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Abstract

Vehicular control systems are required to be both extremely reliable and robust
to different environmental conditions, e.g. load or tire-road friction. In this paper,
we extend a new paradigm for state estimation, called Twin-in-the-Loop filtering
(TiL-F), to the estimation of the unknown parameters describing the vehicle oper-
ating conditions. In such an approach, a digital-twin of the vehicle (usually already
available to the car manufacturer) is employed on-board as a plant replica within
a closed-loop scheme, and the observer gains are tuned purely from experimental
data. The proposed approach is validated against experimental data, showing to
significantly outperform the state-of-the-art solutions.
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1. Introduction

The Twin-in-the-Loop (TiL) framework has been recently proposed for vehicle dynam-
ics control [2] and estimation of unknown states and variables [13]. In this innovative
framework, an high-fidelity off-the-shelf vehicle dynamics simulator is employed in a
control/estimation loop - thanks to the recent developments in on-board hardware plat-
forms 1. Being the simulator a commercial product, we assume it to be a black-box,
i.e. we can only extract its outputs given some inputs, but we are not able to access its
equations and update rules directly. With regards to the TiL estimator, the authors in
[13] showed how the presented algorithm is able to estimate both unmeasured states
(e.g. vehicle sideslip) and other unknown variables, such as the tire-road forces. How-
ever, they did not address the estimation of time-varying parameters; in fact, modern
vehicle dynamics controllers are strongly based on time-domain models of the process
[9,18,19]. Due to the variability of conditions during the daily use of a vehicle - e.g.

the most common case being the payload - such controllers can underperform, or even
destabilize the system, if such variations are not properly addressed. Hence, following
a well established research trend on vehicle state and parameters estimation, we build
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this research within the TiL framework, extending it to a new application.
Related works. Existing literature solutions for four-wheeled vehicles on-line pa-

rameter estimation can be broadly split among direct sensing and software sensing ones.
In the first class of solutions, a sensor for the measurement of the variable of interest
is used (e.g. [26], where the mass is estimated via strain gauges on the suspensions).
The second class of solutions features instead the estimation of unmeasurable variables
via production available sensors (i.e. without adding new piece of hardware). If we
focus on software sensing algorithms, we find many solutions in the literature - where
we cite here the most relevant contributions in the past years - [6,7,12,14,15,24,25,27],
which can be categorized according to four axes: estimated quantities, employed sen-
sors, used estimation algorithm, and employed model. Other important contributions
design software sensing with an highly specific goal, like rollover risk evaluation [23]:
we do not consider them in this review.

On the estimated quantities side, the mass M is indeed the most important vehicle
parameter, and is always considered in the cited works; vehicle yaw inertia Jzz is
then considered in [7,24,25], while roll and pitch inertia Jxx, Jyy are considered in
[15]. Other estimated parameters include longitudinal [7,15,24], lateral [15] or vertical
[23] center-of-mass position variation. The tire-road friction coefficient is estimated
in [14] - however, this parameter is different in nature from the other considered in
the literature, as its variations are not imputable to a variation of the vehicle load
conditions, but rather to the terrain.

With regards to the sensing layout, one common denominator is the use of classical
production vehicle sensors, like gyroscopes or Inertial Measurement Units (IMU); yaw
rate, which is a gyroscope output, is employed in all the cited articles but [15]. Ac-
celeration information is used in all references; [15] use three acceleration sensors, to
be placed above the unsprung masses. Other considered sensors include wheel angu-
lar speed [14,27], suspension displacement [14], GPS position measurements [14] and
vehicle longitudinal speed [7,24,25].

Moving further to the considered estimation algorithm, most works are based on
Kalman Filtering (KF) [7,12,14,24,25], specifically declined - except for [12,14,25] - in
its Dual formulation; Dual KF is based on two separated observers, one devoted to
classical state filtering, and the other one solely devoted to parameter estimation, to be
switched-off once a good estimate of said parameters has been reached. [27] propose a
similar formulation, where the correction law is computed via a particle filter. On the
other hand, [15] propose a different approach, based on the use of free decay responses
of the vehicle - more similar to a classic identification algorithm rather than to a state
observer.

Finally, when coming to employed plant replica, the simplest model is the single-
track, which is however only used in [12], as it fails to capture most of vehicle dynamics
non-linearities. The most common model is the double-track [7,12,24,25,27]; the latter
can be enhanced with roll dynamics, as in [7,24], or wheel dynamics [27], depending
on the estimation target or the available measurements. [15] consider a full vehicle
model - i.e. featuring also unsprung mass dynamics, roll and pitch dynamics. Finally,
the most complex model is the one proposed in [14]: the authors consider a multibody
model - featuring 14 states.

Contributions. From the literature review, an important point emerges. As also
pointed out in [13], classical vehicular state observers are based on simplified models
of the variables to be estimated: an ad-hoc model for each variable is required, and
each model has to be accurately calibrated. Given that approximately 75% of the
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time of a control system design project is devoted to modelling, as indicated in [4],
the resulting procedure turns out to be cumbersome. Let this apart, consider that
any estimator is based upon a set of hyperparameters controlling its behaviour - e.g.

the noise covariances in Kalman Filters. Generally speaking, the more complex an
estimator is, the longer the hyperparameter selection is. Relying on simple correction
laws is thus beneficial in the implementation phase.

In TiL framework we employ a single model - a digital twin - for each variable to
be estimated: this solves the problem of designing ad-hoc models and of having many
models running at run-time on the same estimation algorithm. The model calibration
phase comes for free when using a digital twin, in the assumption that a car manu-
facturer already has a library of simulators for their production vehicles. On the other
hand, the correction algorithm complexity is now shifted to the model fidelity: the
more faithful to the real system the model is, the less intense - and thus simple - the
correction need to be. The authors in [13] actually show as a linear and time-invariant
correction law is sufficient to outperform the benchmark.

