machines are opera-
tional and do not fail, the buffer soon becomes empty. Subsequently,
the downstream machine alternates operational and starvation periods
equal to the difference in processing times between the two machines.

The system remains in these cyclic production dynamics, which
are deterministically known until a disruptive event occurs, such as
stochastic failures. Subsequently, the system will go out of this condi-
tion, but will tend to return to it and start over again. Therefore, explicit
modeling of these dynamics enables a better adherence to reality.

In MMS, deterministic cyclic dynamics no longer involve only two
machines, but an entire line, resulting in an increased complexity in
modeling it. In an MMS, system-level dynamics imply the propagation
of effects, leading to the additional analysis required to identify and
understand possible cyclic production dynamics.

The intuition of this behavior can be explained using a short exam-
ple that is based on a three-stage two-buffer (3M2B) line, where the
same assumptions described in Section 2 and the system production
mechanism is blocking after service (BAS).

Let us consider a 3M2B line with increasing cycle times, i.e., the
first machine is faster than the second one, which is faster than the
third one. In this case, the third machine represents the bottleneck
of the line with respect to production cycle time. The sample path
of this dynamic is shown in Fig. 2, where the system state in terms
of machine states

(

𝑆1(𝑡), 𝑆2(𝑡), 𝑆3(𝑡)
)

and buffer levels
(

𝑥1(𝑡), 𝑥2(𝑡)
)

are
provided at each time unit 𝑡. Machines can be either operational (green
state), failed (red state) or idle because of blocking (orange state). When
all three machines are operational, the two buffers soon become full.
Subsequently, the entire line enters a blocking-operational cycle.

We can observe that the upstream machines depend on the bot-
tleneck machine speed, and the entire system tends to remain in the

system-level blocking-operational cycle. Indeed, machine 𝑀1 completes

http://www.cosberg.com
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Fig. 2. Sample path of a 3M2B line with increasing cycle times at full-buffer dynamics (𝑐𝑡1 = 1, 𝑐𝑡2 = 2; 𝑐𝑡3 = 3).
Fig. 3. Sample path of a 3M2B line with decreasing cycle times at empty-buffer dynamics (𝑐𝑡1 = 3, 𝑐𝑡2 = 2; 𝑐𝑡3 = 1).
its part first, and it cannot unload it in the downstream buffer because
machine 𝑀2 has not completed its part yet. Therefore, machine 𝑀1
becomes blocked. Subsequently, as soon as machine 𝑀2 completes its
part, it becomes blocked because machine 𝑀3 has not yet completed
its part. Only when machine 𝑀3 completes its part and takes a new
one from the upstream buffer can the other two machines 𝑀1 and
𝑀2 simultaneously unload their parts, take new ones, and start over
again. Even when stochastic events occur, such as failures, the system
will eventually synchronize again to start over the deterministic cyclic
production dynamics of the blocking-operational cycle.

Similarly, a 3M2B line with decreasing cycle times can be consid-
ered, i.e., the third machine is faster than the second machine, which
is faster than the first one. In this case, the first machine represents the
bottleneck of the line with respect to production cycle time. The sample
path of this dynamic is shown in Fig. 3. When all three machines are
operational, the two buffers soon become empty. The entire line then
enters a starvation-operational cycle.

The downstream machines depend on the bottleneck machine
speed, and the entire system tends to remain in the system-level
starvation-operational cycle. Indeed, machine 𝑀3 completes its part first,
and it cannot start a new one because machine 𝑀2 has not completed
its part yet and the upstream buffer is empty. Therefore, machine 𝑀3
becomes starved. Then, as soon as machine 𝑀2 completes its part,
it becomes starved as well because machine 𝑀1 has not completed
its part yet, but machine 𝑀3 can process the part coming from 𝑀2.
When machine 𝑀1 completes its part and takes a new one, machine
𝑀2 can load the new part, whereas machine 𝑀3 must wait for this to
be completed. Even when stochastic events occur, such as failures, the
system will eventually synchronize again to start over the deterministic
cyclic production dynamics of the starvation-operational cycle.
328
3. Methodology

In this section, a methodology for modeling the reference MMS
described in 2 is presented. Additional modeling assumptions are pro-
vided in 3.1, and the characterization of the single-stage and multi-
stage models by means of Markovian modeling is introduced in subse-
quent sections.

3.1. Assumptions

The system model is composed by 𝐾 machine decoupled by 𝐾 − 1
buffer. Each machine 𝑀𝑘 corresponds to a single stage of the reference
system. Each upstream machine 𝑀𝑘 processes parts and puts them in
the buffer 𝐵𝑘, and each downstream machine 𝑀𝑘+1 takes the parts
from the buffer 𝐵𝑘 and processes them. In our notation, machines are
represented by squares and buffers by circles, as shown in Fig. 4.

The characteristics listed in 2 apply to the model. The following
additional specifications are introduced to define a subcategory of
systems that can be analyzed with the proposed methodology.

1. Only one part type is produced;
2. Machines are characterized by one operational mode;
3. Failures are characterized by general repair time distributions;
4. The dispatching policy is first-in first-out (FIFO);
5. Parts are not scrapped or reworked.

To summarize, the proposed model is capable of addressing asyn-
chronous MMS fabricating discrete parts, characterized by buffers with
finite capacities, both Operation-dependent and Time-dependent fail-
ures. Therefore, the category addressed in the paper is quite large since
system with the characteristics described can be found in many real
applications.
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Fig. 4. Serial manufacturing line.
Fig. 5. Markov chain for single up — multiple down machine.

3.1.1. Single-stage modeling
Each machine in the isolation of the model corresponds to one stage

of the original reference MMS. It is characterized by its own behavior,
which is not influenced by the remainder of the system. A continuous-
time discrete-state Markov chain is used to describe the behavior of the
machine in isolation, which therefore acts as valve with respect to the
upstream and downstream flows.

The machine in isolation 𝑀𝑘 is characterized by the vectors of states
𝑆𝑘 = 𝑆[𝑖] of size 𝐼 . By convention, the first element in the vector of
states represent the operational state and it is named ‘up’ state. When
machine 𝑀𝑘 is in the up state 𝑆𝑘 = 𝑆[1], it produces at rate 𝜇𝑘 (𝑆[1]).
Conversely, the other elements in the vector of states represent the
failure states and they are named ‘down’ states. When machine 𝑀𝑘 is
failed in a down state 𝑆[𝑖], 𝑖 ≠ 1, it produces at rate 𝜇𝑘 (𝑆[𝑖]) = 0.

