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Abstract 

Building performance simulation can support parametric explorations of design option spaces. 

Resources available for modelling and computing often require the reduction of the descriptive 

information of a design solution at the level of design-space model rather than at that of building 

model. To obtain that reduction, two design-space models of different scope (for example, one 

full-scope and simplified, the other partial-scope and detailed) can be combined to make their 

responses usable as surrogates of those produced by a full-scope detailed inquiry. But aligning 

two building models of different scope can be difficult and sometimes impossible. This article 

presents a design-space “grafting” technique supported by metamodelling that makes it possible 

to hybridize two non-aligned design-space models so as to obtain a diffusely calibrated conjoint 

response. The strategy can be integrated into metamodelling and decomposition-based 

optimization to decrease the information costs entailed by parametric explorations. 

 

Keywords: subspace grafting, k-nears neighbour, metamodelling, optimization, model 

reduction 
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 1. Introduction 

The greatest challenge in exploring a building design option space is confronting the “curse of 

dimensionality” (Bellman, 1957), deriving from the fact that the size and complexity of an 

option space increase exponentially, at the power of the number of parameters involved. Building 

designers usually deal with the necessary problem reduction implicitly, by intuition, but the 

increasing adoption of generative design procedures creates the opportunity to deal with problem 

reduction explicitly, along a path towards closing the acknowledged gap (Bleil de Souza, 2012) 

between the tentative approach of building designers and the analytic one of building 

simulationists. 

At the analytical level, the issue of dimensionality can be addressed by several kinds of 

approaches explicitly or implicitly aimed to reduce the design-space size: optimization, 

metamodelling, and building model (“scene-model”, including the neighbourhood scale) 

reduction. Optimization can reduce the number of samples (simulations), metamodelling can 

reduce the sampling costs, and scene-model reduction can reduce the descriptive information of 

samples. 

In the context of optimization, problem reduction can be pursued by the means of scene-

models of cascaded scope and resolution, usually organized in such a manner that the smaller the 

scope, the higher the resolution, so as to make it possible to base general decisions on complete 

and low-resolution models, and detailed decision on partial and high-resolution ones. But 

problem reduction can also be pursued by utilizing scene-models of different scope or resolution 

even outside the context of optimization. This can be done by combining the response of the two 

(or more) design-space models and aligning them in such a manner to make them usable 

interchangeably. However, the techniques that are available to align the responses of different 



design-space models are presently limited to the calibration of scene-models, which is not 

entirely satisfactory for models of different scope, i.e., having an inner structure lacking a point-

to-point correspondence. When two scene-models have a different scope, they indeed lack the 

correspondences which are necessary to generate a conjoint design-space model, and this reduces 

the likelihood that they can be mutually calibrated in absolute and relative terms simultaneously. 

This paper presents a novel technique that makes it possible to merge the performance 

predictions produced by two concurrent scene-models of different scope without requiring a 

preliminary calibration between them, while nevertheless obtaining conjoint calibrated 

responses. In this technique, the integration of design-space models does not take place at the 

level of performance predictions (i.e. at the level of independent variables), but at the level of 

design-spaces (that is, involving the whole range of variables, including the independent ones). 

This result is obtained by performing a diffuse and progressive point-to-point “grafting” of a 

problem into another by means of an ad-hoc gradient-based metamodelling technique of the k-

nears neighbour type. For doing that, a partial metamodel is built on the basis of samplings 

performed in the design-space model which is going to receive the “graft”, then another 

metamodel is built to fill the missing parts by utilizing the gradients metamodelled from the 

samplings performed in the design-space model contributing the graft. 

The case study presented in this article aims to demonstrate, by means of comparisons with the 

results obtainable through alternative strategies, that: (a) the descriptive information reduction 

made possible by the grafting technique can produce levels of design-space model reduction 

comparable with those obtainable with the technique of subspace metamodelling by sequential 

decomposition; and (b) the conditions exist for combining the grafting technique with the 

strategies of scene-model reduction, metamodelling, and search-space decomposition in a 

coherent whole, so as to increase the return of investment on descriptive information without 

excessive costs in terms of predictive reliability. 

 



 

1.1. Interdisciplinary literature bases 

The foundations of this research are interdisciplinary: they span from constraint propagation to 

metamodelling, and from calibration to scene-model reduction and system decomposition. 

At the core of the capacity of parametric modellers and BIM applications to manage design 

explorations, there is constraint propagation (Woodbury, 2010; Jabi, 2016; Faloutsos, 2001), 

which is a process inducing a chain of transformations in a system on the basis of some rules 

following a triggering event (Sutherland, 1963; Sussman & Steele, 1980). With the aid of 

constraint propagation, carrying out the exploration in Fig. 1A, for example, would not require 

imposing three transformations (regarding width, depth and height), but two (width and depth), 

plus one constraint (i.e. the floor area is constant). The advantages of this strategy become huge 

in complex problems (Medjdoub & Chenini, 2015) and make constraint propagation essential in 

a wide range of cases, spanning from characters in animations (Koenig & Varoudis, 2016) to 

BIM models (Singh, Sawhneya, & Borrmann, 2015). This transformative ability is highly 

programmable (Wortmann & Tunçer, 2017, Harding, 2017; Dino, 2016) and opens the way to 

integration with building simulation tools (Ahn et al. 2014; Habibi, 2017); but managing long 

tool-chains creates brittleness (Jin et al. 2019), which is commonly addressed via the creation of 

frameworks (Gu et al. 2013; Crawley et al. 2008; Gu et al. 2013; Rahmani, 2015; Kim et al. 