Matter-of-factly, the authors in [14] consider an high-fidelity model of the plant as
in TiL framework: however, being the considered model a white-box, the authors are
able to directly compute the update rules via a Kalman Filter-like algorithm. This is
not possible in TiL, as the underlying model is a black-box, and the correction law,
although linear, has to be tuned via model-free approaches [13].

With respect to the research in [13], we extend the TiL framework to the estimation
of varying parameters, providing insights on how the correction law has to be designed,
and on the feasibility of the approach in terms of robustness to measurement noise
and uncertainty.

The paper is structured as follows. In Section 2 we provide to the reader some
preliminaries on the TiL estimator. Section 3 defines the problem of varying mass
and moment of inertia, and its estimation. Then, in Section 4 we conduct an in-depth
analysis of the parameters estimation problem by independently considering set of
variables, providing sensitivity analyses to uncertainty and noise. Section 5 shows an
application of the described and simulated framework on experimental data, while
Section 6 concludes the manuscript with a few considerations.

2. Twin-in-the-Loop observer architecture

[13] proposed an unified estimator for all the variables of interest in vehicle dynamics
control. In such an architecture (see Fig. 1), the two main features are the following

• The vehicle simulator, an high-fidelity plant replica, whose equations are a black-
box.

• The closed-loop correction, based upon available measurements, perturbs the
model in order to properly estimate unknown variables.

The detailed architecture of the complete observer is given in Fig. 2. Generically
speaking, the simulator states at time k are updated according to the following equa-
tions

x̃k+1 = f(x̂k, uk, z̃k, p),

ỹk = g(x̂k, uk, z̃k, p),

z̃k = h(x̂k, uk, δẑk−1, p)

(1)
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Figure 1. Twin-in-the-Loop estimation scheme.

where f, g, h are unknown (possibly nonlinear) functions, y ∈ R
ny is the set of

measurable outputs, x ∈ R
nx is the set of internal states of the simulator, z ∈ R

n
z is

a set of additional variables to be estimated and p is a set of constant parameters. We
denote ν̃k an a-priori estimation for a certain variable νk: then closed-loop correction
updates the a-priori estimates, and generates a-posteriori ones ν̂k - as in the widely
known Kalman Filter formulation.

The authors in [13] extend the state vector to estimate tire-road contact forces; more
specifically, the additional variables z are estimated by correcting the nominal values
provided by the simulator

ẑk = z̃k + δẑk. (2)

The artificial variable δẑk is described by a fictitious constant dynamics equation

δz̃k+1 = δẑk. (3)

The latter assumption is widely used in case the parameters to be estimated are slowly
varying. Overall, the set of states, including internal and extended ones, now reads
xaug =

[

xT δzT
]

. At this point, the innovation term at step k, consisting in the
mismatch among measured (yk) and a-priori estimated outputs (ỹk) is to be used to
correct the state vector xaug. The innovation is mapped onto the states via a linear
law in [13]

∆xaugk = K (yk − ỹk)

x̂augk = x̃augk +∆xaugk .
(4)

However, we will show in the following that the linear formulation is inadequate for the
estimation of certain parameters, e.g. the vehicle mass or inertia. Let us thus define a
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Figure 2. Twin-in-the-Loop complete estimation architecture, featuring correction of
simulator states and augmented states.

mixed linear-nonlinear correction law

x̂augk = x̃augk +

[

K 0
0 K (yk)

]

(yk − ỹk) , (5)

where K ∈ R
nx×ny maps the innovation onto the nominal states, and K (yk) ∈ R

nz×ny

maps the innovation onto the extended states.

3. A parameter estimation case study: the uncertain load setting

Figure 3. Vehicle top view, considering differently added additional masses.

Among the physical parameters defining a vehicle, mass and inertia might signif-
icantly change due to different load conditions, while being extremely important in
several on-board control systems. Hence, we consider in the following the problem of
estimating such parameters in a road vehicle via the TiL estimator architecture. Con-
sider the 5-seats vehicle in Fig. 3. Such vehicle can be loaded with additional masses.
On the mathematical perspective, we assume each of the mi, i = 1, . . . ,M to be a
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point mass, characterized by a certain position pmi
=
(

pmi,x
, pmi,y

, pmi,z

)

in the refer-
ence frame defined by axes X, Y, Z - as displayed in Fig. 3. If we assume that the
vehicle chassis can be modeled as a rigid body with its mass concentrated in a single
point - a common assumption in vehicle dynamics - the center-of-mass of such system
is computed as [20]

CMx =
∑

i=0,...,M

mi · pmi,x
,

CMy =
∑

i=0,...,M

mi · pmi,y
,

CMz =
∑

i=0,...,M

mi · pmi,z
.