An example of the Markov Chain of a machine is proposed in Fig. 5.
The transition rates among the states of machine 𝑀𝑘 are contained in
the matrix 𝑄𝑘 with transition rates 𝑞𝑘[𝑖, 𝑗].

A machine in isolation is characterized by the efficiency in isolation
𝑒𝑘, which represents the probability that machine 𝑀𝑘 is operational
because it is not failed. The production rate in isolation 𝜌𝑘 = 𝜇 ⋅ 𝑒𝑘
represents the production rate of machine 𝑀𝑘 if it were never impeded
by the other machines or buffers.

3.2. Outline of the method

The objective of the approach presented herein is to provide a
method to accurately evaluate the steady-state performance of multi-
stage asynchronous manufacturing systems for fabricating discrete
parts based on single-stage dynamics. The main performance mea-
sures are the system throughput, average inventories, and steady-state
probabilities of the machines. The steady-state probabilities of the
machines include the probability that each machine is upstream- or
downstream-limited by another machine in the system.

The proposed model is based on approximate analytical methods,
particularly on a two-level decomposition approach, as depicted in
Fig. 6.

In the two-level decomposition approach, the manufacturing system
is decomposed according to two perspectives:

• At machine level, the manufacturing line is decomposed into
Integrated Machines 𝑀[𝑘]. Each integrated machine represents
the original machine inserted into the system. Its state-based
representation includes limiting states from the upstream and
downstream parts of the line with respect to the considered ma-
chine. Therefore, the integrated machine models the dynamics of
the overall system centered on the considered machine. The cyclic
production dynamics discussed in Section 2.1, they are modeled
approximately within the Integrated Machine using Markovian
transitions. The aim of two-level decomposition is to accurately
estimate the transition parameters from the buffer level.
329
• At buffer level, the manufacturing line is decomposed into Build-
ing Blocks 𝐵𝐵(𝑘). Each building block is composed of an upstream
pseudo-machine and a downstream pseudo-machine decoupled
by a buffer, where the upstream pseudo-machine represents the
upstream part of the line with respect to the buffer concerned
and the downstream pseudo-machine represents the downstream
part of the line in relation to the buffer concerned. Therefore, the
building block represents the inflow and outflow of the overall
system centered on the buffer, which is regulated by the dy-
namics of the upstream and downstream pseudo-machines. The
cyclic production dynamics discussed in Section 2.1 are modeled
exactly within the building blocks using threshold-based control
mechanisms.

The model is based on continuous-time semi-Markov chains, and
at the machine level, the integrated machines are modeled using
continuous-time discrete-state Markov chains; at the buffer level, the
building blocks are modeled by continuous-time mixed continuous- and
discrete-state Markov chains.

3.3. Machine level: Integrated machine

The Integrated Machine 𝑀[𝑘] represents the machine as it is in-
serted into the system. An Integrated Machine 𝑀[𝑘] adds to the be-
havior of the corresponding machine in isolation 𝑀𝑘 with the limiting
phenomena resulting from the upstream part of the line, i.e., starvation,
and from the downstream part of the line, i.e., blocking. Therefore,
the integrated machine represents the entire line centered on machine
𝑀[𝑘].

The limiting phenomena descending from the upstream part of the
line with respect to the considered integrated machine 𝑀[𝑘] consists
of starvation phenomena, i.e., scenarios in which the upstream buffer
𝐵𝑘−1 with respect to the considered Integrated Machine 𝑀[𝑘] becomes
empty owing to the interruption of flow in the upstream part of the
line. The interruption of the flow may be owing to stoppages, such as
machine failures, as well as starvation-operational cycles with upstream
bottlenecks.

The limiting phenomena descending from the downstream part of
the line with respect to the considered integrated machine 𝑀[𝑘] consist
of blocking phenomena, i.e., scenarios in which the downstream buffer
𝐵𝑘 with respect to the considered Integrated Machine 𝑀[𝑘] becomes
full because of the interruption of flow in the downstream part of
the line. The interruption of the flow may be owing to stoppages,
such as machine failures, as well as blocking-operational cycles with
downstream bottlenecks.

The Integrated Machine 𝑀[𝑘] adds to the behavior of the original
machine in isolation, namely Local states [𝑘], two state partitions:

• The remote starvation states  [𝑘] represent the states in which the
Integrated Machine 𝑀[𝑘] is upstream limited.

• The remote blocking states [𝑘] represent the states in which the
Integrated Machine 𝑀[𝑘] is downstream limited.

Each machine in the line 𝑀𝑘 can be represented by the corre-
sponding Integrated Machine 𝑀[𝑘] using a continuous-time discrete-
state Markov Chain, acting as valves in modeling the upstream and
downstream flows with respect to the considered machine.

Therefore, the Integrated Machines 𝑀[𝑘], 𝑘 = 1,… , 𝐾 represent
the same system from different perspectives, i.e. the single stages.
Because all integrated machines represent the same system, they pro-
vide the same system performance, i.e., system throughput, with dif-
ferent steady-state probabilities. Hence, the conservation of flow is

guaranteed, as shown in the following sections.
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Fig. 6. Schematical representation of the proposed method.
3.4. Buffer level: Building block

The Building Block 𝐵𝐵(𝑘) is a two-machine one-buffer line repre-
senting the inflow and outflow of the overall system centered on the
considered buffer. The inflow is modeled using the upstream pseudo-
machine 𝑀𝑢(𝑘), and the outflow is modeled using the downstream
pseudo-machine 𝑀𝑑 (𝑘).

The state 𝑆(𝑘) of the identified Building Block 𝐵𝐵(𝑘) is represented
by the triplet 𝑆(𝑘) = (𝑥, 𝑆𝑢, 𝑆𝑑 ), where 𝑥 is a continuous variable
representing the buffer level, 𝑆𝑢 is a discrete variable representing the
states of the upstream pseudo-machine and 𝑆𝑑 is a discrete variable
representing the states of the downstream pseudo-machine. The duplet
(𝑆𝑢, 𝑆𝑑 ) denotes the joint machine states.

To account for the peculiar dynamics of discrete manufacturing,
the two-stage modeling proposed by [35] is considered in this paper.
Controlled mechanisms mock the operational cycles at buffer level, by
modeling explicitly the blocking state for the upstream machine and
the starvation state for the downstream machine.

