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Selective mode conversion and rainbow trapping via graded elastic waveguides
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We experimentally achieve wave mode conversion and rainbow trapping in an elastic waveguide
loaded with an array of resonators. Rainbow trapping is a phenomenon that induces wave
confinement as a result of a spatial variation of the wave velocity, here promoted by gently varying
the length of consecutive resonators. By breaking the geometrical symmetry of the waveguide, we
combine the wave speed reduction with a reflection mechanism that mode-converts flexural waves
impinging on the array into torsional waves travelling along opposite directions. The framework
presented herein may open opportunities in the context of wave manipulation through the re-
alization of structural components with concurrent wave conversion and energy trapping capabilities.

I. INTRODUCTION

The emergence of mechanisms to manipulate the prop-
agation of waves has attracted growing interest across
different realms of physics, with multiple realizations in
quantum [1], electromagnetic [2, 3], acoustic [4–6] and
elastic systems [7–17]. In the context of mechanics, a
number of works have recently investigated the emer-
gence of non-trivial topological phases in elastic struc-
tures, in analogy with relevant behaviours previously ob-
served in quantum physics [18]. Notable examples exten-
sively explored in mechanics include defect-immune and
scattering-free waveguides, which have been conceived in
analogy to the quantum Hall (QH) [19, 20], quantum spin
Hall (QSH) [21–24], and quantum valley Hall (QVH) ef-
fects [25–28]. Other approaches to topology-based design
leverage 1D structures augmented by a virtual dimen-
sion in parameters space, to access topological proper-
ties typically attributed to 2D systems to pursue pump-
ing of elastic waves [29–34] and nonreciprocity [35, 36],
to name a few. In other words, elastic waveguides are
excellent candidates to explore physical phenomena, es-
pecially due to the abundance of supported modes with
distinct polarizations and coupling among them, which
can be relatively simple to be established as compared to
the electromagnetic counterparts. While the existence of
multiple modes that can hybridize in presence of asym-
metry is generally undesired and difficult to grasp, in
many cases the break of symmetry creates opportunities
by lifting the accidental degeneracies. Mechanical sys-
tems with broken symmetries along the thickness direc-
tion can be employed for the nucleation of a double Dirac
cone dispersion that features coupling between otherwise
degenerate states, which is the key to emulate the spin
orbital coupling in QSH-based waveguides [24]. Undu-
lated structures have been shown to exhibit frequency
gaps and wave directionality due to coupling between
axial and flexural vibrations [37, 38]. Efficient mode

conversion between flexural and longitudinal waves has
been achieved through trapped modes with perfect mode
conversion (TMPC) in a quasi-bound state in the con-
tinuum (BIC) [39], or the transmodal Fabry-Pérot reso-
nance [40]. Other approaches to induce modal coupling
leverage nonlinear dynamics which, however, can be of-
ten unpractical due to the large amplitudes required to
activate sufficiently strong nonlinear interactions [41, 42].
As reported by the aforementioned examples, the addi-
tional complexity induced by the symmetry break often
reflects in relevant behaviours that are relatively unex-
plored in the field of mechanics.
A recent line of work employs a graded array of res-
onators embedded in a host structure to manipulate
wave propagation by taking advantage of the resonator-
structure interaction. This modulation strategy pro-
motes a wavenumber transformation that, in turn, ac-
tivates a spatial decrease of the wave velocity at dis-
tinct frequencies, which is blueprint of the so called rain-
bow effect [43–47]. Originally discovered in electromag-
netic systems in non-uniform, linearly tapered, planar
waveguides with cores of negative index material [48],
the rainbow effect has been pursued within different re-
search fields and through numerous physical platforms,
among which acoustic systems [49–51], water waves [52],
and fluid loaded elastic plates [53]. Similar configura-
tions have been combined with deep elastic substrates
to induce conversion between Rayleigh (R) into Shear
(S) or Pressure (P ) waves [55–58]. Despite the under-
lying physics is driven by the spatial variation of the
wave speed, the existence of distinct wave modes and
the nature of the coupling among them delineate a tran-
sition between reflection and trapping mechanisms [59].
The former is induced by resonances and leads to wave
scattering at the boundary of the first Brillouin zone.
The latter is instead promoted by the coupling between
crossing wave modes, typical of the second Brillouin zone,
and hereafter employed to achieve concurrent wave mode-
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conversion and trapping. While the majority of the stud-
ies are focused on a single phenomenon, the coexistence
of multiple functionalities is not common, especially in
the field of mechanics.
Motivated by this and by the opportunity to simultane-
ously achieve trapping and mode-conversion, in this pa-
per we consider an elastic waveguide loaded by a graded
array of resonators with variable length. This gradual
variation promotes rainbow trapping of flexural waves
throughout the array. The considered implementation
embodies a broken symmetry with respect to the shear
center of the waveguide which, in turn, activates a mode-
conversion between impinging flexural waves and tor-
sional waves traveling in the opposite direction through
a phenomenon that is known as mode locking in mechan-
ics [60]. The numerical and experimental results pre-
sented herein demonstrate how a simple structure can
be used to confine and mode convert elastic waves, ex-
panding the range of possibilities in the context of wave
manipulation and control, with implications of technolog-
ical relevance for applications involving mechanical vi-
brations, such as nondestructive evaluation, ultrasonic
imaging, and energy harvesting. For instance, flexural
and torsional wave modes provide different resolution for
nondestructive evaluation and testing, especially due to
the associated wavelengths which allow for identification
of cracks and defects of different shapes and dimensions
[61]. Also, different wave propagation properties (both in
terms of wave speed and dispersion) yields different be-
havior in the context of short and long-range inspection
[62] of mechanical structures [63] and biomedical systems
[64–66]. A more straightforward application concern en-
ergy harvesting and enhanced sensing, as extensively dis-
cussed in a number of papers [43–47, 59].
The paper is organized as follows. In section II, a simpli-
fied model for the analysis of symmetry broken waveg-
uides is presented and employed to tailor a suitable
graded profile of locally unbalanced resonators. The the-
oretical aspects of the trapping and conversion mecha-
nisms are unfolded by way of a dispersion analysis, which
is preparatory for numerical end experimental analysis
pursued in section III. Concluding remarks are presented
in section IV.