(6)

whereas m0 denotes the original lumped mass of the chassis. Indeed, the center-of-
mass including additional masses - CM = (dx, dy, dz) - is going to be different from
the original one - CM0 = (d0,x, d0,y, d0,z). The new lumped mass is then simply defined
as

Mtot = m0 +
∑

i=1,...,M

mi. (7)

Consequently, the chassis moments and products of inertia change due to the mass
variation and the re-defined center-of-mass [20]. Considering the Huygens-Steiner the-
orem [5], we obtain the new moments/products of inertia, defined with respect to CM ;
this is done starting from the ones defined in CM0 and taking into account the newly
added masses. E.g., for the moments of inertia - Jxx, Jyy, Jzz - one has

Jxx =Jxx,0 −m0 [δ (dy, dy,0) + δ (dz, dz,0)] +
∑

i=1,...,M

mi [δ (pmi,y, dy) + δ (pmi,z, dz)] ,

Jyy =Jyy,0 −m0 [δ (dx, dx,0) + δ (dz, dz,0)] +
∑

i=1,...,M

mi [δ (pmi,x, dx) + δ (pmi,z, dz)] ,

Jzz =Jzz,0 −m0 [δ (dx, dx,0) + δ (dy, dy,0)] +
∑

i=1,...,M

mi [δ (pmi,x, dx) + δ (pmi,y, dy)] ,

(8)

whereas Jxx,0, Jyy,0, Jzz,0 represent the chassis nominal moment of inertia, and

δ (x1, x2) = (x1 − x2)
2. Also product of inertia variations - e.g. Jxy- can be quanti-

fied analytically in a similar way; for the load conditions considered in the case study -
realistic ones for road vehicles - we don’t have significant variations of these parameters.

Now, let us consider again scheme of Fig. 1: the high-fidelity digital twin is modelled
with a set of nominal parameters, i.e. lumped mass, inertia, and center-of-mass loca-
tion. The real vehicle is instead loaded with additional masses, and thus ”perturbed”
from the nominal parameters set.

In [13], the authors design a closed-loop correction so as to force the simulator
states to be identical to the ones of the real vehicle, regardless of the reasons leading to
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differences between the two instances of the vehicle. On the other hand, in the present
work we shift the philosophy, trying to estimate also the exact differences among the
two instances.

4. Simulation analysis

Nominal param. Value

m0 [kg] 2125.8
Jxx,0 [kg ·m2] 834.23
Jyy,0 [kg ·m2] 3640.182
Jzz,0 [kg ·m2] 3932.77
Jxy,0 [kg ·m2] 0.14
Jxz,0 [kg ·m2] 0.097
Jyz,0 [kg ·m2] 3.86
d0,x [cm] −125.0
d0,y [cm] −0.003
d0,z [cm] 64.4

Table 1. Nominal vehicle mass, inertia
and CM parameters.

Additional load param. Value

mp,1 [kg] 75 kg
mp,2 [kg] 80 kg
mp,3 [kg] 65 kg
mp,4 [kg] 75 kg
mt,1 [kg] 30 kg
mt,2 [kg] 30 kg

Table 2. Additional load parameters.

In this Section, we demonstrate the TiL methodology for the case study of Section
3. For a better assessment of the potentialities and limitations of the present method,
we conduct a preliminary analysis in a controlled simulation environment. The nom-
inal chassis parameters of the considered vehicle are given in Table 1. Said nominal
parameters also include the presence of a driver (md in Fig. 3). The parameters are
those of a generic sport utility vehicle, which is modeled in VI-CarRealTime (CRT)
simulation environment [21]. The nominal vehicle model is perturbed by adding masses
according to the scheme of Fig. 3; the values of such loads are given in Table 2. For
this new configuration, the center-of-mass, mass and inertia can be analytically com-
puted according to what described in Section 3; the new values for the most relevant
parameters are in Table 3.

We apply the TIL architecture to the problem herein, defining the complete extended

Perturbed param. Value Variation2

Mtot [kg] 2480.8 +16.70 %
Jxx [kg ·m2] 901.9 +8.11 %
Jyy [kg ·m2] 4394.4 +20.72 %
Jzz [kg ·m2] 4760.0 +21.03 %
dx [cm] −131.6 +5 %
dy [cm] 1.6 +100.2 %
dz [cm] 68.4 +5.3 %

Table 3. Perturbed vehicle parameters.
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state vector as

xaug =
[

xT δM δJxx δJyy δJzz
]T
, (9)

where x is the set of VI-CarRealTime states, x ∈ R. In this simulation analysis, only
extended states - parameters - are going to be corrected, as we want to focus on the
feasibility of parameters correction. Each extended state represents the deviation of
said parameter from the nominal value provided by the simulator as an output. Joint
state and parameter correction will be considered in an experimental case study in
Section 5.

In order to reproduce a simulation environment the closer to a real scenario, we
introduce measurement noise. The noise is introduced on the signals coming from an -
simulated in CRT - inertial measurement unit (IMU) placed near the vehicle CM. The
following noise law is considered

sn = s+ ns, ns ∼WN(0, σ2s), (10)

where s is a signal coming from an IMU, and σs is the standard deviation of a suitable
white noise. In the simulation case study, x-axis acceleration ax and x, y, z axes
angular rates ωx,y,z are employed as measurements in the observer, hence, only these
signals are perturbed with noise. When not specified, the snr is tuned to be ≈ 10:
however, we also conduct sensitivity analyses to verify the impact of measurement
noise onto the estimator.

When quantifying the observer performance, we consider as a metric the root mean
square estimation error in the last w = 1 seconds of test, as the dynamics of the
estimated parameters are rather slow, and considering larger windows would take into
account transient effects.

rmsv =
1

wfs

Ns
∑

k=Ns−wfs

(νk − ν̂k)
2 , (11)

WhereNs is the number of samples in an experiment, fs [Hz] is the sampling frequency,
and ν is a suitable parameter or variable to be estimated, e.g. ν = δM .

On the other hand, we also consider the percentage version of rmsw, in order to
quantify the amount of error within the parameters values. This metric is defined as

rmsν,% = rmsν/ν0, (12)

Where ν0 is the nominal value of a variable to be estimated; e.g. in our case, the
nominal value for δM is the difference among the perturbed value in Table 3 and the
nominal value in Table 1.