Hence, the total number of joint machine states includes

• The joint machine states when no limitation occurs: 𝑆𝑢
(𝐵) ⊗ 𝑆𝑑

(𝑆),
where 𝑆𝑢

(𝐵) denotes all possible upstream states excluding the
blocking state 𝐵, 𝑆𝑑

(𝑆) denotes all possible downstream states
excluding the starvation state 𝑆, and ⊗ denotes the Kronecker
product.

• The joint machine states when downstream limitations occur,
i.e. the upstream machine is blocked: 𝐵 ⊗ 𝑆𝑑

(𝑆).
• The joint machine states when upstream limitations occur, i.e. the

downstream machine is starved: 𝑆𝑢
(𝐵) ⊗𝑆.

The solution method of the building block used in this paper is that
proposed by [43], namely, the Generalized Threshold Method (GTM).
The GTM enables the evaluation of the steady state performance of a
continuous two-machine system with a finite buffer characterized by
ranges.

According to the selected Building Block model, the solution method
returns the steady state probability density functions 𝑓 (𝑥, 𝑆𝑢, 𝑆𝑑 ) (PDF)
for each joint machine state (𝑆𝑢, 𝑆𝑑 ) as a function of the buffer level
𝑥. The proposed method is valid if other similar two-stage models
are considered, which are based on the Markovian representation of
machines, and for which the solution method returns the PDF.

Based on the PDF, the following main output can be computed: (i)
the steady-state probabilities of the joint machine states 𝜋(𝑆𝑢, 𝑆𝑑 ) as

𝜋(𝑆𝑢[𝑧], 𝑆𝑑 [𝑗]) =
𝑁
𝑓 (𝑥, 𝑆𝑢[𝑧], 𝑆𝑑 [𝑗])𝑑𝑥 ∀𝑧∀𝑗 (1)
330

∫0
and (ii) the boundary probability flows between joint machine states
as a function of the empty or full buffer levels, 𝐺(0, 𝑆𝑢𝑆𝑑 → 𝑆𝑢𝑆𝑑 ) and
𝐺(𝑁,𝑆𝑢𝑆𝑑 → 𝑆𝑢𝑆𝑑 ) respectively, as

𝐺(0, 𝑆𝑢𝑆𝑑 → 𝑆𝑢𝑆𝑑 ) =
(

𝜇(𝑆𝑢) − 𝜇(𝑆𝑑 )
)

⋅ 𝐵2 ⋅ 𝑓 (0, 𝑆𝑢
(𝐵)[𝑧], 𝑆

𝑑 [𝑗])𝑑𝑥 ∀𝑧∀𝑗 (2)

𝐺(𝑁,𝑆𝑢𝑆𝑑 → 𝑆𝑢𝑆𝑑 ) =
(

𝜇(𝑆𝑢) − 𝜇(𝑆𝑑 )
)

⋅ 𝐵2 ⋅ 𝑓 (𝑁,𝑆𝑢[𝑧], 𝑆𝑑
(𝑆)[𝑗])𝑑𝑥 ∀𝑧∀𝑗 (3)

where 𝐵2 is a Boolean matrix that defines the possible boundary
transitions between joint machine states.

3.5. From buffer-level to machine-level: Lumping

The objective of this step is to characterize the integrated machine
based on the output provided by the building block solution, in partic-
ular, (i) characterization of the state space and (ii) characterization of
the transition rate matrix.

3.5.1. State space and state probabilities
The state space of each Integrated Machine 𝑀[𝑘] is defined from the

corresponding machine in isolation 𝑀𝑘 and from the Building Blocks
𝐵𝐵(𝑘 − 1) and 𝐵𝐵(𝑘).

[𝑘] = 𝑆𝑘 (4)
[𝑘] = 𝐵(𝑘)⊗𝑆𝑑

(𝑆)(𝑘) (5)

 [𝑘] = 𝑆𝑢
(𝐵)(𝑘 − 1)⊗𝑆(𝑘 − 1) (6)

For large scale systems, i.e. with a number of stages higher than 10,
the state space could become extremely large, thus leading to problems
of state explosion. This problem can be addressed by means of lumping.
An example related to large systems has been investigated by the same
authors [4].

From the output of the building blocks, the steady-state probabilities
of the states of the integrated machine 𝑀[𝑘] can be computed through
partial lumping:

𝛱[𝑖] = 𝛴𝑗𝜋(𝑘)(𝑆𝑢[𝑖], 𝑆𝑑 [𝑗]) ∀𝑖 (7)

𝛱[𝑖] = 𝛴𝑧𝜋(𝑘−1)(𝑆𝑢[𝑧], 𝑆𝑑 [𝑖]) ∀𝑖 (8)

𝛱[𝑗] = 𝜋(𝑘)(𝐵,𝑆𝑑 [𝑗]) ∀𝑗 (9)

𝛱 [𝑧] = 𝜋(𝑘−1)(𝑆𝑢[𝑧], 𝑆) ∀𝑧 (10)

We can observe that the steady-state probabilities of local states in
𝑀[𝑘] can be derived equally from both 𝐵𝐵(𝑘 − 1) and 𝐵𝐵(𝑘), where
the original machine 𝑀𝑘 is included either in the downstream pseudo-
machine 𝑀𝑑 (𝑘−1) or the upstream pseudo-machine 𝑀𝑢(𝑘). In contrast,
the steady-state probabilities of the blocking states in the Integrated
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Machine 𝑀[𝑘] are derived from the Building Block 𝐵𝐵(𝑘), where the
original machine 𝑀𝑘 is downstream limited by the remainder of the
system. Similarly, the steady-state probabilities of the starvation states
in the Integrated Machine 𝑀[𝑘] are derived from the Building Block
𝐵𝐵(𝑘 − 1), where the original machine 𝑀𝑘 is upstream limited by the
remainder of the system.

3.5.2. Transition rate matrix
At the machine-level, the goal is to define the transition rates in

order to have a complete characterization of the transition rate matrix
𝑄[𝑘] belonging to the continuous-time discrete-state Markov Chain of
each Integrated Machine 𝑀[𝑘].

Let us recall the definition of the transition rate matrix 𝑄[𝑘]:

𝑄[𝑘] =
⎡

⎢

⎢

⎣

𝑄 𝑄 𝑄
𝑄 𝑄 𝑄
𝑄 𝑄 𝑄

⎤

⎥

⎥

⎦

(11)

In the following, the decomposition equations used to define the
submatrices are introduced. There are two sets of equations: the first
defines the transition rates to enter and exit the limiting states, and
represents the computation of transition rates at the machine level from
the controlled transitions at the buffer level, and the second defines the
transition rates among remote states.