II. SIMULTANEOUS TRAPPING AND MODE
CONVERSION: SIMPLIFIED MODELING AND

DESIGN

To elucidate the design paradigm and conditions for
selective trapping and reflection, we consider the waveg-
uide displayed in Figure 1. The implementation con-
sists in a slender beam, which is equipped with a set of
attachments of variable length linearly increasing along
the main dimension of the waveguide, to activate the
rainbow effect for the asymmetric Lamb A0 (input) wave
mode. Each side of the beam accommodates an identical
graded array of elements which, in turn, is rigidly con-

FIG. 1: (a) Graphical representation of the waveguide,
which is made of a homogeneous beam rigidly
connected to a graded array of resonators that activates
the rainbow effect. Thanks to the broken geometrical
symmetry, the waveguide operates as a converter
between input A+

0 and output T−
0 wave modes. (b)

Idealization of the conversion mechanism: the system
can be conceptually interpreted as two distinct elastic
waveguides supporting A0 and T0 wave modes, which
are coupled using an array of resonators. (c) Schematic
of the reference cell, that consists in identical resonator
pairs separated by a non null distance ξ, along wih the
employed reference system.

nected to the host structure. In addition to the graded
profile, the two arrays are spatially shifted by a distance
ξ, to locally break the geometrical symmetry with re-
spect to the shear centre of the cross-section. Such a
tailored symmetry-break drives a spatially growing cou-
pling between transverse motion w and rotation φ of the
waveguide, which are inherently linked to the asymmet-
ric Lamb and torsional T−

0 wave modes. This coupling
activates a conversion mechanism that can be interpreted
in the light of modal interaction between distinct waveg-
uides, according to the schematic in Figure 1(b). This
model represents a conceptual scheme, while the theo-
retical derivations are obtained from the model in Fig.
1(a) and 1(c), respectively. The schematic illustrates how
consecutive resonators locally trigger the transformation
between A0 and T0 wave modes, inducing a reflected wave
T−
0 exiting from the array, as shown in Figure 1(a) and

further wave confinement due to multiple conversion be-
tween T0 −A0 wave modes.

For simplicity, we assume that the further wave modes
supported by the waveguide are orthogonal to the excita-
tion mechanism and weakly coupled to the wave modes
of relevance A0 and T0. We also assume that the grad-
ing is gentle enough such that the local wave propaga-
tion properties within the array can be deduced from
the dispersion curves of the constituent elements. As
such, the functional design and conceptual analysis of the
grading profile are carried out considering the elastody-
namic equations for an Euler-Bernoulli beam dominated
by torsional-flexural coupling and loaded with periodic



4

(a) (b)

      

( 
   

   
   

 )

(c)

( 
   

   
   

 )

( 
   

   
   

 )

(d)

FIG. 2: (a) Dispersion surface ω (µ, l) /2π. For ease of visualization, only the first three dispersion surfaces are
displayed. The colour is proportional to the polarization factor p, which allows to discriminate between rotation φ
and vertical displacement. Due to the broken symmetry and local resonance, the second and third dispersion
surfaces are separated by a frequency gap. The isofrequency line, highlighted in black, represents the operating
frequency of the structure, while the coloured version is reported in (b). (c) Group velocity cg upon varying the
length of the resonators l with change step ∆l = 0.315 mm, for the first two dispersion bands. In the figure, the
group velocity line associated to the target dispersion branch is highlighted with darker dots. Such a target branch
corresponds to the dispersion tangent to the isofrequency line displayed in (b). The group velocity cg (l) computed
for the target frequency is superimposed to the coloured plot with black dots. (d) The dispersion relation ω (µ) upon
varying l. The schematic illustrate the conversion mechanism that undergoes in correspondence of the target
resonator. The system is excited through the A+

0 wave mode in correspondence to the red star (i), which is
wavenumber transformed to the cyan star (ii), due to the grading. As the wave reaches the zero group velocity
region within the second Brillouin Zone, it is backscattered to the cyan star (iii) by a quantity equal to the
reciprocal lattice vector µm, and wavenumber transformed to the back traveling T−

0 wave mode marked with the
blue star (iv). Black dots represent the numerical solution computed in COMSOL Multiphysics.

resonators [70]:

EIyw,xxxx + ρAw,tt =

2∑

r=1

+∞∑

n=−∞
mω2

0 [Ψr (xr + na) +

− w (xr + na) + (−1)r
b+ l

2
φr (xr + na)]δ (x− xr − na)

(1a)

GJtφ,xx − ρJpφ,tt = −
2∑

r=1

+∞∑

n=−∞
(−1)rmω2

0
b+ l

2
[Ψr (xr + na) +

− w (xr + na) + (−1)r
b+ l

2
φr (xr + na)]δ (x− xr − na)

(1b)

Ψr,tt (xr + na) + ω2
0 [(−1)r

b+ l

2
φ (xr + na) +



5

− w (xr + na) + Ψr (xr + na)] = 0. (1c)

where (·),x denotes the partial derivative ∂(·)/∂x. w
and φ are the vertical displacement and the rotation of
the beam, Ψr is the displacement of the nth resonator
in the absolute reference frame. a = 40 mm is the
lattice size, EIy, ρA, GJt, and ρJp are the elastic and
inertial parameters associated to flexural and torsional
motion of the beam, consistently with the unit cell and
reference frame displayed in Figure 1(c). E = 70 GPa
and ρ = 2710 kg/m3 are the Young’s modulus and
the material density; b = 7 mm and h = 2 mm are
the width and thickness of the host waveguide, respec-
tively. For simplicity, the dynamic contribution of the
resonator pair is approximated in terms of equivalent
bending stiffness k, participating mass m, and resonance
frequency ω0 =