In the following, we consider as acceptable a percentage rms smaller than the 10 %
of a perturbated variable.

4.1. Center-of-mass position identification

The CM position is perturbed from CM0 in the modified layout, as evident from
Table 3. Most significant displacement occur along x and z axes, as y axis variation
are mostly due to extremely unbalanced - on the left-right direction - loads, which are
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not common in road vehicles. Given that the digital twin computes the torque and
force balances referring to the center-of-mass, a not exact knowledge of CM might be
detrimental for estimating the other parameters.

Two possible ways of solving this problem exist:

• Insert the variables dx, dy, dz onto the augmented state vector xaug, and conse-
quently correct the mismatch from the nominal values;

• Identify in a traditional way - see e.g. [8,17] - dx, dy, dz on-line via available
data and simplified models.

In the present work, we decide to follow the second approach, as we want to concentrate
onto the estimation of mass and inertia: hence, we assume correct knowledge of CM .
However, we also perform sensitivity analyses to check the effect of a wrong CM
onto the estimation performance: in general, we will show as for the considered load
conditions, which are reasonable for a passenger car, the performance loss is negligible
even in case of wrong CM estimation.

4.2. Vehicle mass estimation

 

(a) Mass estimation in an urban driving context. (b) Urban driving commands.

Figure 4. Mass estimation in an urban driving like context, with noisy measurements.
Estimated mass for different initial conditions.

Vehicle chassis mass can be estimated by suitably exciting the longitudinal dynamics.
Consider the following simplified longitudinal dynamics balance for a road vehicle

Mchassis · ax = Ftrac − Fbrake − Froll − Faero. (13)

It is clear that, provided that roughly the same forces act on the vehicle, an increased
mass yields a lower longitudinal acceleration. Hence, if the digital twin is characterized
by a smaller mass than the real vehicle, a suitable correction can be based upon the
difference between longitudinal accelerations. Indeed, if the terms on the right hand
side of Eq. (13) are significantly different, we are not able to determine whether an
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Figure 5. Mass estimation with varying
noise levels.

Test conditions rmsM [%]
• Noiseless data (snr =∞);
• Correct CM

0.64

• Noisy data (snr = 10);
• Correct CM .

1.61

• Noisy data (snr = 10);
• Wrong CM .

0.68

Table 4. Mass estimation performance in
different conditions.

acceleration variation is due to a mass difference or rather to an error in modelling the
brake system or the tire-road interaction. For this reason, in this simulation analysis
the sole modelling difference among the two simulated instances of the vehicle lie in the
mass perturbation. In Section 5 we will test the mass estimation on real data, where
other modelling differences might exist.

The correction applied on δM at time step k reads

∆δMk = Kax−δM · sgn(ax,k) · (ax,k − ãx,k), (14)

Where Kax,δM is a suitable gain to be tuned and sgn (·) extracts the sign of the argu-
ment. Note as K (yk) = Kax−δM · sgn(ax,k) in this context.

The importance of the sign operator is easily understood with a simple example.
Consider a coasting down - deceleration due to inertia ax < 0 - event: if the vehicle
has an higher mass than the simulator, it will coast down faster, thus (ax − ãx) <
0. Correcting δM proportionally to (ax − ãx), with the same sign, would lead to a
decrement of the extended state: however, δM should instead increase to compensate
for the greater mass on the vehicle. Thus, the introduction of the sign operator accounts
for this issue, an introduces a necessary non-linearity in the correction law.

The considered experiment for the mass estimation is an urban driving one - see
Fig. 4b: in said test, only the correction of Eq. (14) is applied.

The results - in case of noisy data and correct center-of-mass - can be appreciated
in Fig. 4a: the mass is correctly estimated even by starting from different initial condi-
tions, and the estimate eventually converges to the correct value. Table 4 reports the
estimation performance in different conditions: as one can notice, the mass estimate is
highly robust both to measurement noise and to imperfect knowledge of the center-of-
mass. In the worst case, rmsM = 0.68 %: since δM = 355 kg, the error is smaller than
3 kg.

Figure 5 compares the estimator performance for an snr growing from 5 to 20: we
can conclude that for reasonable noise levels, the estimator performance does not drop
below the 10%, which was originally set to be our limit.

Finally, note that δM converges to the real value even if we are not correcting
δJxx, δJyy , δJzz : this highlights the good decoupling among the estimated variables,
without the need for designing a separated model for each of them.
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4.3. Yaw inertia and roll inertia estimation

(a) Correct center-of-mass estimation case. (b) Wrong center-of-mass estimation case.

Figure 6. Roll and yaw inertia estimation by means of a swept steer experiment,
with noisy measurements. The upper plot depicts the estimated parameters in case the
center-of-mass is exactly known, while the lower one depicts them in case the CM is
not exactly known.

Figure 7. Roll inertia estimation with
varying noise levels.

Figure 8. Yaw inertia estimation with
varying noise levels.

Roll and yaw inertia can be estimated by exciting lateral dynamics and left-to-right
load transfer, which often come together, e.g. while negotiating a curve. A proper
experiment to estimate both variables at the same time is a swept steer maneuver, at
constant speed, from 0 to 4 Hz. The non-linear correction law to be applied onto δJxx
and δJzz follows from what described in Section 4.2 for the mass

∆δJxx,kk
= Kω̇x−δJxx

(ω̇x,k − ˜̇ωx,k) · sgn(ω̇x,k),

∆δJzz,kk
= Kω̇z−δJxx

(ω̇z,k − ˜̇ωz,k) · sgn(ω̇z,k).
(15)

Where the angular accelerations ω̇ are employed - such signals are easily obtained
from the angular rates via differentiation. Note that while estimating Jxx and Jzz, δM
could have been already estimated as described before. Same goes for the center-of-
mass. Figure 6a depicts the estimation results in case of noisy measurements, wrong
mass estimate, and correct center-of-mass; only corrections in Eq. (15) are applied. The
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Table 5. Roll and yaw inertia estimation performance in different conditions.