Entering and exiting the limiting states. This set of equations defines
the transition rates for entering and exiting the limiting states. These
equations are based on the balance equations for the continuous-time
Markov chain (CTMC). The balance equations are based on probability
flow, and it is generally computationally intractable to solve this system
of equations for most queueing models [44]. However, in this case the
output from the Building Block evaluation contributes to the solution
of these equations.

The corresponding transition rate matrices can be computed as

𝑄[𝑘]
𝐿𝑆 = 𝐺𝐿𝑆 (𝑘 − 1)⊙

[

𝛱𝐿(𝑘 − 1)
]−1 (12)

𝑄[𝑘]
𝐿𝐵 = 𝐺𝐿𝐵(𝑘)⊙

[

𝛱𝐿(𝑘)
]−1 (13)

𝑄[𝑘]
𝑆𝐿 = 𝐺𝑆𝐿(𝑘 − 1)⊙

[

𝛱𝑆 (𝑘 − 1)
]−1 (14)

𝑄[𝑘]
𝐵𝐿 = 𝐺𝐵𝐿(𝑘)⊙

[

𝛱𝐵(𝑘)
]−1 (15)

Where ⊙ indicates the Hadamard product,2 [𝑣]−1 indicates the Samelson
inverse3 of a vector 𝑣 and the subscript of probability flows denotes the
corresponding state partitions.

Transitions among limiting states. This set of equations define the tran-
sition rates among limiting states of the same type. Because there is
a bi-unique relation between Integrated Machine 𝑀[𝑘] and pseudo-
machine 𝑀𝑑(𝑘−1) and in turn in 𝐵𝐵(𝑘−1), pseudo-machine 𝑀𝑑(𝑘−1) can
only be limited by 𝑀𝑢(𝑘−1), and a change of limitation corresponds to
a change in the state of pseudo-machine 𝑀𝑢(𝑘−1) therefore,

𝑄[𝑘]
 = 𝑄𝑢(𝑘 − 1) (16)

Similarly,

𝑄[𝑘]
 = 𝑄𝑑 (𝑘) (17)

3.6. From machine-level to buffer-level: Partitioning

Based on the characterization of the machine level, the input to the
buffer level can be defined in terms of the state space and transition
rate matrix of the pseudo-machines for each building block 𝐵𝐵(𝑘).

2 The Hadamard product, also known as vector multiply, is commonly used
n matrix computation [45].

3 The Samelson inverse was firstly introduced in [46] and then in [47]. It
efines the inverse of a vector 𝑣 as: [𝑣]−1 = �̄� = �̄� .
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�̄�⋅𝑣 ‖𝑣‖2
A schematic representation of the relation between the pseudo-
machines at buffer-level and the Integrated Machines at machine-level
is provided in Figure 7.

In particular, the upstream pseudo-machine 𝑀𝑢(𝑘) is characterized
by state space 𝑆𝑢(𝑘) = [[𝑘], [𝑘]]. The corresponding transition rate
matrix 𝑄𝑢(𝑘) is

𝑄𝑢(𝑘) =

[

𝑄[𝑘]
 𝑄[𝑘]


𝑄[𝑘]

 𝑄[𝑘]


]

(18)

Similarly, the downstream pseudo-machine 𝑀𝑑 (𝑘) is characterized
by the state space 𝑆𝑑 (𝑘) = [[𝑘+1],[𝑘+1]]. The corresponding transition
rate matrix 𝑄𝑑 (𝑘) is

𝑄𝑑 (𝑘) =

[

𝑄[𝑘+1]
 𝑄[𝑘+1]


𝑄[𝑘+1]

 𝑄[𝑘+1]


]

(19)

.7. Algorithm for convergence of the performance evaluation

tep 0 For 𝑚 = 1...𝑀 , Integrated Machine 𝑀[𝑘] is initialized based on
𝑀{𝑚}.

tep 1 For 𝑘 = 1...𝐾 − 1:

1. Characterization of upstream and downstream pseudo-
machines 𝑀𝑢(𝑘) and 𝑀𝑑 (𝑘) from 𝑀[𝑘] and 𝑀[𝑘 + 1].

2. Evaluation of Building Block 𝐵𝐵(𝑘), based on 𝑀𝑢(𝑘),
𝑀𝑑 (𝑘) and 𝐵(𝑘).

3. Characterization of Integrated Machine 𝑀[𝑘+1] based on
the downstream pseudo-machine 𝑀𝑑 (𝑘).

tep 2 For 𝑘 = 𝐾 − 1...1:

1. Characterization of upstream and downstream pseudo-
machines 𝑀𝑢(𝑘) and 𝑀𝑑 (𝑘), from 𝑀[𝑘] and 𝑀[𝑘 + 1].

2. Evaluation of Building Block 𝐵𝐵(𝑘), based on 𝑀𝑢(𝑘),
𝑀𝑑 (𝑘) and 𝐵(𝑘).

3. Characterization of Integrated Machine 𝑀[𝑘] based on
the upstream pseudo-machine 𝑀𝑢(𝑘).

Step 1 and 2 to be repeated until throughput 𝑇𝐻(𝑘) calculated in
the various Building Blocks 𝐵𝐵(𝑘), 𝑘 = 1,… , 𝐾−1 and Integrated
Machines 𝑀[𝑘], 𝑘 = 1,… , 𝐾 converge.

This algorithm is based on the DDX algorithm proposed by [48]. The
onvergence has not been proved yet, however the algorithm converged
n all the analyzed cases, as will be shown in the following Sections.

.8. Performance evaluation

At steady state, each Building Block 𝐵𝐵(𝑘) and each Integrated
achine 𝑀[𝑘] represent the entire line centered in buffer 𝐵𝑘 and in
achine 𝑀𝑘, respectively.

In particular, the solution method provides the steady-state prob-
bilities of the integrated machines 𝛱

(

𝑆𝑘
)

. The main performance
easures can be evaluated based on these results.

For each Integrated Machine 𝑀[𝑘] in the line, the steady-state
robabilities can be computed by solving the corresponding Markov
hain. The following performance measures can be evaluated.