√
k/m, which are dependent upon the

resonator geometry c, l, and h. The Dirac delta func-
tion δ (x− xr − na) locally accounts for the presence of
the resonators, placed at a distance xr = a/2± ξ/2 from
the left boundary of the lattice. Additional details on
the simplified model are reported in the supplementary
material [67].
We investigate the dispersion properties ω (µ, l) of the
waveguide, where l is considered as a free param-
eter and µ = κxa is the normalized wavenumber.
To this end, we consider Ansatz for the displacement
w (x, t) = ŵ (x) e−j(κxx−ωt) and for the rotation φ (x, t) =

φ̂ (x) e−j(κxx−ωt) where ŵ (x) =
∑P
p=−P ŵpe

−jnκmx,

φ̂ (x) =
∑P
p=−P φ̂pe

−jnκmx embody the x-periodicity of

the medium and κm = 2π/a is the modulation wavenum-
ber. As such, the transverse and torsional motions are
approximated in terms of p = −P, . . . ,+P plane wave
components. P = 3 is found to be sufficient for an accu-
rate description of the dynamic behavior at the operating
frequency region. Harmonic motion is also assumed for
the resonators Ψr (xr) = Ψ̂r (xr) ejωt. The application of
the Plane Wave Expansion Method (PWEM), whose for-
mulation is detailed in the supplementary material [67],
yields the following eigenvalue problem:

K (κx, l) η̂ = ω2M η̂ (2)

where K and M are the (2P + 2) × (2P + 2) stiff-

ness and mass matrices and η̂ =
[
ŵ, φ̂, Ψ̂1, Ψ̂2

]T

accommodates the vector coefficients for the distinct
wave modes and resonators pair. The solution of the
eigenvalue problem ω (κx, l) is displayed in Figure 2(a)
for the first three dispersion bands. In the figure,
the nature of the motion is discriminated through a
color scale proportional to the polarization factor p =

|
∫ a
0
ŵ (x) |2/

(
|
∫ a
0
ŵ (x) |2 + |b

∫ a
0
φ̂ (x) |2

)
, which can be

interpreted as a measure of the coupling between waves
characterized by distinct polarizations. Thus, a transi-
tion from blue to red denotes a transformation from pure

rotation to a transverse motion. Some considerations fol-
low. (i) The lone beam features an accidental degener-
acy, which corresponds to crossing flexural and rotational
dispersion curves when l → 0. As the length of the res-
onator increases, the geometrical symmetry of the cross-
section is locally broken, and a frequency gap emerges
from the otherwise degenerate states; this phenomenon
is generally known as mode locking in mechanics, and is
hereafter employed to tailor selective rainbow trapping
and reflection. (ii) Interestingly, when the attachments
length is smaller than a threshold (i.e. l ≈ 12 mm), the
bandgap formation mechanism is dominated by purely
geometrical reasons; in contrast, for sufficiently high l
values, the resonance frequency of the attachment lies
in the neighborhood of the gap, and the nature of the
coupling is driven by a combination of broken symme-
try and local resonance; practically, the combination of
the two mechanisms yields a flattening of the dispersion
curves that is beneficial in terms of wave velocity de-
crease and trapping. (iii) In the neighborhood of the
gap, the dispersion relation exhibits wave modes charac-
terized by a balanced torsional and flexural motion, espe-
cially in correspondence of the zero group velocity region
(a∂ω/∂µ = 0); this is of paramount importance for the
interplay between wave conversion and energy trapping
mechanisms, which will be discussed in the remainder of
this section.
The functional design of the graded profile of resonators
is accomplished following the general guidelines provided
in prior works [43, 45]. That is, rainbow trapping is here-
after pursued targeting a group velocity decrease along
the beam at an operating frequency f = 2.12 kHz. To
that end, l is denoted as the relevant parameter linearly
varied along the main dimension of the beam. Such
a variation yields a local wavenumber distribution µ (l)
highlighted with black dots in Figure 2(a) The coloured
version of the isofrequency line µ (l) is reported in Figure
2(b) illustrating that a variation of l not only activates
wave modes characterized by different wavenumbers µ,
but also promotes a transformation between distinct po-
larizations (coloured dots). Consistently, the coloured
group velocity profile cg (ω(µ), l) = a∂ω/∂µ, is evaluated
by finite difference for the entire wavenumber-parameter
space and represented in Figure 2(c) for the first two dis-
persion branches. For ease of visualization, the second
dimension l is eliminated and substituted with arrows,
to better illustrate the group velocity profile cg (ω(µ)) in
response to a variation of l. Here, the target dispersion
curve, i.e. the dispersion branch that touches the isofre-
quency line with zero group velocity, is represented with
darker-coloured dots. As the length of the resonator l
is modified in space, the dispersion properties at the op-
erating frequency naturally follow the black curve µ (l)
displayed in Figure 2(a). This modification is accompa-
nied by a change in the group velocity cg (l) highlighted
with black dots in Figure 2(c) and, in turn, terminate
in the zero group velocity region away from the edges
of the Brillouin zone, which is the key factor to achieve
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rainbow trapping [59]. The analysis shows that the wave
speed transformation is accompanied with a change in
the polarization from a purely flexural mode that termi-
nates into a region in which the wave is characterized by
a mixed torsional-flexural motion and cg ≈ 0.