Test conditions rmsJxx
[%] rmsJzz

[%]
Noiseless data (snr =∞);
Correct mass;
Correct CM.

0.38 0.96

Noiseless data (snr =∞);
Wrong mass;
Correct CM.

4.22 0.25

Noisy data (snr = 10);
Correct mass;
Correct CM.

23.91 6.18

Noisy data (snr = 10);
Wrong mass;
Correct CM.

26.50 5.38

Noisy data (snr = 10);
Wrong mass;
Wrong CM.

45.43 26.50

estimates converge to the true value, even starting from different initial conditions. On
the other hand, Fig. 6b depicts the estimation of the same variable, in case the nominal
center-of-mass is kept within the digital twin: as expected, we note a steady-state error
in the estimated inertia - mostly noticeable for Jzz.

Table 5 quantifies the estimation performance in different cases. One can notice as
the error on Jxx is generally higher and grows faster as the uncertainty increases. This
is easily explained as the nominal value and the variation of Jxx are much smaller
than for the other inertia. Finally, Fig. 7 and Fig. 8 show the estimator performance
when considering different noise levels on the employed measurements. As expected,
Jxx estimation performance significantly drops, and is never within the 10% limit. On
the other hand, Jzz estimation shows good performance up to snr ≈ 7.5, which is a
reasonable bound for yaw acceleration noise.

4.4. Pitch inertia estimation

As done above, pitch inertia Jyy can be estimated by suitably exciting the corre-
sponding dynamics. The most straightforward way of exciting pitch dynamics is the
excitation of the vehicle body with a non-zero road profile: hence, we assume that the
vehicle is being driven at constant speed on a paved road. The road profile at front
wheels is modeled as [16]

zf =

∫ t

0

ηz, ηz ∼WN(0, σ2z), (16)

Where σz = 0.01 m, and WN is the realization of a white noise. Consequently, the
profile on the rear wheels is equal to zr(t) = zf (t−v/wb), with v the vehicle longitudinal
speed, and wb the wheelbase.

The real vehicle, whose load is unknown and has to be estimated, is fed with the gen-
erated road profile. The digital twin is then fed with the same road profile. In pratice,
we are considering that the road profile at the current time is known; this information
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Figure 9. Pitch inertia estimation in case
the road is known without uncertainty,
with noisy measurements.

Figure 10. Pitch inertia estimation with
varying noise levels. Oscillation in rms% is
intrinsically due to the complex nature of
the Twin-in-the-Loop observer.

(a) Sensitivity to Jyy estimation error, based on the

amount of noise in the road profile.

(b) Noisy versus real road profile, in case εz = 0.1.

Figure 11. Analysis on the effect of road profile noise onto the estimation of Jyy.
(a) shows the sensitivity to Jyy estimation error for different noise levels, while (b)
compares noisy and real measurements for a specific noise level.

can be easily extracted e.g. via Kalman Filtering [11] or sensing devices [19]. To achieve
a realistic simulation, we assume the presence of noise in such information

znf,k = zf,k · uz,k, uz,k ∼ U (1− εz , 1 + εz) . (17)

Equation (17) models a multiplicative uniformly distributed noise onto zf .
The correction law to be applied is derived as usual

∆δJyy,kk
= Kω̇y−δJyy

(ω̇y,k − ˜̇ωy,k) · sgn(ω̇y,k), (18)

Where the y-axis angular acceleration ω̇y is employed as a measurement. In the follow-
ing, only correction in Eq. (18) is applied.

As also discussed for roll and yaw inertia, a preliminary estimation of the vehicle
mass can yield benefits also to inertia estimation; the same goes for the center-of-mass
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position. The inertia estimation - considering noisy measurements - are showed in Fig.
9. The estimate converges to the correct value even by starting from different initial
conditions. Also, note that the observer is robust with respect to imperfect knowledge
of other inertia parameters Jxx and Jzz, which are not being corrected.

Then, Table 6 quantifies the estimation performance for different simulation layouts:
even in the worst scenario, i.e. in case of noisy measurements and road profile informa-
tion, and wrong knowledge of mass and center-of-mass location, the percentage rms
settles at ≈ 10%.

Finally, Fig. 11a shows the variation of rms% for increasing road profile noise (εz):
a significant performance drop arises for εz > 0.1.

For a better understanding of the introduced noise level, Fig. 11b depicts the real
versus noisy road profiles. The rms among the two signals is ≈ 0.2 cm, which is
comparable to what observed in [11].

Table 6. Pitch inertia estimation performance in different conditions of measurement
noise, road profile noise, and with or without the mass estimation.

Test conditions rmsJyy
[%]

Noiseless data (snr =∞);
Noiseless road profile (εz = 0);
Correct mass;
Correct CM.

0.11

Noiseless data (snr =∞);
Noisy road profile (εz = 0.1);
Correct mass;
Correct CM.

3.19

Noisy data (snr ≈ 10);
Noiseless road profile (εz = 0);
Correct mass;
Correct CM

0.33

Noisy data (snr ≈ 10);
Noisy road profile (εz = 0.1);
Correct mass;
Correct CM

3.24

Noisy data (snr ≈ 10);
Noisy road profile (εz = 0.1);
Wrong mass;
Correct CM.