• System-level efficiency 𝐸[𝑘]: This represents the probability that
machine 𝑀 [𝑘] is operational because it is not failed or limited by
the other resources in the system:
𝐸[𝑘] = 𝛱[𝑘] (𝑈 ) (20)
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Fig. 7. Relation between the Markov Chains of Integrated Machines (machine-level) and pseudo-machines (buffer-level).
• Machine throughput 𝑇𝐻[𝑘], expressed in
[

𝑝𝑎𝑟𝑡𝑠∕𝑡.𝑢.
]

: This repre-
sents the average production rate of Integrated Machine 𝑀 [𝑘]:

𝑇𝐻[𝑘] = 𝜇𝑘 ⋅𝛱[𝑘] (𝑈 ) (21)

• Failure probability 𝛱[𝑘]
(

𝐷𝑖
)

, 𝑖 = 1,… 𝐼 : The probability that at
steady-state the Integrated Machine 𝑀[𝑘] is failed in failure mode
𝑖:

𝛱[𝑘]
(

𝐷𝑖
)

, 𝑖 = 1,… 𝐼 (22)

• Blocking probability 𝛱[𝑘] (𝐵): The probability that at steady-state
the Integrated Machine 𝑀[𝑘] is idle because the downstream
buffer 𝐵𝑘 is full:

𝛱[𝑘] (𝐵) =
∑

𝑆∈𝐵𝑙
𝛱[𝑘] (𝑆) (23)

• Starvation probability 𝛱[𝑘] (𝑆): The probability that at steady-
state the Integrated Machine 𝑀[𝑘] is idle because the upstream
buffer 𝐵𝑘−1 is empty:

𝛱[𝑘] (𝑆) =
∑

𝑆∈𝑆𝑡
𝛱[𝑘] (𝑆) (24)

• Mean Time to Blocking 𝑀𝑇𝑇𝐵[𝑘] and Mean Time to Unload
𝑀𝑇𝑇𝑈[𝑘], expressed in [𝑡.𝑢.]: These represent the average time
before machine 𝑀[𝑘] becomes blocked when operational and
returns operational when being blocked, respectively:

𝑀𝑇𝑇𝐵[𝑘] =
𝛱[𝑘] (𝐵)
𝛱[𝑘] (𝑈 )

⋅ 𝑞𝐵𝐿 (25)

𝑀𝑇𝑇𝑈[𝑘] =
1

𝑞𝐵𝐿
(26)

• Mean Time to Starvation 𝑀𝑇𝑇𝑆[𝑘] and Mean Time to Load
𝑀𝑇𝑇𝐿[𝑘], expressed in [𝑡.𝑢.]: These represent the average time
before machine 𝑀[𝑘] becomes starved when operational and
returns operational when being starved, respectively:

𝑀𝑇𝑇𝑆[𝑘] =
𝛱[𝑘] (𝑆)

⋅ 𝑞𝑆𝐿 (27)
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𝛱[𝑘] (𝑈 )
𝑀𝑇𝑇𝐿[𝑘] =
1

𝑞𝑆𝐿
(28)

The main system performance measures that can be computed by
integrating the machine-level output and the buffer-level output are as
follows:

Throughput. The Throughput 𝑇𝐻 , expressed in
[

𝑝𝑎𝑟𝑡𝑠∕𝑡.𝑢.
]

(where 𝑡.𝑢.
stands for 𝑡𝑖𝑚𝑒𝑢𝑛𝑖𝑡): the average production rate produced by the system
at steady state. The overall system throughput is evaluated as:

𝑇𝐻 = 𝑇𝐻[𝑘] ∀𝑘 = 1,… , 𝐾 (29)

Given the conservation of flow, it also holds that

𝑇𝐻(𝑘) = 𝑇𝐻[𝑘],∀𝑘 (30)

where 𝑇𝐻(𝑘) is the throughput calculated in Building Block 𝐵𝐵(𝑘).

Work in progress. The average buffer level �̄�𝑘, expressed in [𝑝𝑎𝑟𝑡𝑠]
represents the average content of each buffer 𝐵𝑘. The average buffer
level �̄�𝑘 is an output of the Building Block solution. The total work in
progress (WIP) of the system can be computed from the total average
content of buffers and the total average content of machines:

̄𝑊 𝐼𝑃 =
𝐾−1
∑

𝑘=1
�̄�𝑘 +

𝐾
∑

𝑘=1

(

1 −𝛱[𝑘](𝑆)
)

(31)

Average system time. The average system time �̄� , expressed in [𝑡.𝑢.]: The
average time that a part spends in the system. It can be evaluated by
applying the Little’s Law. However, it must be considered that the total
average number of parts in the system is given by the total average
content of buffers and the total average content of machines; thus:

�̄� =
∑𝐾−1

𝑘=1 �̄�𝑘 +
∑𝐾

𝑘=1
(

1 −𝛱[𝑘](𝑆)
)

𝑇𝐻
(32)

Taken together, the proposed performance measures provide a de-
tailed evaluation of manufacturing systems to support their optimiza-
tion and continuous improvement.
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4. Numerical results

The performance results obtained with the proposed approximate
analytical model (indicated as 𝑀𝑀𝑇𝑇 in the Tables) are compared
with those obtained using a discrete event simulation model (indicated
as 𝑆𝑖𝑚 in the Tables) to test the ability of the proposed continuous
approach to consider the peculiar dynamics of manufacturing systems
fabricating discrete parts. Furthermore, the robustness of the proposed
model was tested by exploring a wide range of system parameters
that enable its applicability in different scenarios. A specific section is
devoted to an analysis of the convergence of the proposed algorithm.
In addition, a comparison with a purely continuous model is proposed
(indicated as 𝐶𝑜𝑛𝑡 in the tables) to demonstrate the improvement in the
accuracy of the results obtained with the proposed model in comparison
with classical continuous analytical models.

The discrete event simulation model was implemented using
SimEvents© – a MATLAB tool within Simulink – and was built based
on the reference system introduced in Section 2. For each system
configuration, the results were derived from a five-replicate simulation
of the duration of 1.000.000[𝑡.𝑢.](𝑡.𝑢. = time unit). The warm-up period
was computed following the Welch method [49]. For all reported
results, a 95% confidence interval was calculated.