2016; Gerrish et al. 2017; Shadram & Mukkavaara, 2018). 

A consequence of the link between parametric applications and simulation programs is that of 

further increasing the already huge importance of models in the architectural domain, along a 

path which in modernity has at first addressed structural problems (Dong, 2017; Nervi, 1954; 

Cowan et al. 1968), then environmental analyses, ranging from winds (Davenport, 1960) to solar 

radiation (Olgyay & Olgyay, 1957) and daylighting (Lam, 1986). In all these situations, the 

models surrogate something. They surrogate the “real” architectural objects directly or indirectly, 

by surrogating some models that surrogate the real objects. This is also the meaning in which the 



term “metamodel” is today used in engineering: an abstract model surrogating abstract relations: 

often, a computation engine (for example, a neural network) surrogating the action of a more 

resource-demanding simulation engine (Wang & Shan, 2006). 

A criterion for the classification of metamodelling approaches is based on the distinction of the 

so-called parametric methods, like regression on polynomials (Myers, Montgomery & Anderson-

Cook, 2009; Giunta & Watson, 1998) (requiring prior knowledge of a problem’s structure) from 

the non-parametric methods, like the k-nears neighbours strategy (Altman, 1992), kriging 

(Gaussian process regression) (Matheron, 1973), radial basis functions (Hardy, 1971), 

multivariate adaptive regression spline (MARS) (Friedman, 1991), support vector regression 

(Cortes & Vapnik, 1995; Tang et al. 2019), random forests (Breiman, 2001), and artificial neural 

networks (Cheng & Titterington, 1994). 

The usefulness of a metamodelling – for example, for increasing optimization efficiency 

(Wortmann et al., 2015) - is highly dependent on the kinds of problems addressed (Jin, Chen & 

Simpson, 2001; Villa-Vialaneix, 2014) and can be improved by integrating information about the 

gradients between vectors (Keulen &Vervenne, 2004; Laurent, 2019). 

By applying calibration to metamodelling, the relations between building simulation and 

calibration, which are usually measured at the level of scene-model instances (Coakley, Raftery 

& Keane, 2014) are extended at design-space level. Sophisticated knowledge-based procedures 

have been developed for that task (Pedrini, Westphal & Lamberts, 2002; Yoon, Lee & Claridge, 

2003; Raftery, Keane & O’Donnell, 2011a, 2011b), as well as methods derived from 

optimization (Reddy, Maor & Panjapornpon, 2007a, 2007b; Coakley et al. 2011) and, more 

recently, bayesian logic (Monari & Strachan, 2017). 

Scene-model reduction (a very active research topic) is of concern for this research because it 

can substantially decrease model complexity. Strategies for reducing the complexity of thermal 

models have been proposed by Kim and Braun (2015) and Deng et al. (2014); criteria for 

measuring the computational load spared at micro-urban-scale by model reductions have been 



proposed by Heidarinejad et al. (2017); residential model reduction has been pursued in De Rosa 

et al. (2019); a combination of model-order and descriptive reductions has been performed by 

Shamsi et al. (2017) and Kim et al. (2014); and the effects of combining model reduction and 

optimization-induced reduction have been pursued by Gouda, Danaher & Underwood (2002). 

System decomposition is an essential component of optimization techniques like Dynamic 

Programming (DP) (Bellman, 1957; Bertsekas, 2017a, 2017b; Radford & Gero, 1988), block-

coordinate descent (BCD) (Tseng, 2001; Bertsekas, 1999), multidisciplinary design optimization 

(MDO) (Cramer et al. 1994; Geyer, 2009), and of the systemic approaches, including systems 

engineering (SE) (Gosling, 1962; Weinberg, 1975; Sage, 1992; Pimmler and Eppinger, 1994; 

Choudhary, Papalambros, & Malkawi, 2005). DP and BCD allow for overlaps between 

subspaces; in MDO, decomposition follows the compartmentalization of knowledge; and SE 

admits various alternative criteria to decomposition, like that of functional system, or “Aspect”, 

linked to the quantification of performances on the basis of the contribution to a certain system’s 

behaviour (Augenbroe, 2019; De Wilde, 2018). MDO and SE intersect in the multimethodology 

approach (Mingers, 1997) and in the multimodel approach (Fishwick and Ziegler, 1992). Within 

the systemic approach, the role of decomposition is particularly central in the contributions by 

Simon, where it is supported by the concept of near-decomposability (1962, 1973). To the 

importance of decomposition in SE, contributes the increasingly prominent role that modelling 

and simulation play in it (INCOSE, 2019, Bachman, 2003, Geyer, et al. 2003). 

 

2. Methodologies 

2.1. The technique of design-space grafting 

The operation of combining a full-scope simplified design-space model and a reduced-scope 

detailed one in a design exploration can be facilitated by the ability to hybridize them in a 

manner suited to make the derived model adequate to surrogate the full-scope detailed one. But 

currently, there is no strategy available for doing this: the hybridization cannot indeed be 



performed simply by inserting the subspaces into the design-space “receiving” the information, 

because the original design-spaces may be shaped in ways that prevent the possibility of 

preserving the integrity of their internal relations in the merging operation. What would indeed 

have to be merged in that situation would be the two design-space models, not just the 

performances of the two scene-models after calibration. The latter operation may be attempted, 

for example, by merging the performances of a few rooms into some whole-building 

performance predictions. 