2.38

Noisy data (snr ≈ 10);
Noisy road profile (εz = 0.1);
Correct mass;
Wrong CM.

5.51

Noisy data (snr ≈ 10);
Noisy road profile (εz = 0.1);
Wrong mass;
Wrong CM.

10.20
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4.5. Implementation details

Road profile

Mass es�ma�on
• Straight driving data 

selec�on

CG iden��ca�on
es�ma�on

• Straight driving data 

selec�on

/ es�ma�on
• Cornering data 

selec�on

Figure 12. Schematic representation of the operations flow of a possible implementa-
tion of the TiL parameters estimator.

In the Sections above, we showed how the TIL approach can properly estimate mass
and inertia under different noise and uncertainty conditions; this allowed us to focus
on each problem independently. In an actual implementation of the full parameter
estimator, one could consider simple logic rules to prioritize estimation of one or more
variables. A possibility is that of Fig. 12: the dashed arrows represent outputs/input
of a given module of the estimator, while solid arrows describe the flow of operations.

The first stage consists in estimating the vehicle mass. We verified (see Table 4) as
this part of the algorithm is extremely robust to knowledge of the center-of-mass and
other inertial parameters; hence, this module is the first one to be executed. Estimation
during straight driving can be enforced to avoid too highly dynamic conditions: to do so,
a simple threshold on vehicle yaw-rate is sufficient. The transition to the next module
can be based upon a time threshold: setting a reasonably high threshold ensures that
the estimator has converged to the true value when transitioning.

Now, one could estimate the pitch inertia Jyy, which has been showed to be robust
to center-of-mass knowledge (Table 6); as discussed, this step requires knowledge of
the road profile. Also in this case, enforcing straight driving can enhance robustness
by avoiding parameter corrections in highly dynamic conditions.

On the other hand, in order to estimate other inertia parameters Jxx, Jzz we need
to know the center-of-mass variation beforehand, so as to have reasonable estimation
errors (within the 10 % bound). A suitable estimation procedure can thus be applied
to solve for this problem; this enables estimation of roll and yaw inertia, for which
a data selection to isolate cornering events is necessary - a threshold on yaw-rate or
lateral acceleration solves the last point.

5. Experimental validation

In the following, we test the parameter estimator onto real data. Data has been collected
in a proving ground with an high-performance car, and provided by a partner car
manufacturer whose name cannot be disclosed for confidentiality reasons.

The vehicle is provided with a set of sensors, yielding the following measurements

• Center-of-mass 3D accelerations and angular rates (IMU);
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Parameter

Mtot Jxx Jyy Jzz dx [cm] dy [cm] dz [cm]
1391.29 328.281 1698.21 1864.95 157.14 0 46.22

Table 7. Test vehicle nominal parameters, as modeled on the digital twin.

• Four wheel angular rates (encoders).

For validation purposes, a double antenna GPS is used to measure longitudinal and
lateral speed (vx, vy). Consequently, the vehicle sideslip β can be computed as β =
atan(vy/vx). We consider joint estimation of parameters and states: namely, we want
to estimate vehicle sideslip and mass. Hence, the augmented state vector is

xaug =
[

xT δM
]T
, (19)

where x ∈ R
28×1 is the set of simulator states.

Measurements vector y ∈ R
10×1 reads

y =
[

ax ay az ωx ωy ωz ωfl ωfr ωrl ωrr

]T
(20)

The most relevant vehicle nominal parameters are collected in Table 7.

5.1. Tuning the TiL observer

Algorithm 1: BO for TiL calibration: pseudo-code

1: Select an experiment, consisting of measured states, input, measurements
(xk, uk, yk)

2: Select N number of total iterations, nseed number of initial points (nseed < N )
3: Evaluate the objective function in nseed random initial points
4: i← nseed
5: while i < N do

6: Update surrogate function f̂i(θ)
7: Compute acquisition function ai(θ)
8: Next point to evaluate is θi+1 = argminθ ai(θ)
9: i← i+ 1

10: Evaluate yi = f(θi)

11: end

12: Update surrogate function f̂N (θ)

13: return 1) best evaluated point θ = argmini f(θi)

2) best predicted feasible point θ̂ = argminθ f̂N (θ)

Applying the correction in Eq. (5) with set of states and measurements defined above
would yield to state-output mapping matrix K ∈ R

28×10. With regards to the non-
linear correction K, to be applied for the estimation, the expression in Eq. (14) is used.
All considered literature solutions rely on Kalman Filters to compute the correction
gain to be applied: unfortunately, given that the digital twin is a black-box, we cannot
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access its equations, and thus we cannot employ standard techniques - e.g. the system
linearization, as in Extended Kalman Filter. A data-driven approach is instead here
proposed, following what showed in [13]. An optimization procedure is performed based
on experimental data: a set of states, driver inputs and measurements is necessary
〈xk, uk, yk〉. Such procedure calibrates the parameters off-line by minimizing a certain
cost function - depending on the estimator objective.

Given that the cost metric to be optimized cannot be written in closed-form - being
the simulator equation unknown - we need to rely on a black-box optimizer. These
methods suffer of huge scalability problems, and the number of optimization variables
shall be reduced as much as possible; this can be enforced by removing variables from
the measurements and states vector, reducing the matrix order. Specifically, we consider
the following subset of y

yss =
[

ax ay ωy ωz ωfl ωfr ωrl ωrr

]T
. (21)

az and ωx have been removed from the set, as we are interested in estimating planar
dynamics; on the other hand, one can verify that including the pitch rate ωy among
the measurements can enhance the estimation performance, as the variable is highly
related to the road profile - and thus to suspension forces.