In addition to the rainbow effect, the tailored broken
symmetry of the array is responsible for a reflection
mechanism that mode-converts the impinging flexural
waves into torsional waves traveling along the oppo-
site direction. This mechanism is hereafter discussed
assuming that most of the conversion takes place in
correspondence of the zero group velocity region, where
the coupling is maximum. As such, among the possible
dispersion branches, we focus on the (target) curve
highlighted with darker-coloured dots in Figures 2(c-d)
and we assume that a smooth variation of l is provided
to reach the target curve. Now, consider an input wave
A+

0 , represented in figure 2(d) with the red star (i). Such
a wave impinges on the graded array of resonators and,
due to the smooth variation of l in space, the wave mode
experiences a wavenumber transformation that drives the
transfer of spectral content to the cyan star (ii), where
the group velocity at the operating frequency is ideally
nullified and the normalized wavenumber is µ = µi. It
is worth to mention that the group velocity can reach
a zero value only for infinitely long arrays, while for a
finite number of elements the wave propagation occurs
with decreased speed and, therefore, the positive-going
component impinges on the following resonators. Due to
the conservation of the crystal momentum, the traveling
wave is back-scattered to µ = µi − µm and, once again,
is wavenumber-transformed from the cyan star (iii) to
the blue star (iv) as a result of the linear decrease of l,
which produces a back-propagating torsional wave mode
T−
0 exiting the graded array. Due to the limited number

of resonators, a small amount of energy doesn’t follow
this path, leading to a back-scattered flexural wave A−

0

with spectral content µ = −µi, which is delayed in time
consistently with the wave speed reduction described by
the dispersion analysis. According with the above argu-
ments and provided that only a small amount of energy
doesn’t follow such a wavenumber transformation in the
back-propagating path, the conversion efficiency of such
a system is close to 100%. A more detailed discussion on
this matter is provided in the supplementary material
[67].
To conclude the design of the graded array, the numerical
dispersion relation is evaluated numerically via COM-
SOL multiphysics environment spanning the parameter
space l ∈ [0, 22] mm and reported with black circles in
Figure 2(d) for the target dispersion curve. According to
the analysis, the necessary array of resonators to reach
near-zero group velocity is characterized by initial and
final (target) length of l1 = 8 mm and l7 = 18.3 mm,
respectively, which are distributed along L = 7a mm for
a number of N = 7 cells. The array is then continued
to a final length of l9 = 21.2 mm to prevent wave
propagation through the array for frequencies in the

neighborhood of the target mode.

III. THEORY MEETS EXPERIMENTS

The discussion is now focused on the transient analysis
of wave propagation simulated in Abaqus implicit envi-
ronment [68], to corroborate the theoretical claims. The
implementation consists in a homogeneous beam that
serves as input domain for right traveling waves, which
is followed by the graded array of resonators. Undesired
reflections are avoided by way of absorbing boundaries
applied to the left and right ends of the beam [69]. A
transverse force with central frequency f0 = 2.12 kHz,
width ∆f = 0.14 kHz and time duration of 15 ms is
employed to provide excitation and confine the energy
content in the neighborhood of the operating frequency.
Additional details on the numerical methods are reported
in the supplementary material [67].
Numerical results for consecutive time instants t0 =
2, 6, 10, 12 ms are displayed in Figure 3(a). As expected,
at the beginning of the time simulation, the motion is
dominated by flexural waves. As time elapses, part of the
energy is transferred to torsional wave modes, starting
from the snapshot captured in Figure 3(a)II at t0 = 6 ms,
where the homogeneous trait is dominated by transverse
waves and the graded array exhibits rotation, due to the
broken geometrical symmetry. In contrast, the displace-
ment field displayed in Figures 3(a)III-IV is characterized
by mixed wave motion within the entire spatial domain.
These considerations are further confirmed by the nu-

merical dispersion d̂ (κx, κy, ω) =
√
ŵ2 + û2 + v̂2, which

is illustrated alongside the displacement fields in Figure
3(a), where ŵ = ŵ (κx, κy, ω), v̂ = ŵ (κx, κy, ω), and
û = ŵ (κx, κy, ω) are the 3D Fourier-transformed dis-
placement fields of the homogeneous part of the waveg-
uide. To evaluate the numerical dispersion, the time his-
tories w (x, y, t), v (x, y, t), and u (x, y, t) are windowed in
the neighborhood of the probed time instants t0 by way

of a suitable Gaussian function g(t) = e−(t−t0)2/2c2 where
c is a parameter that controls the width of the Gaussian
function. For ease of visualization, the numerical dis-

persion is reduced to d̂ (κx, ω) by taking the Root Mean
Square (RMS) value along κy which yields the diagram
displayed in the figure. As expected, the spectral content
in the waveguide is initially located in the positive half
of the reciprocal space and relates to the A+

0 dispersion
branch. When the flexural wave reaches the array, the
wave is trapped and converted into a component trav-
eling along the opposite direction, corresponding to the
T−
0 and the A−

0 dispersion branches exiting the graded
array. The concept is elucidated in the spectrogram dis-
played in Figure 3(b), which is obtained by smoothly
varying the position of the Gaussian function spanning
the range t0 ∈ [0, 20] ms. Also the dependence on fre-
quency is eliminated by taking the RMS value, which

results in the amplitude d̂ (κx, t0). The same analysis
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(a)

(b) (c) (d)

(e) (f) (g)

FIG. 3: (a) Numerical displacement field measured at different time instants for an input wave mode A+
0 , along with

the corresponding dispersion relations for a waveguide endowed with absorbing boundaries. The diagrams show that
the input wave is reflected and converted from A+

0 to T−
0 in time. (b-d) The spectrograms display the temporal

evolution of the spectral content for (b) a waveguide with the graded array of resonator; (c) a waveguide without the
initial part of the grading, i.e. with only resonators 7− 9; (d) a homogeneous waveguide, without the array of
resonators. The excitation signal is shown alongside the spectrogram. The input wave is confined, trapped and
delayed only if the complete array of resonators is present. (e-g) Corresponding out-of-plane displacement field
filtered to separate the contribution of the A0 wave mode.

is performed on a beam without the initial part of the
array (see Figure 3(c)), responsible for the wave speed
reduction, and on a homogeneous beam without graded
array of resonators (reported in Figure 3(d)) equipped
with clamps in correspondence of resonators N = 8, 9.