The problem with the described strategy is that it cannot be performed if the scene-models 

have not been (or cannot be) mutually calibrated; which can easily happen when they are 

complex and/or full of higher-order relations. The responses of a room, indeed, like one of the 

two shown in Fig.3D2 or Fig.6C, can be irreducible to the responses of a system of rooms 

(Fig.3A or Fig.6A). 

The novel possibility introduced by the “grafting” technique is that of making it possible to 

mix design-space models of different scope at the level of their entire range of vector 

components, rather than only at the level of performance predictions. This does not require 

mixing the responses of each room instance produced in a parametric exploration into the 

response of the corresponding building instance, but merging adaptively and in a point-to-point 

fashion the whole range of the performances of the room instances into the whole range of 

performances of the building instances. 

The preliminary operation for merging two design-space models of different scope is to create 

a complete point-to-point correspondence between them. However, when a design-space has a 

smaller scope than another one, its parametric description utilizes fewer parameters, which 

prevents the possibility of hybridization, because that possibility exists only between series 

having the same topology (homotopical). To circumvent that issue, additional “dummy” 

parameters must be added to the smaller-scope design-space. 



The grafting technique in question utilizes as the basis for deriving new vectors the known 

vectors that are going to receive the graft in the “receiving” space from an “auxiliary” design-

space model (“donor” space), and utilizes the known near-neighbouring gradients derived from 

the donor space as the means for deriving the new vectors in the receiving space. The operation 

is performed with the aid of a novel ad-hoc gradient-based metamodelling procedure of the k-

nears neighbour family (here named DWGN: distance-weighted gradient network) suited to 

address combinatorial problems. 

In this framework, the existing vectors in the receiving space constitute the “anchors” from 

which the position of the newly derived vectors is going to be determined, by means of the 

gradients; and the existing vectors in the donor space constitute the information from which the 

gradients are derived. The concurrency involving the vector candidates makes it possible to 

transfer the information regarding the curvatures of the donor space into the receiving space in a 

layered and diffusely-fit manner, biological-like, not surgical-like. 

The new vectors in the receiving space are calculated in the following manner: 

𝑥𝑢𝑖=x𝑘𝑖+x𝑘𝑖 ∗
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where: 

𝑥𝑢𝑖: unknown vector in the receiving space at iteration i; 

𝑥𝑘𝑖: known vector in the receiving space; 

𝑑𝑥𝑘𝑖 ,x𝑢𝑖
: distance between a known and an unknown point in the receiving space; 

1

𝑑𝑥𝑘𝑖
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: weight assigned to the vector: the inverse of its distance; 

GradW𝑥𝑘𝑖
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: gradient in the donor space between a near-neighbour of the known vector in 

the receiving space (𝑥rknn𝑖
) and a near-neighbour of the unknown vector 

(𝑥runn𝑖
), weighted with respect to the distance from the known vector. 

Each gradient is weighted in the following manner: 
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, 

where: 

Gradknn𝑖 ,unn𝑖
, candidate gradient component between a near-neighbour of a known vector in the 

receiving space (knni) and a near neighbour of an unknown vector (unni), at i; 
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: weight attributed on the basis of the inverse of the average distance of the 

vectors from which the gradient is derived from the vector to which it is going to be applied.  

Let us now examine how the technique works in an example viewable in 3D (Fig.1) featuring 

2 independent variables (x, y) and 1 dependent one (z). For simplicity, the boundaries between 

the receiving space and the donor space have here been set up so that they “cut through” a 

hyperplane, while, typically, they are set between hyperplanes. 

Let us suppose that a part of the design-space model shown in Fig. 1A is going to receive the 

graft of the design-space model shown in Fig. 1C. The first step of the grafting procedure is that 

of removing the parts of the receiving model which have to be substituted (Fig. 1B). The second 

is extracting a collection of the gradients from the donor space (Fig. 1D). The third is applying 

those gradients (by distance-weight-averaging them) to the most peripheral vectors of the 

receiving space adjacent to unknown ones, so as to model the additions to the receiving space 

considering the curvatures that are present in both spaces (Fig.1G). Fig. 1E shows the candidate 

vectors created from the gradients along the y axis, and Fig. 1F does that as regards the x axis. If, 

after one procedure cycle, some vectors remain unknown, a new cycle is performed, including 

the newly derived vectors in the receiving space - on and on, until no unknown vectors are left. 



Fig. 1. An example of a procedural sequence for grafting a partial design space model onto another. 

 

2.2. Requirements for the transformation of scene-models 

Constraint propagation can support the capability of CAD programs to generate myriads of 

model instances (Nembrini, Samberger, Labelle, 2014) and of imposing transformation cost as an 

aspect of optimal design (Abdelalim, O'Brien & Shi, 2017), but is not sufficient, by itself alone, 

to guarantee transformability, which depends indeed on the degrees of freedom of a model 

(Daverman, Sher, 2001). A transitional model that is only expected to mutate with regard to the 

length of its edges (Fig.2B), for example, does not have to be different from an ordinary model: 



its mutation can take place in conditions of constant configuration. But whenever a model is 

required to be mutated in its configuration (as regards, for example, the number of its faces or 

edges) it has to be conceived so as to embody redundancy (“degeneracy” - Sussman, 2007) and 

possess all the configurational qualities needed in the subsequent morphing steps, as a sort of 

least common multiple of all the possible model states. Fig.2C is an example of transformation in 

constant configuration. In Fig.2D, a model similar to that in Fig.2B is mutated in variable 

configuration; and in Fig.2E, the same mutation is performed in constant configuration. 