The same considerations can be applied to the state vector, thus obtaining a reduced
version

xss =
[

vx vy ωy ωz ωfl ωfr ωrl ωrr δM
]T
. (22)

Where the planar velocities allow to algebraically estimate β; wheel, pitch and yaw
angular rates ωfl,fr,rl,rr, ωy, ωz are corrected with the corresponding measurements in
order to guarantee simulator stability. At this point, mapping matrix has dimensions
9× 8, meaning that 72 parameters shall be calibrated. 72 parameters are still compu-
tationally intractable, hence, we promote physics-inspired sparsity in the matrix [1]. In
details, we consider the following corrections

• Kω−ω. Correction onto the wheel angular rates via the corresponding measure-
ments;

• Kax−vx and Kay→vy . Correction onto the vehicle longitudinal/lateral speed via
the corresponding accelerations;

• Kωz−ωz
. Correction onto the yaw rate via the corresponding measurement;

• Kωy−ωy
. Correction onto the pitch rate via the corresponding measurement.

Hence, the set of parameters to be tuned reads

θ =
[

Kω−ω Kax−vx Kay−vy Kωy−ωy
Kωz−ωz

Kax−δM

]

(23)

Where the term Kax−δM is the correction on the vehicle mass; we apply it through the
switching law

∆δMk = Kax−δM · ǫ (ax,k, ωz,k) · (ax,k − ãx,k),

ǫ =











0 , |ωz,k| > ω̄z,

1 , sgn (ax,k) ≥ 0 ∧ |ωz,k| < ω̄z,

−1 , sgn (ax,k) < 0 ∧ |ωz,k| < ω̄z.

(24)
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Equation (24) is very similar to Eq. (14): however, we introduce a scheduling law based
on the yaw-rate ωz, with ω̄z = 3 deg/s - as also discussed in Section 4.5 - in order to
perform the estimation during straight driving. Now, the optimal observer calibration
θ∗ can be found by solving the following optimization problem

min
θ

J (θ)

subject to θ ⊆ Θ.
(25)

The cost function has to be selected based on the estimation targets. In this case, we
have

J(θ) =

√

√

√

√

1

Ns

Ns
∑

i=1

kβ

(

βk − β̂k

)2

+

√

√

√

√

1

10fs

Ns
∑

i=Ns−10fs

(

δMk − ˆδMk

)2

. (26)

Whereas kβ = 100 accounts for numeric differences among the two cost function terms,
and Ns is the number of samples in the experiment. Note that the second term of the
cost function weights the mass in the last 10 seconds of experiment. This is because
we don’t need and don’t expect the mass estimation to be as fast as the sideslip one,
hence we don’t give great relevance to the first part of experiment.

We select Bayesian Optimization (BO) to solve the problem in Eq. (25): BO is
a model-free optimizer employed when the cost function to be minimized cannot be
written down in form of equation, but we are able to evaluate for some values of θ.
A Gaussian Process proxy of the cost function is then found by regression on said
points, and used to estimate the global optimum of the problem in Eq. (25). The BO
procedure is schematized in Algorithm 1, and more information can be found in one
of the many papers about this topic, e.g. [3].

5.2. Benchmark estimator

In order to fairly compare the TiL estimator with a benchmark, we build an observer
with a double-track planar model as a system replica (see Fig. 13); the same correction
architecture as for the TiL, based on constant gains, is retained. This model has been
frequently used in the state and parameter estimation literature ([7,27]). Furthermore,
we use double-track model for consistency to our previous research on TiL topic [13].
The planar vehicle dynamics are written - in discrete time - as

vx,k+1 = vx,k + Ts

(

F T
x

Mtot + δMk

+ vy,kωz,k

)

,

vy,k+1 = vy,k + Ts

(

F T
y

Mtot + δMk

− vx,kωz,k

)

,

ωz,k+1 = ωz,k + Ts

(

MT
z

Jzz

)

,

δMk+1 = δMk.

(27)

Where Ts is the sampling time. The equations are enhanced with the extended state for
the mass estimation, δM . The total forces F T

x , F
T
y and moment MT

z are respectively
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Figure 13. Double-track vehicle model scheme.

written as a function of the tire-road forces

F T
x = (Fx,fl + Fx,fr) cos(δ) − (Fy,fl + Fy,fr) sin(δ)+

Fx,rl + Fx,rr,

F T
y = (Fx,fl + Fx,fr) sin(δ) + (Fy,fl + Fy,fr) cos(δ)+

Fy,rl + Fy,rr,

MT
z = lf (Fy,fl + Fy,fr) cos(δ) +

t

2
(Fy,fl − Fy,fr) sin(δ)−

t

2
(Fx,fl − Fx,fr) cos(δ) + lf (Fx,fl + Fx,fr) sin(δ)−

lr (Fy,rl + Fy,rr)−
t

2
(Fx,rl − Fx,rr) .

(28)

Where lf , lr, t are parameters influenced by the center-of-mass position, which could
thus change over time. However, given that the considered case study is a 2-seats car,
the expected load variations are not of significant influence to the CM position.

The wheel forces Fx,ij , Fy,ij are modeled through a simplified Pacejka model [10]

F ij
x = Fz,ijDx sin (Cx arctan (Bxλij − Ex (Bxλij − arctan (Bxλij)))) ,

F ij
y = Fz,ijDy sin (Cy arctan (Byαij − Ey (Byαij − arctan (Byαij)))) .