A qualitative comparison of Figures 3(b-d) reveals

that: (i) the presence of the graded array shifts the
backward propagating wave A−

0 by 5 ms, as a result of
the tailored trapping mechanism, while the backward
propagating A−

0 component is not delayed in a relevant
way in case the initial part of the array is not considered;
(ii) the wave speed reduction is accompanied by a
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FIG. 4: Experimental setup employed to measure wave
propagation. The waveguide is excited using an
electrodynamic shaker (i), while the opposite side is
clamped (ii). Wave propagation is measured on the
surface of the waveguide through a 3D Polytec Scanner
Laser Doppler Vibrometer (iii), which is able to
separate the 3D velocity field. The top view of the
graded array is also provided (iv).

transfer of energy between A+
0 and T−

0 wave modes,
which occurs approximately 3 ms before the A−

0 wave
mode back-propagates; (iii) the amount of conversion
is dramatically reduced in case the first part of the
array is not present. To further confirm that the graded
array operates as delay line and mode converter for
flexural/torsional waves, the displacement field w (x, y, t)
is filtered in wavenumber domain for κx values outside
40 rad/m and 100 rad/m. The filtered displacement field
allows to isolate and graphically visualize the A0 mode
evolution in time, that is displayed in Figure 3(e-g) for
the three reference configurations. As expected, only
if the graded array is present, the numerical wavefield
is altered in a way that the energy slowly vanishes
and is mode-converted to the counter-propagating
T−
0 wave mode. It is also worth noticing that the

conversion efficiency is very high, as most of the energy,
initially injected into A+

0 , is converted into the T−
0

back-propagating mode. The non-converted energy is
instead back-reflected as a A−

0 mode and shifted in
time, consistently with the above discussion. Addi-
tional analysis on the conversion efficiency have been
performed on structures with longer input domains and
upon varying the number of pair resonators (9, 25, and
50). Such analysis are reported and discussed in the
supplementary material [67] and demonstrate that for
a sufficiently long system compliant with the theoret-
ical arguments, the conversion efficiency is close to 100%.

The numerical results are validated through an exper-
imental analysis in the transient regime, which is per-
formed on a structure identical to the one employed in
the simulations, except for the boundary conditions that
are hereafter discussed. The schematic of the experimen-

tal setup is shown in Figure 4. The system is rigidly con-
nected to a LDS v406 electrodynamic shaker, to provide
excitation, while the opposite end is clamped to ground,
to avoid excessive geometrical deformation. The wave-
field is measured on the surface of the system through a
Polytec 3D Scanner Laser Doppler Vibrometer (SLDV),
which is able to separate the 3D velocity field in both
space and time. The excitation signal is synchronously
started with the acquisition which, in turn, is averaged in
time to decrease the noise. Additional information on the
experimental methods are reported in the supplementary
material [67]. The experimental results in terms of the
3D displacement field w (x, y, t), v (x, y, t), and u (x, y, t),

along with the corresponding dispersion d̂ (κx, ω) cen-
tered at different time instants t0 are displayed in Figure
5(a), which are similar to the ones displayed in Figure
3(a). After the input A+

0 mode is injected in the struc-
ture, part of the energy is mode-converted in a torsional
T±
0 mode and part is delayed in time. In contrast to the

results displayed in Figure 3(a), the propagating waves
cannot escape the system, and the amount of dissipa-
tion is negligible. We also observe that, in comparison
to the numerical case-study, the mode-conversion takes
place in shorter time, and the associated amplitude is
greater. This is attributed to: (i) the absence of ab-
sorbing boundaries, which facilitates the accumulation of
energy, especially that transferred to the torsional wave
mode characterized by faster propagation speed and trig-
gers the formation of a standing mode; (ii) the presence
of misalignment and imperfections that facilitate the con-
version between wave modes that populate the dispersion
at the operating frequency.
The same considerations apply for the experimental and
numerical spectrograms in Figure 5(b,c). The figures il-
lustrate a similar amount of delay between incident A+

0

and reflected A−
0 , T

−
0 wave modes, whereas in the exper-

imental diagram in Figure 5(b) we observe an extra con-
version amplitude between A0 and T0 waves that is trig-
gered by the undesired curvature of the beam, due to the
manufacturing process that is not present in the numer-
ical analysis. Also, consistently with the simulation per-
formed with absorbing boundaries, (3(b)) the converted
A−

0 wave mode is delayed by the same amount as for the
experimental data displayed in 5(b), which further con-
firms that the rainbow trapping occurs as expected. We
finally notice that an additional T+

0 component is mea-
sured; this is attributed to the finite length of the system,
which allows for spurious edge reflections of the T−

0 waves
exiting the array.

CONCLUSIONS

In this manuscript we have experimentally realized a
graded structure that is capable of converting flexural
waves into torsional waves traveling along the opposite
direction. Such a conversion is accompanied with trap-
ping of flexural waves that are delayed while propagating



9

(a)

(b) (c)

FIG. 5: (a) Experimental velocity field and corresponding dispersion relation measured at different time instants.
(b) Experimental and (c) numerical spectrogram, illustrating the evolution of the spectral content in time.
Experimental and numerical results are characterized by a comparable temporal delay for the A−

0 wave mode, while
different conversion amplitudes are observed, due to the presence of imperfections and misalignments that enhance
the torsional coupling.

through the array. The complex interplay between trap-
ping and conversion is explained in terms of dispersion
analysis, where the dynamic behavior is dominated by a
local symmetry break and the smooth variation of the
resonator length in space, which locally activates the en-
ergy transfer between distinct wave modes and globally
determines a wave speed reduction. The concept can
be generalized to multi-dimensional or multi-physics sys-
tems characterized by a coupling induced between waves
of different nature, such as in piezo-phononic structures
[71, 72], in micro electromechanical systems, or through
fluid-structure interactions [53]. This may open oppor-
tunities in the context of wave manipulation and control

in metamaterial structures with concurrent wave conver-
sion and trapping capabilities. Concerning future de-
velopments in this direction, our implementation can be
easily scaled and adapted to operate at the microscale,
to pursue energy harvesting and wave conversion.
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with acoustic metamaterials, Nat. Rev. Mater., 1, 16001
(2016).