Having conditions of constant configuration in a transformation governed by constraint 

propagation can substantially simplify the transformation itself, compelling it to take place as a 

quantitative-only process rather than a qualitative-and-quantitative one. On the other hand, 

constant configuration reduces the degrees of freedom available to transformation, to the point of 

making transformation impossible beyond certain levels of complexity. 



 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Fig. 2. A. Constraint propagation in conditions of constant volume. B, C) Transformations not requiring 

configurational (topological) changes. D) Transformations in conditions of variable configuration. E. The same 

transformation as in (D), but in constant configuration. In green: redundant vertices aimed to obtain homotopy. In 

red: addition of new vertices. 

 

 

2.3. Problem decomposition as a strategy for reducing search size 

A strategy for bypassing the difficulty of transforming scene-models in variable configuration 

is that of abandoning constant configuration only intermittently, by organizing the explorations 

in cascades, introducing discontinuities, “leaps”, between transformation phases carried out in 

constant configuration. Concentrating transformations is indeed simpler than distributing them 

uniformly; but assuring the condition of constant configuration within the subspaces may require 

charging the scene-models with a content of abstraction (aimed to create the required 

redundancy) higher than that of ordinary models. 



The “cascades” in question can be organized as a succession of subspace searches that: (a) may 

regard different parts of the design-space, (b) may have different resolutions, (c) may have an 

only partially overlapping scope, (d) may pertain to different performance domains, and/or (e) 

can be modelled by means of several alternative decomposition-based approaches, like dynamic 

programming (Bellman, 1957; Bertsekas, 2017a, 2017b; Radford & Gero, 1988) and block-

coordinate descent (Tseng, 2001; Bertsekas, 1999). In building-simulation-supported design, 

however, the strategy of cascading the explorations is disincentivized by the fact that, because 

energy models are usually based on zonal criteria (i.e. thermal zones at homogeneous air 

temperature), many export procedures from parametric modellers to simulation programs 

encourage the assignment of one zone per room (Kim et al. 2015), relying on a point-to-point 

correspondence between architectural objects and thermal models, in a manner that is not 

unrelated to the tendency to overspecifying scene-models in the preliminary design phases (Cole, 

Hale & Edgar, 2013), like in Fig.3A. 



 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Fig. 3. Example of alternative transformation paths. Each thermal zone has been assigned a different colour. The 

surfaces in violet are set to adiabatic. Path A-C: transformation in conditions of constant configuration and high 

resolution. Path B1-B2-C: transformations of increasing resolution and variable configuration. Path B1-B2-D1-D2: 

transformation of increasing resolution, decreasing scope and variable configuration. 

 

 

Simplicity can be a good heuristic indicator of the cognitive and information load related to a 

model; but a reduction of the information load is not always a good thing (Sweller, 1988). For 

example, a reduction of the information load linked to a certain problem may correspond to an 

increase of the cognitive load necessary for understanding the structure of the redefined problem, 

which happens whenever the complexity of a final design scheme is assumed since the early 

exploration phases (Fig.3A). Bringing the structure of a design problem into the foreground 

would require the introduction of additional content of abstraction into the building models and 

the deletion/reduction of many point-to-point correspondences; which in current BIM programs 



would require “intelligent” procedural libraries of the type envisaged by Sacks, Eastman & Lee 

(2004), but oriented to abstraction, rather than specificity. 

An example of a cascaded search scheme of increasing resolution suited to avoid representing 

design problems literally is shown in Fig.3-B1-B2 and B1-D2. The search path B1-C is the 

cascaded equivalent of A-C, entailing increasing modelling resolution and constant scope. The 

strategies in B1-B2-D1-D2 and B1-B2-D2 constitute other cascaded constant-configuration 

alternatives to A, structured along exploration phases of increasing resolution and decreasing 

scope. In B1-B2, a shape representing the whole volume of a building is modified; in D1, only 

one story is taken into account; and in D2, a minimum unit composed of two back-to-back rooms 

is assumed for finer decisions. 

 

2.4 Criteria for knowledge-driven scene-model reduction 

To be suited to support a sequentially-decomposed exploration, a scene-model should focus on 

the most sensitive parameters into play and drop the inessential information. In Fig. 3, the 

reduction from case 6C to 6B1-B2 entails an aggregation of the zones and the co-planar 

windows, partitions, floors and envelope surfaces. In a simulation tool conceived for 

approximated design, those reductions would not entail weakening the correspondences between 

the object and the model; but in a tool conceived for detailed design, they would - and the group 

of instances related to Fig. 3C requires such a tool. This issue stems from the fact that, because in 

a high-resolution program, the definition of building “objects” (floors, partitions, windows...) is 

literal, the objects compounding other objects (like, for example, the openings derived by 

aggregation of other openings in Fig. 3B1 and 3B2) would be interpreted as non-abstract, over-

sized objects; which in turn would generate a distortion of the mutual thermal relations between 

entities, ultimately deriving from the fact that any change in size regards lines, surfaces and 

volumes in accordance to different relations (Thompson, 1917-1942) (respectively, linear, 

quadratic, and cubic: the faces of a cube increase at the square power of an edge, and the volume 



at the cubic power). The “compaction” of smaller objects into larger ones (even more when 

coupled to changes in shape, like in Fig.3B1 and 3B2) alters, indeed, the simulated thermal 

processes in myriads of manners, involving a wide range of phenomena (from stack effect at 

building and/or story level to solar access, from solar gains to radiant processes), hindering 

calibration. 