(29)

Where F ij
z is the normal force at each wheel; the same can be easily estimated by
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using center-of-mass measured accelerations [22]. The wheel longitudinal and lateral
slips λij, αij are computed as

λij =
Rijωij − vx,ij

max (Rijωij, vx,ij)
,

αij = arctan
(

vijy /v
ij
x

)

.

(30)

Where vx,ij, vy,ij are obtained from simple kinematic considerations. In principle, one
could include the wheel dynamics as in [13], in order to filter the wheel angular rate
states. However, since the estimation target is different, and we assume the angular
rate measurements to be reliable, we directly consider measured ωij in Eq. (30). This
also avoids us to model the braking and traction torques effect onto the wheels, a
potential further source of error. Overall, Eq. (27), Eq. (29), Eq. (30) can be combined
in order to obtain the double-track dynamics

xbench,k+1 = xbench,k + Ts · fbench (xbench,k, ubench,k) ,

ybench,k =





ax,k
ay,k
ωz,k



 =













F T
x

Mtot + δMk

+ vy,kωz,k

F T
y

Mtot + δMk

− vx,kωz,k

ωz,k













.
(31)

Whereas xbench =
[

vx vy ψ̇ δM
]T
∈ R

4, and ubench,k =
[

δ ωfl ωfr ωrl ωrr

]

∈

R
5. fbench is a suitable non-linear function.

We apply on the benchmark estimator the same correction law proposed in Section 2.
The correction gains are stored in vector θbench

θbench =
[

Kax−vx Kωz−ωz
Kax−δM Kay−vy

]

. (32)

Bayesian Optimization is employed to tune θbench, as for the TiL observer.

Remark. Let us remark that the double-track model - especially the Pacejka parameters

- need to be identified based on experimental data: this increases the number of tunable

parameters and the calibration complexity of the benchmark. On the other hand, a

digital twin of the vehicle is usually already well calibrated, as the same is used for

simulation purposes by the car manufacturer. Furthermore, the double-track model is

not valid anymore if we want to estimate roll or pitch inertia: we would need to design

another ad-hoc model, or to enhance the double-track with non-planar dynamics.

5.3. Final results

The following results are obtained by testing the TiL estimator and the benchmark
defined in Section 5.2. The experiments have been performed on the vehicle having a
nominal mass, hence, in order to test the algorithms, we modify the initialization of
the estimator internal models, so to have a wrong mass value δM,0 = −350 kg.

Figure 14 depicts vehicle speed, steering wheel angle and lateral acceleration in the
experiment used for solving optimization problem in Eq. (25) - the test consists in a
series of circuit laps. As the reader can note, the experiment is extremely challenging,
in that accelerations up to 1.5 g and speed up to 230 km/h are reached.
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Figure 14. Speed, yaw-rate and lateral
acceleration profiles in a series of circuit
laps (optimization experiment).

Figure 15. Speed, yaw-rate and lateral
acceleration profiles in a series of double-
lane-change maneuvers (validation experi-
ment).

Figure 16. Joint mass and sideslip estimation in a series of circuit laps (optimization
experiment). The TIL estimator is compared with a benchmark estimator.

For this test, we apply the BO procedure solving the problem of Eq. (25): the optimal
parameters in Table 8 are obtained. The variable bounds can be found via trial-and-
error and prior physical knowledge, as discussed in [13] The estimation results are
displayed in Fig. 16. An highlight on the last part of the test is showed in Fig. 17. As
one can notice, TiL is able to outperform the double-track based observer both on mass
and sideslip estimation. The mass estimate convergence is indeed slower than in the
simulation test of Section 4.2: this is however expected, as the real world experiment
is significantly more challenging.

Figure 15 shows speed, yaw-rate and lateral acceleration for another experiment,
used for validating the estimators - this test consists in a series of double lane change
and braking maneuvers, and is thus different in nature from the optimization one.
The estimation results are given in Fig. 18. Also in this case, both filters are able to
properly estimate the sideslip angle - with a comparable performance. On the other
hand, the double-track model is not able to correctly estimate the mass, and seems to
be diverging over time.
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Figure 17. Joint mass and sideslip estimation in a series of circuit laps (optimization
experiment). The TIL estimator is compared with a benchmark estimator - highlighted
portion.

Parameter Lower bound Upper bound Optimized - TiL Optimized - bench

kω−ω 0 1.5 0.259 /
kax−vx 0.01 0.01 3.287 · 10−3 9.282 · 10−2

kay−vy 0.01 0.01 7.430 · 10−2 5.271 · 10−2

kωy−ωy
0.2 1.5 0.913 /

kωz−ωz
0.2 1.5 1.046 0.314

kax−δM 0 1000 248.17 2.06

Table 8. Upper, lower bounds and optimal parameters found for the TiL estimator
via BO.

6. Conclusions

In this manuscript, we show that the mass and inertia of a vehicle can be estimated -
jointly with classical vehicle dynamics states - via the recently introduced Twin-in-the-
Loop filtering approach. The method is validated extensively in simulation, considering
independent estimation of each parameter of interest, and performing sensitivity anal-
yses to noise and uncertainty. Then, the TiL estimator is tested against experimental
data collected on a high-performance car, showing high performance in joint estima-
tion of mass and sideslip. A comparison with another observer based on state-of-the-art
double-track vehicle modelling provides further insights into the potential of the TiL
architecture.

Future work will be dedicated to the study of the real-time estimation of the tire-road
friction coefficient.
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Figure 18. Joint mass and sideslip estimation in a series of circuit laps (validation
experiment). The TIL estimator is compared with a benchmark estimator.
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