Four types of manufacturing lines were evaluated, i.e. three-
machine line (3𝑀2𝐵), five-machine line (5𝑀4𝐵), seven-machine line
(7𝑀6𝐵), and nine-machine line (9𝑀8𝐵). The machine parameters were
randomly selected from the following intervals:

𝑒𝑘 ∈ [0.75, 0.95] 𝑀𝑇𝑇𝑅𝑘 ∈ [5, 50] 𝜇𝑘 ∈ [0.5, 5] (33)

For each serial layout, three buffer capacities were tested:

𝑁𝑘 = {2, 10, 30} (34)

In total, 4800 cases were evaluated on a PC with Intel® Core™
𝑖7−6820𝐻𝑄2.7 GHz and 8.00 RAM installed. A detailed analysis of these
cases is presented in the following Sections.

The errors of the model compared with the discrete event simulation
were computed as follows:

𝑒𝑟𝑟%𝑇𝐻 =
|𝑇𝐻𝑀𝑀𝑇𝑇 − 𝑇𝐻𝑆𝑖𝑚|

𝑇𝐻𝑆𝑖𝑚
⋅ 100 (35)

𝑒𝑟𝑟%𝑊 𝐼𝑃 =
|𝑊 𝐼𝑃𝑀𝑀𝑇𝑇 −𝑊 𝐼𝑃𝑆𝑖𝑚|

𝑁
⋅ 100 (36)

𝑒𝑟𝑟𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 =
(

|𝑃𝑟𝑜𝑏𝑀𝑀𝑇𝑇 − 𝑃𝑟𝑜𝑏𝑆𝑖𝑚|
)

⋅ 100 (37)

4.1. Validation

The numerical results of the main performance measures are sum-
marized in Table 1. The model is proven to be precise with respect
to discrete event simulation, not only for throughput and steady-state
probabilities, but also for the average buffer level. Both the mean error
and the standard deviation were considerably low. When the buffer
capacity was small, i.e. 𝑁 = 2, the average difference between the
simulation and the 𝑀𝑀𝑇𝑇 model is less than half of the absolute
value. Moreover, the mean error as well as standard deviation do not
seem to be affected by the size of the system, i.e. number of stages. We
can then argue that the proposed model maintains its accuracy with
respect to the underlying state-space within the defined boundaries.

4.2. Convergence

Although the proof of convergence is currently under study, all
calculated cases reached convergence in a limited number of iterations.
The details are presented in Table 2.

The number of iterations required to reach convergence strongly
depends on buffer size. In particular, small buffers enable a short
convergence path with respect to larger buffers without a significant
difference with respect to the number of machines in the line.
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Fig. 8. Analysis of convergence performance.

For all the calculated cases, the maximum difference in the through-
put among the Building Blocks was computed for each iteration 𝑖 as
follows:

𝛥𝑚𝑎𝑥𝑇𝐻(𝑖)

= 𝑚𝑎𝑥 {𝑇𝐻(1, 𝑖),… , 𝑇𝐻(𝐾 − 1, 𝑖)} − 𝑚𝑖𝑛 {𝑇𝐻(1, 𝑖),… , 𝑇𝐻(𝐾 − 1, 𝑖)}
(38)

Fig. 8(a) shows the average difference in throughput per iteration for
all the tested cases. Fig. 8(b) focuses on a smaller scale in order to
show the details of the iteration measures also for small values. The
algorithm is set to reach a precision of 10−14 on Matlab. We observed
that a fair value of precision, e.g. 10−8, was already reached for a low
number of iterations in all the tested layouts. This can result in clear
advantages when the proposed model is used as the evaluation kernel
for optimization algorithm.

4.3. Comparison with continuous models

The continuous model is the one proposed in [50] and well known
in literature. In this model, the buffer capacity has been set to 𝑁 + 1
in order to account for the space of the downstream machine [19].4
Hereafter, the continuous model is referred to as 𝐶𝑜𝑛𝑡. The purely
continuous model does not introduce a significant approximation in
modeling discrete manufacturing systems with respect to throughput.
However, this introduces a relevant approximation when evaluating the
average inventory level. Fig. 9 shows boxplots of the errors with respect
to the simulation for the average inventory level.

4 The output of the continuous model has been calculated as follows:
• The blocking probability includes the contribution of the pure blocking

and the portion of blocking during the blocking-operational cycle, which
corresponds in the continuous model to the slowdown state.

• The average buffer level has been computed according to the real buffer
capacity. Therefore, when the average inventory level in the modeled system
is greater than the buffer capacity, it means that the buffer is full and the
average inventory level has been set equal to 𝑁 .
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Table 1
Summary of validation results.
Line Group 𝑇𝐻 𝑊 𝐼𝑃 𝛱(𝑆) 𝛱(𝐵)

𝑒𝑟𝑟%𝑇𝐻 stddev 𝑒𝑟𝑟%𝑊 𝐼𝑃 stddev 𝑒𝑟𝑟%𝑃𝑟𝑜𝑏 stddev 𝑒𝑟𝑟%𝑃𝑟𝑜𝑏 stddev

3M2B

𝑁 = 2 0.40 0.21 8.53 5.22 <0.05 <0.05 <0.05 <0.05
𝑁 = 10 0.20 0.10 2.45 1.13 <0.05 <0.05 <0.05 <0.05
𝑁 = 30 0.09 0.07 1.07 0.72 <0.05 <0.05 <0.05 <0.05

5M4B

𝑁 = 2 1.07 0.32 7.99 5.96 <0.05 <0.05 <0.05 <0.05
𝑁 = 10 0.96 0.33 2.99 2.28 <0.05 <0.05 <0.05 <0.05
𝑁 = 30 0.70 0.50 2.79 3.03 <0.05 <0.05 <0.05 <0.05

Line Group 𝑇𝐻 𝑊 𝐼𝑃 𝛱(𝑆) 𝛱(𝐵)

𝑒𝑟𝑟%𝑇𝐻 stddev 𝑒𝑟𝑟%𝑊 𝐼𝑃 stddev 𝑒𝑟𝑟%𝑃𝑟𝑜𝑏 stddev 𝑒𝑟𝑟%𝑃𝑟𝑜𝑏 stddev

7M6B

𝑁 = 2 0.83 0.48 7.06 5.91 <0.05 <0.05 <0.05 <0.05
𝑁 = 10 1.17 0.58 2.65 1.65 <0.05 <0.05 <0.05 <0.05
𝑁 = 30 0.63 0.51 1.92 1.67 <0.05 <0.05 <0.05 <0.05

9M8B

𝑁 = 2 1.51 0.23 7.59 5.38 <0.05 <0.05 <0.05 <0.05
𝑁 = 10 1.60 0.06 2.50 1.47 <0.05 <0.05 <0.05 <0.05
𝑁 = 30 0.78 0.27 1.54 1.55 <0.05 <0.05 <0.05 <0.05
Fig. 9. Comparison in the Average Inventory Level estimation for the proposed 𝑀𝑀𝑇𝑇 model and the 𝐶𝑜𝑛𝑡 model.
Table 2
Number of iterations to obtain the convergence.