However, the goal of simplifying a scene-model is not necessarily that of making it as faithful 

as possible to the original: it may also be that of making it specifically appropriate to a certain 

design exploration (which requires a kind of domain knowledge that is still not yet embodied 

into simulation tools), even at the cost of making it less appropriate for other explorations. The 

scene-model in Fig.3B1, for example, is more suited to convey information regarding solar 

access than that in 3B2, because it retains the same width-to-height proportions of the original 

3C1; while the model in 3B2 is more suited to convey information deriving from the stack effect 

at building level, because it retains the original total window height. 

It should also be noted that decomposing problems by reduction is not the only possible 

strategy. Problems can also be decomposed by reformulation, as it happens in Yang et al. (2018), 

aiming to make optimization strategies more attuned with physical representations; or in Welle, 

Rogers & Fischer (2012) targeting the lighting domain. But problems can also be decomposed 

for the pure sake of the search, as in decomposition-based optimization. 

 

2.5 Problem reduction through search 

The way problems are decomposed influences how they can be solved (Gralla, Herrmann & 

Morency, 2019; Brown and Mueller, 2019), but the inflexibility of current scene-models 

discourages designers from decomposing problems preliminarly (Turrin, von Buelow and 

Stouffs, 2011; Ercan and Elias-Ozkan, 2015). Today’s most popular optimization methods – that 

primarily involve metaheuristics, like genetic algorithms (Deb et al. 2002: Yang and 

Bouchlaghem, 2010), particle-swarm optimization (Boudjehem and Boudjehem 2017, Cao et al. 



2017) and simulated annealing (Al-Bazi and Dawood, 2018) - do not indeed require that 

problems are explicitly decomposed (Evins, 2013; Kheiri, 2018). 

Expert knowledge can contribute to the decomposition of problems and their parametrization, 

but in problems which are given a flat, monolithic structure, parametrization and decomposition 

are essentially the same thing. 

Some degrees of flexibility are made possible by the fact that, in building design, a parameter 

can embody various orders of abstraction and complexity and represent a wide range of things, 

from the quality of an object (like a glass thickness) to a performance (like lighting levels), and 

the fact that the meaning of entities can also depend on scale and context (with the consequence, 

for example, that a surface can define a wide range of things, from a window glazing to a city 

boundary layer). But further flexibility should be sought in the search process itself, considering 

that, whatever the assessment approach (intuitive or expert reasoning, automated exploration...), 

when simulation is involved, the search is direct, test-based (Lewis, Torczon & Trosset, 2000). 

For addressing the relations between decomposition and search, reference can be made here to 

the most basic search strategies, breadth-first search and depth-first search, which can be 

represented as tree structures (Winston, 1992). The kind of search which is more suited to a 

preliminary exploration is, notoriously, breadth-first search, which requires that the leaves 

attached to some intermediate nodes are explored, and returns a general view of the model’s 

responses (Fig.4A). 

Depth-first search is less suited to preliminary investigations, because it produces high-

resolution local information by working on a “deep” part of the search tree at a time. It would 

indeed be suited to explore only a fraction of the design-space explorable with a breadth-first 

search for the same number of iterations (Fig.4B). Performing breadth-first search, however, is 

difficult when a “literal”, point-to-point approach to modelling is adopted: if a search is direct, it 

is based on a single scene-model (instance) at a time; and if the description of the object is literal, 

there are no leaves at the intermediate nodes, and in facts at any node: all the leaves are 



peripheral. While what is needed for a breadth-first search are leaves located at the intermediate 

nodes of the search-tree, which are the ones representing families, groups of instances - like in 

Fig.3B1, 3B2 and 3D1. 

Lacking these, a solution to explore a design-space evenly and economically is that of 

sampling a reduced but well-distributed group of instances by varying one parameter at a time in 

a star sampling (Moustapha et al. 2018); which can be a powerful approach (Frey, Engelhardt & 

Greitzer, 2003), but is exposed to the risk of inconstant quality of results, because choosing 

parameter levels appropriately requires expert knowledge (Björklund, 2013; Yu & Honda, 2016). 

 
 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Fig. 4. Three primary types of search. In black: the explored instances. 

 

 

Locating the leaves of the search-tree at the intermediate nodes in a breadth-first search would 

require to represent the instances at such nodes more abstractly than those at the peripheral 

leaves (Fig. 3B1 and 3B2); it would require to define correspondences between the simplified 

representation of a problem and the detailed one, and would return in exchange the possibility to 

structure a search so as to give to it different levels of abstraction/resolution (Fig. 3B1-3C) 

and/or scope (Fig. 3B2-3D1, 3D1-3D2) and widen the possibilities of parametric iteration (Ercan 

& Elias-Ozkan, 2015; Wynn & Eckert, 2017). 

 



2.7. Case study 

In the here presented case study, the outcomes of design-space grafting were compared with 

those of other forms of surrogation, like metamodelling and search decomposition, by putting in 

relation the reduction of the amount of descriptive information made possible by each strategy 

with the increase of approximation caused. 

To that end, a hypothetical case study was set up rather than a concrete one, so as to increase 

the likelihood of obtaining saddle curvatures in the response surfaces and tighten the stress-test 

conditions of the modelling and optimization criteria. The objective of saddle curvatures was 

pursued by positioning a large solar obstruction in the middle of the solar access field of the 

building – an un-specific three-stories-high building composed of uniformly-sized back-to-back 

rooms, suited to represent a wide range of types. 

The design problem was aimed to define the shape and position of the building in its plot so as 

to maximise the free-floating average resultant temperatures in February; while the ultimate 

objective of the inquiry was that of assessing the predictive reliability linked to each exploration 

technique and the returns on investment of the descriptive information involved in each 

exploration “trail”. 