[5] G. Ma, P. Sheng, Acoustic metamaterials: From local res-
onances to broad horizons, Sci. Adv., 2: e1501595 (2016).

[6] Z. Yang, F. Gao, X. Shi, X. Lin, Z. Gao, Y. Chong,
B. Zhang, Topological acoustics, Phys. Rev. Lett. 114,
114301 (2015)

[7] H. Nassar, B. Yousefzadeh, R. Fleury, M. Ruzzene,
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To aid insight into the underlying physics of selective mode conversion and rainbow trapping, we give a detailed de-
scription of the analytical procedures, numerical models/additional analyses, sample manufacturing and experimental
methods.

I. SUPPLEMENTARY NOTE 1: NUMERICAL PROCEDURE FOR THE PLANE WAVE EXPANSION
METHOD

Consider the elastodynamic equation for an Euler Bernoulli beam subjected to flexural-torsional coupling:

EIyw,xxxx + ρAw,tt =
2∑

r=1

+∞∑

n=−∞
mω2

0

[
Ψr (xr + na) +

− w (xr + na) + (−1)r
b+ l

2
φr (xr + na)

]
δ (x− xr − na)

GJtφ,xx − ρJpφ,tt = −
2∑

r=1

+∞∑

n=−∞
(−1)rmω2

0

b+ l

2

[
Ψr (xr + na) +

− w (xr + na) + (−1)r
b+ l

2
φr (xr + na)

]
δ (x− xr − na)

Ψr,tt (xr + na) + ω2
0

[
(−1)

r b+ l

2
φ (xr + na)− w (xr + na) + Ψr (xr + na)

]
= 0

(S1)

Where EIy, ρA are the flexural stiffness and the linear mass density of the beam, Iy is the second moment of area
Iy = bh3/12. b = 7 mm and h = 2 mm are the width and the thickness of the beam. E = 70 GPa is the Young’s
Modulus, ρ = 2710 Kg/m3 is the material density and A = bh is the cross-section area. GJt and ρJp are the rotary
stiffness and inertia. G = E/2(1 + ν) is the shear modulus (ν = 0.33), Jt is the torsional constant, and Jp is the polar
second moment of area. The resonator stiffness and mass are k = 3EIres/l

3 and m = ρchl, where Ires = ch3/12 is
the second moment of area of the resonator. l, h = 2 mm and c = 5 mm are the length, thickness, and width of the
resonator. ω0 =

√
k/m is the bending resonance frequency of the attachments.

In the attempt to evaluate the dispersion properties ω (κx, l) of the undelying medium, Ansatz are considered

for the displacement w (x, t) = ŵ (x) e−j(κxx−ωt) and for the rotation φ (x, t) = φ̂ (x) e−j(κxx−ωt) where ŵ (x) =∑P
p=−P ŵpe

−jnκmx, φ̂ (x) =
∑P
p=−P φ̂pe

−jnκmx reflect the periodicity of the medium and κm = 2π/a is the mod-

ulation wavenumber. Harmonic motion is assumed for the resonator displacement Ψr (xr) = Ψ̂r (xr) ejωt. Due to
the periodic nature of the underlying medium, the relation between displacements and rotations between consecutive
units writes:

w (xr + na) = w (xr) e−jκna φ (xr + na) = φ (xr) e−jκna Ψr (xr + na) = Ψr (xr) e−jκna (S2)

plugging Equation S2 into Equation S1 gives:
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EIyw,xxxx + ρAw,tt =

2∑

r=1

+∞∑

n=−∞
mω2

0

[
Ψr (xr) +

−w (xr) + (−1)r
b+ l

2
φr (xr)

]
e−jκnaδ (x− xr − na)

GJtφ,xx − ρJpφ,tt = −
2∑

r=1

+∞∑

n=−∞
(−1)rmω2

0

b+ l

2

[
Ψr (xr) +

−w (xr) + (−1)r
b+ l

2
φr (xr)

]
e−jκnaδ (x− xr − na)

Ψr,tt (xr) + ω2
0

[
(−1)

r b+ l

2
φ (xr)− w (xr) + Ψr (xr)

]
= 0

(S3)

The right hand side of Equation S3 is non-null if na = x − xr, which allows to eliminate the dependence on n in
the exponential term. Equation S3 is conveniently rewritten as:

EIyw,xxxx + ρAw,tt =

2∑

r=1

+∞∑

n=−∞
mω2

0

[
Ψr (xr) +

−w (xr) + (−1)r
b+ l

2
φr (xr)

]
e−jκ(x−xr)δ (x− xr − na)

GJtφ,xx − ρJpφ,tt = −
2∑

r=1

+∞∑

n=−∞
(−1)rmω2

0

b+ l

2

[
Ψr (xr) +

−w (xr) + (−1)r
b+ l

2
φr (xr)

]
e−jκ(x−xr)δ (x− xr − na)

Ψr,tt (xr) + ω2
0

[
(−1)

r b+ l

2
φ (xr)− w (xr) + Ψr (xr)

]
= 0

(S4)

The term
∑∞
n=−∞ δ (x− xr − na) = 1/a

∑∞
n=−∞ ejnκm(x−xr) can be be written in terms of exponential functions,

where 1/a are the Fourier coefficients of the expansion. We are now ready to enforce the Bloch-wave solution for the
displacements and rotations. We get to:

EIy

∞∑

p=−∞
(κ+ pκm)

4
ŵpe

−j(κ+pκm)x − ω2ρA

∞∑

p=−∞
ŵpe

−j(κ+pκm)x =
mω2

0

a

2∑

r=1

+∞∑

n=−∞

[
Ψre

jnκm(x−xr) +

−
∞∑

p=−∞
ŵpe

−j(κ+pκm)xrejnκm(x−xr) + (−1)r
b+ l

2

∞∑

p=−∞
φ̂pe
−j(κ+pκm)xrejnκm(x−xr)

]
e−jκ(x−xr)

GJt

∞∑

p=−∞
(κ+ pκm)

2
φ̂pe
−j(κ+pκm)x − ρJpω2

∞∑

p=−∞
φ̂pe
−j(κ+pκm)x = −mω

2
0

a

b+ l

2

2∑

r=1

(−1)r
+∞∑

n=−∞

[
Ψre

jnκm(x−xr) +

−
∞∑

p=−∞
ŵpe

−j(κ+pκm)xrejnκm(x−xr) + (−1)r
b+ l

2

∞∑

p=−∞
φ̂pe
−j(κ+pκm)xrejnκm(x−xr)

]
e−jκ(x−xr)

−ω2Ψ̂r + ω2
0

[
(−1)

r b+ l

2

∞∑

p=−∞
φ̂pe

j(κ+pκm)x −
∞∑

p=−∞
ŵpe

j(κ+pκm)x + Ψ̂r

]
= 0

(S5)
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for ease of notation, the resonator displacement at a distance xr is replaced with Ψr (xr) = Ψr. We now multiply
by an orthogonal function ejsκmx and integrate over the unit cell spatial domain D ∈ [0, a].
The equations are simplified as:

EIy (κ+ sκm)
4
ŵs − ω2ρAŵs −

mω2
0

a

2∑

r=1

[
Ψre

j(κ+sκm)xr −
∞∑

p=−∞
ŵpe

−j[p−s]κmxr + (−1)r
b+ l

2

∞∑

p=−∞
φ̂pe
−j[p−s]κmxr

]
= 0

GJt (κ+ sκm)
2
φ̂s − ρJpω2φ̂s +

mω2
0

a

b+ l

2

2∑

r=1

(−1)r

[
Ψre

j(κ+sκm)xr −
∞∑

p=−∞
ŵpe

−j[p−s]κmxr+

+(−1)r
b+ l

2

∞∑

p=−∞
φ̂pe
−j[p−s]κmxr

]
= 0

−ω2Ψ̂r + ω2
0

[
(−1)

r b+ l

2

∞∑

p=−∞
φ̂pe

j(κ+pκm)x −
∞∑

p=−∞
ŵpe

j(κ+pκm)x + Ψ̂r

]
= 0

(S6)

Equation S6 is truncated to the first s ∈ [−P, P ], p ∈ [−P, P ] plane wave components and is written in a matrix
form, making explicit the equations for the consecutive resonators:





K1ŵ − ω2M1ŵ + Λ11Ψ̂1 + Λ12Ψ̂2 + C11ŵ + C12φ̂ = 0

K2φ̂− ω2M2φ̂+ Λ21Ψ̂1 + Λ22Ψ̂2 + C21ŵ + C22φ̂ = 0

Γ11ŵ + Γ12φ̂+ ω2
0Ψ̂1 − ω2Ψ̂1 = 0

Γ21ŵ + Γ22φ̂+ ω2
0Ψ̂2 − ω2Ψ̂2 = 0

(S7)

where the displacement and rotation vectors ŵ and φ̂ accommodate the expansion coefficients ŵ = [w−P , . . . , wP ],

φ̂ = [φ−P , . . . , φP ]. The above matrices are defined as:
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K1 =




. . .

EIy (κ+ sκm)
4

. . .


 K2 =




. . .

GJt (κ+ sκm)
2

. . .




C11 =
mω2

0

a




...

. . .
∑2
r=1 ej[s−p]κmx1 . . .

...


 C12 = −mω

2
0

a

b+ l

2




...

. . .
∑2
r=1(−1)rej[s−p]κmx1 . . .

...




C21 = C12 C22 =
mω2

0

a

b+ l

2




...

. . .
∑2
r=1 ej[s−p]κmx1 . . .

...




Λ11 = −mω
2
0

a




...
ej(κ+sκm)x1

...


 Λ12 = −mω

2
0

a




...
ej(κ+sκm)x2

...




Λ21 = −mω
2
0

a

b+ l

2




...
ej(κ+sκm)x1

...


 Λ22 =

mω2
0

a

b+ l

2




...
ej(κ+sκm)x2

...




Γ11 = −ω2
0

[
. . . e−j(κ+sκm)x1 . . .

]
Γ12 = −ω2

0

b+ l

2

[
. . . e−j(κ+sκm)x1 . . .

]

Γ21 = −ω2
0

[
. . . e−j(κ+sκm)x2 . . .

]
Γ22 = ω2

0

b+ l

2

[
. . . e−j(κ+sκm)x2 . . .

]

(S8)

and M1 = ρAI and M2 = ρJpI are the mass and inertia matrices. I is the (2P + 1)×(2P + 1) identity matrix. The

vector coefficients ŵ, φ̂ and the resonator displacements Ψ1,2 are stored in η̂ =
[
ŵ, φ̂, Ψ̂1, Ψ̂2

]T
for a more compact

representation of the dynamic equations, yielding the dispersion relation:

K (κx, lr) η̂ = ω2M η̂ (S9)

where K and M are the (2P + 2)× (2P + 2) wavenumber dependent stiffness and mass matrices of the unit cell.