Line Group 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 𝑖𝑡𝑒𝑟𝑚𝑖𝑛 𝑎𝑣𝑔.𝑖𝑡𝑒𝑟 Line Group 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 𝑖𝑡𝑒𝑟𝑚𝑖𝑛 𝑎𝑣𝑔.𝑖𝑡𝑒𝑟

3M2B

𝑁 = 2 5 4 4.5

7M6B

𝑁 = 2 7 7 7
𝑁 = 10 7 6 6.08 𝑁 = 10 12 11 11.5
𝑁 = 30 9 5 7.08 𝑁 = 30 16 12 14

5M4B

𝑁 = 2 7 6 6

9M8B

𝑁 = 2 8 8 8
𝑁 = 10 9 9 9 𝑁 = 10 14 13 13.5
𝑁 = 30 12 9 10.75 𝑁 = 30 20 13 16.75

When the buffer capacity was small and equal to 2, the 𝑀𝑀𝑇𝑇
model underestimated the average inventory level by −10% on average
for all serial layouts, and then it decreased to an average error of −1.7%
and −0.3% for the medium and large buffers, respectively. However,
the average inventory level was constantly overestimated by the 𝐶𝑜𝑛𝑡
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model for small, medium, and large buffer capacities. In particular,
when the buffer capacity was small, the error was higher than 25%
for all serial layouts, with maximum error of 48% when the line was
composed of more than three machines.

The proposed 𝑀𝑀𝑇𝑇 model outperformed the purely continuous
model in evaluating the average inventory level in all cases. Moreover,
it showed a reduced variance compared with the continuous model.
This means that applying the 𝑀𝑀𝑇𝑇 model for the performance
evaluation of manufacturing systems that produce discrete parts results
in more reliable metrics.

5. Real case

The 𝑀𝑀𝑇𝑇 model was used for performance evaluation in an
actual manufacturing line with the aim of identifying critical stages;
therefore suggesting improvement directions to the company.
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Fig. 10. Multi-stage manufacturing line producing drawer side walls.

Fig. 11. Boxplots of cycle times for two random stations.

The reference case has been described previously [51]. The com-
pany is an Italian manufacturer that produces drawer side walls for
personalized kitchens. More than 20 components are assembled to the
main body of the drawers by the production line shown in Fig. 10,5
with a high level of automation. Four stages can be identified in the
line according to inter-operational buffers. Linear guide-rails serve as
buffers in the line, where the capacity is given by the total length. Each
stage comprises different stations performing elementary operations.
The first two stages (stages M1 and M2) assembles components to
the main body of the drawer. The second part of the line (stages
M3 and M4) welds the components to the body and performs some
final operations including a visual quality check, though parts are not
scrapped within the line. Each stage is modeled as a single up —
multiple down machine. The data were not provided for confidentiality
reasons.

5.1. Analysis of processing times

In this section, data samples from the production log are analyzed
with respect to the production rate. Fig. 11 shows boxplots of the cycle
times for two different stations in the line.

The boxplots indicate that automation guarantees that each opera-
tion is repeatable. The cycle times can then be considered deterministic
without introducing any approximation.

5 Photo courtesy of Cosberg (www.cosberg.com/en/solutions/furniture-
accessories/24/).
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Fig. 12. Average buffer level in the drawers line.

5.2. Performance evaluation and analysis

The 𝑀𝑀𝑇𝑇 model was used to evaluate drawer line performance.
The difference in throughput was estimated to be less than 1.5%.
Detailed results for the drawer lines are reported in Table 3.

Each stage was evaluated as Integrated Machine. The steady-state
probabilities for the stages were computed. This also included the
probability that each stage is limited by other stages in the line. For
instance, stage 𝑀1 is idle, i.e. blocked, because of the downstream
stage on 1.09% of the time. However, this blocking probability depends
primarily on stages 𝑀2 and 𝑀3, since the last stage 𝑀4 never causes
the first stage to be blocked. On the other hand, stage 𝑀3 can be
starved because of upstream stages 𝑀1 and 𝑀2 for 35% of the time. It
is interesting to notice that the effect of stage 𝑀1 on 𝑀3 is higher than
the effect of 𝑀2. Despite the proximity of stage 𝑀2 to stage 𝑀3, the
reason for limitations of stage 𝑀3 is mainly due to stage 𝑀1. This can
be traced to the actual dynamics occurring in the system, in particular
those related to the repair times, which are higher in stage 𝑀1 on
average than in stage 𝑀2. Thus, the propagation of limitation is more
severe for stage 𝑀1. Indeed, 𝑀1 has the highest limiting effect on
the other machines. However, if the average buffer level is considered,
additional comments can be added. The average buffer level for each
buffer compared with the buffer capacity is shown in Fig. 12.

From these results, stage 𝑀2 appears to be the one with highest in-
ventory level before and lowest inventory level after, which, according
to many methods [52], indicates the bottleneck of the line.

Therefore, three main outcomes can be derived from this analysis:

• Stage 𝑀1 has the most severe effect on the downstream stages.
This occurs because of the stoppages propagating along the line.

• Stage 𝑀2 limits the line performance because it results in the
highest inventory level in the previous buffer. This occurs because
stage 𝑀2 represents the bottleneck from the perspective of the
cycle time.

• The buffer allocation of the line can be improved, because the
largest buffer is placed where it is not required; in fact, it is always
empty.

6. Conclusion

In this paper, a novel analytical model is introduced for the per-
formance evaluation of asynchronous and unreliable multi-stage man-
ufacturing lines for fabricating discrete parts. The model is based on a
continuous-time Markovian model. Owing to the control mechanisms
introduced, the model proved effective in terms of performance eval-
uation accuracy with respect to a purely continuous model also when
small buffer capacity is considered.