In total, four alternative scene-models were taken into account (Fig.6): 1) the full-scope (whole 

building) detailed (high-resolution) model (Fig.7A), assumed as a reference; 2) a full-scope low-

resolution (single-zone) model (Fig.7B); 3) a reduced-scope (two rooms) and full-resolution (two 

detailed zones) model (Fig.7C); 4) a reduced-scope (two rooms) and low-resolution (one 

simplified zone) model (Fig.7D). 

The reference model could be composed of 1, 2 or 3 stories and, 6, 12 or 18 thermal zones, 

being each story constituted by 6 zones. The transformations between instances took place 

partially in conditions of variable configuration (depending on building height) and partially of 

constant configuration. Constant configuration was instead always maintained in the 

transformations regarding the simplified full-scope model, which was adapted to the changes in 



height by allowing its floors the possibility of assuming infinitesimal dimensions, so as to make 

their thermal influence negligible while avoiding topological modifications. The reduction 

undergone by the simplified model aimed to decrease the number of entities (vertices, surfaces, 

zones) into play. 

The strategies through which the detailed full-scope model was converted into the simplified 

one were based on joining all the co-planar surfaces sharing vertices and edges, and on 

compacting the windows on each facade into an opening of equivalent total area and same total 

height, obtaining a configuration similar to those in Fig. 3B1 and B2. This was done in the 

passage from the distinct windows for each story in the examples in Fig. 6A and 7A to the 

unified windows for the whole height in Fig. 6B and 7B. With the same criteria, the vertical 

partitions extended themselves from top to bottom of the building without touching the envelope, 

and similarly did the floors along the building width and depth. The vertical partitions and the 

walls met without intersecting each other and without exchanging heat by conduction. These 

choices further weakened the thermal correspondence between the detailed models and the 

simplified one (see section 2.1) and strengthened the premises for a lack of calibration between 

them. 

The reduced-scope detailed model (Fig.7C), representing the minimum average building unit, 

was constituted by the central back-to-back zones of the three-stories version of the building, set 

with adiabatic boundary conditions towards the other rooms (like in Fig.3D2). 

The reduced-scope simplified model (Fig.7D) differed from the detailed one in the fact that the 

two rooms were modelled as a unified thermal zone having the interior partition disjoint from the 

other surfaces, in a manner similar to those of the simplified full-scope model. 

The transformation of the number of stories and, therefore, height, of the two full-scope 

models took place in conditions of constant volume, with the consequence that the higher the 

building was, the smaller its floor area (like in Fig.2A). 



The transformations undergone by the full-scope detailed model were the following (Fig.5, 6): 

A) variation in height (3 levels); B) variation of the width-to-depth ratio (3 levels); C) “warping” 

of the building shape (3 levels); D) translation along the East-Wast axis (3 levels); E) translation 

along the North-South axis (3 levels); F) rotation of 180° in steps of 45° (5 levels); G) variation 

of window width (3 levels); H) variation of insulation thickness - from 2 to 22 cm of glasswool 

(3 levels). 

 

Fig. 5. Parameters and parameter levels in the reference design space. 

 

 

The total number of iterations of a full-factorial multilevel search were 10965 for the two full-

scope models (involving 8 parameters) and 3655 for the two reduced-scope ones (involving 7 

parameters). Invariant construction features were: (a) walls: two layers of brick 12cm thick 

enclosing the insulation; (b) roof: gypsum 1.2cm, honeycomb brick 12cm, reinforced concrete 

5cm, glasswool 12cm, air cavity 5cm, aluminium sheets 3mm; (c) ground floors: 6 layers of 

earth 25cm, gravel 10cm, reinforced concrete 10cm, glasswool 10cm, light concrete 7cm; (d) 

partitions: gypsum plaster 1.2cm, honeycomb brick 9cm, gypsum plaster 1.2cm. 

The air-change rate was set to 1 ach, the casual thermal gains were set to 0, and the climate 

data of Milan (45 °N, Italy) were utilized. 

 
 

 

 

 

 

 

 
 

 

 

 

 

 



 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig. 6. View of the four building models involved in the explorations. A) Full-scope detailed; B) full-scope 

simplified; C) reduced-scope detailed; D) reduced-scope simplified. The boundary conditions coloured in violet in 

models C and D (which regard the surfaces shared among zones) are set to adiabatic. 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Fig. 7. Some of the transformations involved in the explorations performed in the trials. A) full-scope detailed 

model; B. full-scope simplified model; C) reduced-scope detailed model; D) reduced-scope simplified model. Each 



thermal zone has been given a colour of its own. The boundary conditions coloured in violet in the reduced-scope 

models C and D (which regard the surfaces shared among zones) are set to adiabatic. 

 

 

2.8. Trial criteria 

The performances of the scene-models have been simulated by the means of a state-of-the-art 

energy simulation tool, ESP-r (Clarke, 2001; Hand, 2018), managing the optimization and 

metamodelling operations with the application Sim::OPT (Brunetti, 2008-2019). 

The performances obtained from a full-factorial search based on the full-scope detailed scene-

model were assumed as a reference, and the predictive reliability of each considered instance 

was calculated in terms of the deviations of objective performance from them. Predictive 

reliability was measured as the normalized average of the predictive performance rankings of the 

12 most performant instances (NPPR) (12 being the size of a 2-parameters subspace). 