II. SUPPLEMENTARY NOTE 2: NUMERICAL METHODS

The numerical models employed for the transient analysis are based on the commercial software Abaqus and,
specifically, a finite element discretisation is accomplished through full 3D stress quadratic elements (C3D20). The
analysis is performed via implicit time integration based on the Hilber-Hughes-Taylor operator [1], an extension of the
Newmark β-method with a constant time increment dt = 0.02 ms. The system is forced through an imposed pressure
p(t) applied to a rectangular surface S0 = 42.4 mm2. The input signal is a finite burst p(t) = p0 sin (2πfc)w(n) with
amplitude p0 = 1 MPa, where w(n) is a Hann window with time duration 15 ms. As a result, the input signal is
charaterized by central frequency fc = 2.12 kHz and a spectral content of width ∆f = 0.14 kHz.
In the numerical part of the paper, an infinite waveguide model is employed to avoid spurious edge reflections. This
is achieved by imposing absorbing boundary conditions at both ends of the strip. The absorbing boundaries are
implemented in Abaqus using the ALID (Absorbing Layers using Increasing Damping) method, as widely used in the
elastic wave community, adopting a cubic law function for mass proportional Rayleigh damping with cM max = 106.
A detailed description is provided in [2]. The absorbing boundary is discretized using 100 finite elements along x,
covering a total length of approximately 3λmax, where λmax is the maximum wavelength travelling in the system.
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III. SUPPLEMENTARY NOTE 3: ADDITIONAL NUMERICAL ANALYSES

In this supplementary note, we present a number of additional analyses in the attempt to shed light on the conversion
efficiency between propagating waves, as well as to corroborate the underlying physics illustrated through Fig. 2(d)
in the main text. To this end, we have performed three distinct transient simulations upon varying the number of
symmetry-broken pair of resonators (9, 25, and 50) and keeping unaltered the length of the first and last resonator of
the array. The resonators are placed on a longer beam, which is characterized by an initial part of 13 m. This allows
a better visualization of the propagating wave packet. Also, the left and right ends are equipped with absorbing
boundary conditions. According with the theoretical arguments, which are detailed in the main text, for a system
made of an infinite number of resonators, the wave propagation follows a wavenumber transformation that brings
the group velocity to zero. In contrast, if the system is finite, the incident flexural wave is scattered as a negative
propagating component and wavenumber transformed from a wave with mixed polarization to a purely torsional wave,
provided that the conversion efficiency is close to 100%. This is the expected behavior in the cases under analysis.
The numerical results are shown in Fig. S1(a-c).

(a) (b)

(c)

FIG. S1: Space-time waterfall plots illustrating the vertical displacement w (bottom) and the rotation φ (top) along
the waveguide. The array of elements is highlighted with a red box. The numerical simulations are performed for a
configuration with an array of (a) 9, (b) 25, and (c) 50 pair of resonators. The torsional and flexural waves
represented in the diagrams are normalized by the same amplitude coefficient.

In case of 9 pair of resonators (Fig. S1(a)), most of the energy is converted into a back-traveling torsional wave,
while only a small amount of energy leaks throughout the array or is back-reflected as a flexural wave. Such a reflection
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or transmission is less visible in case of 25 and 50 pair of resonators, as shown in Fig. S1. This demonstrates that, due
to the physical principle illustrated in Fig. 2(d) and for a sufficiently long array of elements, the conversion efficiency
tends to 100%. As a final remark, it is worth to mention that for a longer implementation of the array, the slow-down
process and the wavenumber transformation is more visible, which further confirms the theoretical arguments detailed
in the main text.

IV. SUPPLEMENTARY NOTE 4: SAMPLE MANUFACTURING AND EXPERIMENTAL METHODS

The system is manufactured from a 2 mm thick aluminium plate through a laser cutting technology. A Bystronic
Fibra (3000 W) laser machine is used to cut the slab with a position tolerance of ±0.1 mm. A top view of the system
is shown in Fig. S2, which is made of an elastic waveguide 850 mm long, 7 mm wide and 2 mm thick. The system
includes an initial portion 350 mm long that serves as an input domain. The final shape of the specimen includes the
array of resonators, thereby avoiding additional operations such as soldering or mechanical connections that would
have led to imperfections in the prototype. The array is composed of 9 unit cell of size a = 40 mm, each one containing
two identical resonators shifted by a distance ξ = 20 mm. The geometrical dimensions of the resonators for each unit
cell are stored in Tab. S1 and numbered from 1 to 9.

FIG. S2: Top view of the system, made of a homogeneous beam rigidly connected to a graded array of resonators.

CELL NUMBER: ¬  ® ¯ ° ± ² ³ ´
li (mm): 8.1 10.0 11.6 13.0 14.8 16.3 18.0 19.7 21.2
ci (mm): 5
hi (mm): 2

TABLE S1: Geometric parameters of the graded array of resonators. Each unit cell contains two identical
resonators of length li, width ci, and thickness hi, shifted by a constant distance of ξ = 20 mm.

The experimental tests are performed according to the following setup. The waveguide is mechanically joined to
a LDS v406 electrodynamic shaker at the left boundary, to provide an out-of-plane input excitation and avoid the
excitation of torsional and longitudinal wave modes. The opposite end is clamped, to avoid undesired deformations of
the beam. A reflective powder is employed to cover the beam, to increase the quality of the measurements, which are
performed through a Polytec 3D scanner laser Doppler vibrometer (SLDV), that is able to measure and separate the
3D velocity field u(x, y), v(x, y), and w(x, y) on the top surface of the beam. Finally, the excitation signal, provided
through a KEYSIGHT 33500B waveform generator, synchronously starts with the measurement system and consists
in a input function V (t) = V0w(n)sin(2πfc) with amplitude V0 = 2 V, Hann window w(n), central frequency fc = 2.12
kHz and time duration 15 ms.
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