The proposed two-level decomposition decouples the buffer-level
analysis from the machine-level analysis, by means of lumping and par-
titioning different Markovian representations. As a consequence, it is

http://www.cosberg.com/en/solutions/furniture-accessories/24/
http://www.cosberg.com/en/solutions/furniture-accessories/24/
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Table 3
Evaluation of the real system with Integrated Machines.
M1 M2

State 𝑆 [1] Type Probability 𝛱(𝑆) State 𝑆 [2] Type Probability 𝛱(𝑆)

U Local 0.9241 U Local 0.6185
𝐷1 Local 0.0100 𝐷1 Local 0.0350
𝐷2 Local 0.0394 𝐷2 Local 0.0165
𝐷3 Local 0.0156 𝐷3 Local 0.0084
Idle because of M2 Blocking 0.0097 𝐷4 Local 0.0027
Idle because of M3 Blocking 0.0012 Idle because of M1 Starvation 0.3139
Idle because of M4 Blocking 0.0000 Idle because of M3 Blocking 0.0051

Idle because of M4 Blocking 0.0000

M3 M4

State 𝑆 [3] Type Probability 𝛱(𝑆) State 𝑆 [4] Type Probability 𝛱(𝑆)

U Local 0.6185 U Local 0.6185
𝐷1 Local 0.0182 𝐷1 Local 0.0003
𝐷2 Local 0.0022 Idle because of M3 Starvation 0.0949
Idle because of M2 Starvation 0.1449 Idle because of M2 Starvation 0.1217
Idle because of M1 Starvation 0.2163 Idle because of M1 Starvation 0.1646
Idle because of M4 Blocking 0.0000
expected to be more easily generalized for further system architectures,
as disassembly systems, as well as for more complex system features,
as in-process scrap and rework.

The concept of Integrated Machine is in fact introduced as key ele-
ment for the two-level decomposition. The Integrated Machine consists
in a Markovian meta-model of the entire multi-stage system, centered
in a specific perspective, i.e. stage. Thus, the proposed method provides
not only the estimates of a wide set of performance measures, but also
a set of meta-models which can be used as synthetic computationally-
efficient models of the entire multi-stage system. Additionally, these
meta-models are explicit, in the sense that there exist explicit relations
between the dynamics in a certain stage and its effect on another stage.
This is beneficial for the fast identification of critical stages as well as
of improvement actions, as shown in the analyzed industrial case study.

The meta-models, i.e. the Integrated Machines, can then be used
for further analysis at single-stage level without neglecting the effect at
system-level, thus pursuing global optimization rather than local opti-
mization. Hence, ongoing and future research focuses on how to exploit
such meta-models for design and operations of complex manufactur-
ing systems. For instance, at single-stage level control policies could
be integrated, as maintenance-oriented policies or energy-efficiency
policies. In this case, the resulting Integrated Machines could be used
as evaluation kernels for reinforcement learning algorithms. Similarly,
when configuration analysis is considered, meta-models of the system
can be more easily integrated into efficient optimization methods.
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Appendix. Detailed markovian representation of integrated ma-
chine

In this Appendix, additional details are provided for the Markovian
representation of Integrated Machines, based on single-up multiple-
down representation. For each partition  [𝑘] and [𝑘], two types of
tates can be distinguished:

• 0− represents the limiting state in which the upstream pseudo-
machine 𝑀𝑢(𝑘 − 1) with respect to the considered machine 𝑀[𝑘]
is operational. Similarly, 0+ represents the limiting state in which
the downstream pseudo-machine 𝑀𝑑 (𝑘) with respect to the con-
sidered machine 𝑀[𝑘] is operational. These states are used to
model the cyclic production dynamics which have been shown
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to be relevant to the overall system behavior.
• 𝑅− represents all the other states for upstream remote limitations.
Similarly, 𝑅+ represent all the other states for downstream remote
limitations. These states are used to model the remote limitations
which may occur to the considered machine.

Thus, the transition rate matrix 𝑄[𝑘] of the generic Integrated Ma-
chine 𝑀[𝑘] can be detailed as follows:

𝑄[𝑘] =
⎡

⎢

⎢

⎣

𝑄 𝑄 𝑄
𝑄 𝑄 𝑄
𝑄 𝑄 𝑄

⎤

⎥

⎥

⎦

(39)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

[

𝑄𝑈𝑈 𝑄𝑈𝐷
𝑄𝐷𝑈 𝑄𝐷𝐷

] [

𝑄𝑈0− 𝑄𝑈𝑅−

𝑄𝐷0− 𝑄𝐷𝑅−

] [

𝑄𝑈0+ 𝑄𝑈𝑅+

𝑄𝐷0+ 𝑄𝐷𝑅+

]

[

𝑄0−𝑈 𝑄0−𝐷
𝑄𝑅−𝑈 𝑄𝑅−𝐷

] [

𝑄0−0− 𝑄0−𝑅−

𝑄𝑅−0− 𝑄𝑅−𝑅−

] [

𝑄0−0+ 𝑄0−𝑅+

𝑄𝑅−0+ 𝑄𝑅−𝑅+

]

[

𝑄0+𝑈 𝑄0+𝐷
𝑄𝑅+𝑈 𝑄𝑅+𝐷

] [

𝑄0+0− 𝑄0+𝑅−

𝑄𝑅+0− 𝑄𝑅+𝑅−

] [

𝑄0+0+ 𝑄0+𝑅+

𝑄𝑅+0+ 𝑄𝑅+𝑅+

]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(40)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

[

0 𝑄𝑈𝐷
𝑄𝐷𝑈 0

] [

𝑄𝑈0− 𝑄𝑈𝑅−

0 0

] [

𝑄𝑈0+ 𝑄𝑈𝑅+

0 0

]

[

𝑄0−𝑈 0
0 0

] [

0 𝑄0−𝑅−

𝑄𝑅−0− 𝑄𝑅−𝑅−

]

[

0
]

[

𝑄0+𝑈 0
0 0

]

[

0
]

[

0 𝑄0+𝑅+

𝑄𝑅+0+ 𝑄𝑅+𝑅+

]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(41)

The matrix 𝑄[𝑘] has been simplified according to the possible non-zero
transition rates.

Given the continuous nature of the model, a machine cannot be
contemporary starved and blocked therefore starvation and blocking
states are indeed separate states. Moreover, it is impossible to go
directly from an upstream limitation to a downstream limitation (or
on the way round) without first being back in the operational state,
because starvation and blocking depend on the level of the neighboring
buffers and the only way to get into blocking or starvation is that
machine 𝑀[𝑘] produces parts. This is indeed a peculiar dynamics of
discrete manufacturing systems.
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