Calculating the NPPRs entailed the following steps: 

1) ordering the performances of the surrogate model instances from the highest to the lowest 

by assigning to each a decreasing ranking value, ranksurr𝑖 (where i is the iteration number); 

2) forming a set of the i-indices of the m top-ranked surrogate instances: 

SurrRanks={𝑖𝑚|𝑚 ∈ N,1<m<12}, with m =12; 
3) ordering the performances from the highest to the lowest and assigning to each a decreasing 

ranking value, rankmod𝑖 ; 

4) finding the average of the rankmod𝑖  rankings corresponding to the i-indices contained in 

SurrRanks: 

avgranksurr =
∑ rankmod𝑖𝑖∈SurrRanks

𝑚
; 

5) normalizing the average ranking, avgranksurr, with respect to the top ranking: 

NPPR= 
avgranksurr

𝑛
, where n is the total number of instances (10965 in the full-scope model and 

3655 in the reduced-scope one). 

The procedural trails could vary as regards scene-model type (detailed or simplified, full-scope 

or reduced-scope), metamodelling strategy (absent or present, and aimed at the whole design-

space or at the subspaces) and the search strategy (which could utilize some alternative block-

coordinate descent schemes). The amount of descriptive information in each procedural trail was 



measured as that contained in the description of a scene-model times the number of samples 

(simulations): 

I=∑Im𝑖 ∗ ns ,                                                                                                                   (1) 

where: 

Im𝑖: amount of descriptive information embodied in a scene-model at iteration i. 

ns = number of sampled instances. 

The criteria for measuring the descriptive information were kept extremely cautious, 

hypothesizing that an addition of one vertex, one surface, one connection, or one zone produced 

the same information increase. 

The criterion adopted to calculate the amount of information embodied in a scene-model was 

the following: 

Im𝑖 = ∑𝑣𝑖 +∑𝑧𝑖 +∑𝑠𝑖 ,                                                                                                     (2) 

where: 

Im𝑖: amount of information in the scene-model at i; 

 number of vertices; 

 number of zones; 

 number of surfaces. 

In the cases in which the scene-model transformations did not take place in conditions of 

constant configuration, the average amount of information embodied in the model along the 

transitional steps was taken into account (Table 1, Fig. 11). 

 



Table 1. Size of the descriptive information calculated for the scene-models 

 1A. 

full-scope 

detailed, 

1-story 

1B. 

full-scope 

detailed, 

2-stories 

1 C. 

full-scope 

detailed, 

3-stories 

2. 

full-scope 

simplified 

3. 

reduced-scope 

detailed 

4. 

reduced-scope 

simplified 

vertices 94 188 282 46 26 22 

surfaces 46 92 138 20 14 10 

connections 46 92 138 20 14 10 

zones 6 12 18 1 2 1 

Total 204 408 612 87 56 43 

 

 

The comparisons between the outcomes of the procedural trails were based on (a) the NPPRs 

and (b) an indicator of exploration efficiency constituted by the normalized return on investment 

in descriptive information in terms of predictive reliability (ROIIPR), calculated on the basis of 

the NPPRs, then normalized against the optimal results of the full-scope simplified model: 

ROIIPR𝑖 =
roiipr𝑖

roiiprmaxFSS

, 

where: 

roiipr𝑖 =
NPPR𝑖

𝐼
: non-normalized return on investment in information at i; 

I: amount of descriptive information in the search-trail; 

NPPR𝑖 normalized predictive performance ranking of instance i; 

roiiprmaxFSS: maximum non-normalized ROIIPR recorded in the design-space of the full-scope 

simplified model. 

Finally, the rates of change of the ROIIPRs from one step of the procedural trail to another 

were calculated. 

The described grafting procedure can be utilized without any addition when the sampling of 

the design spaces is complete. But when it is incomplete, it must be preceded by a 

metamodelling phase, to determine the performances of the unsampled vectors. And because the 

present trials were aimed to exploit descriptive information efficiently, the sampling was set to 

be partial, and a metamodelling phase was scheduled. 

Several candidate metamodelling procedures were considered for performing the 

metamodelling task (Fig.8). The choice fell on the same distance-weighted gradient-based 

procedure (DWGN) already utilized for the grafting operations, combined with an ad-hoc 



sampling strategy based on clouds of star samplings distributed semi-stochastically (Brunetti, 

2019; Brunetti, 2018-2019). The predictive reliabilities of the considered metamodelling 

procedures showed a range of variation much smaller than that deriving from the procedures 

utilizing grafting and procedures not utilizing it. In any case, the chosen metamodelling 

procedure produced the highest predictive rankings and could be integrated with block-

coordinate descent optimization. 

 

 

 

 

 

 

 

 
 

 

 

 

Fig. 8. Normalized predictive performance rankings (NPPR) of the candidate metamodelling procedures. Legend. A) 

reference (full-factorial); B) polynomial, 1st order; C) polynomial, 2nd order; D) polynomial, 3rd order (failed); E) 

kriging; F) MARS; G) ANN; H) DWGN. 

 

 

The grafting technique was tested by grafting some subspaces of the full-scope simplified 

metamodel into the subspaces of a reduced-scope one. The operation was performed 

conformingly to the procedure presented in section 2.1, and in constant design-space-model 

configuration. This was obtained by assigning to the reduced-scope metamodel the dummy 

parameter “height” (set to 3 stories), and, optionally, by substituting the vectors deriving from 

“warping” and/or “rotation” with dummy ones; which in turn was obtained by stripping away 

from them the performances not pertaining their central levels (chosen, respectively, as 0° and 

“South”) (Fig. 9B). 

The settings entailed that one of the two reduced-scope design-space models (detailed or 

simplified) was assumed as the “backbone” to which the simplified full-scope model contributed 

the gradients for deriving the new points. The reason why the full-scope model was here chosen 

as a donor and the reduced-scope one was chosen as a receiver is that the vectors contained in 

the reduced-scope space were a subset of those contained in the full-scope one. But in situations 



in which the overlap between the two design-spaces is partial, and no design-space is completely 

contained in another, the donor/receiver choice depends on the aims of the analyses and the 

features of the design spaces. A typical situation is that a reduced-scope donor space contributes 

information derived from specialized analyses to the receiver. In this case, if both the receiving 

and the donor space have been populated from the start with all the vectors, importing the 

information from the donor space into the receiving one would require progressively applying 

the donor-space gradients to the known vectors in the receiving space. But when, like in the case 

in question, the vectors in the two spaces have been only partially sampled, the missing 

information has to be filled in by metamodelling, before the grafting operations. Here, this has 

been done utilizing DWGN metamodelling procedure, which is based on the same gradient-

based technique of the grafting procedure, and additionally entails that each unknown vector is 

derived by distance-weighting all the available concurrent candidate coordinates (Brunetti, 

2019). 

The choice of “height”, “warping angle” and “rotation” as parameters to be grafted was made 

because the reduced-scope models (Fig.7C and 7D) could not take into account variations in 

height and were at risk of producing inadequate responses when modelling warping and rotation, 

due to the proportions of their shape and to the adiabatic conditions of many of their boundaries. 

 
 
Fig. 9. Some of the grafting tactics utilized in the case study. A) Grafting by substitution of the design subspaces 

regarding the “height” and “rotation” of a full-scope design space model onto a reduced-scope one; B) the same as 

A, but as regards the parameters “height”, “warping angle” and “rotation”. 

 

 

The outcomes of the information reduction made possible by grafting have then been 

compared with the outcomes of combining scene-model reduction and metamodelling with 

overlapping block-coordinate descent (BCD), considering the suitability of BCD to model 

cascaded searches. The following search strategies have been tried: 

a) a strategy not entailing metamodelling, but performing the descents directly on the design-

space models (Fig. 10A1-A3); 



b) a strategy sampling the whole extension of the design-space, creating a whole-space 

metamodel upfront from that sample, then dividing it into subspaces, and finally performing the 

descents on those subspaces of metamodel (Fig. 10B2); 

c) the strategy of subspace metamodelling: subdividing the design-space into subspaces, then 

sampling, metamodelling and searching each subspace sequentially on the basis of the results of 

the previous search (Fig. 10C1-C2). This strategy limits the size of metamodels and reduces both 

the computational load of the metamodelling operations and the error they produce. Other 

advantages of this strategy are that, everything else being equal, it requires fewer samples than 

the one entailing the creation of a whole-space metamodel followed by the subdivision into 

subspaces (Fig.10B2), and is computationally lighter, due to the smaller size of the metamodels. 

 

Fig. 10. Schemes of the block-coordinate searches taken into account. A1) descent on overlapping subspaces of 

model; B1) descent on subspaces of model; C1) descent on tiny subspaces of model; B2) descent on subspaces of 

metamodel; A3) descent on overlapping metamodels of subspaces; B3) descent on metamodels of subspaces. 

 

 



 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Fig. 11. 1) Amount of information relative to the search sizes; 2) amount of information in the scene models; 3) 
amount of information relative to the procedural trails. The letters and numbers assigned to each case are the same 

as Fig. 9.  Legend: DM; detailed model; SM: simplified model. Cases: A) DM; B) DMm; C) SM; D) SMm; E) C1, 

from DM;  F) A1, from DM; G) A3, from DM; H) B1, from DM; I B2, from DM; J) B3, from DM; K) C1, from 

SM; L) A1, from SM; M) A3, from SM; N) B1, from SM; O) B2, from SM; P) B3, from SM. 

 

 



To reduce the role of chance in the choice of the parameter sequences (Fig.10), the exploration 

strategies in question were tested by averaging the results derived from utilizing 5 different 

sequences of parameter numbers cast randomly - the same for each case. That this was due, can 

be seen in Fig.15, which shows the diversity of outcomes deriving from 4 different stochastic 

samples. 

 

3. Results 

The main information that emerged from the trials is that grafting a part of a full-scope 

simplified design-space metamodel onto a reduced-scope metamodel produced in all cases 

impressive returns on investment of information (ROIIPRs) (Fig.12-2), substantially higher than 

the highest ones obtained without grafting (Fig.13-2) and greater the greater was the reduction 

level of the receiving design-space. But it also emerged that when both the donor space and the 

receiving one were low-resolution, grafting could produce low predictive reliability (NPPR). 

Indeed, when the full-scope detailed model was the donor, the NPPRs fell from about 90% to 

about 80% after exchanging the reduced-scope detailed metamodel for the reduced-scope 

simplified one (Fig.12E-H versus Fig.12M-P) as a receiving space. However, when the full-

scope simplified model was the donor, the difference between receivers did not emerge (Fig.12I-

L versus Fig.12O-T): the donor did not strongly influence predictive reliability if the receiver 

was not high-quality. 

As regards the relation between the quantity of grafted subspaces and predictive performances, 

the more was not always the better. The improvements in the NPPRs and ROIIPRs did not 

indeed occur monotonically. The NPPR of both possible receivers were substantially higher 

when the donor was the detailed full-scope metamodel rather than the simplified one; and their 

returns peaked with the graft of “height” plus “warping angle” (Fig. 12J, 12L), but decreased 

when “rotation” was donated. Enlarging the number of donated parameters beyond 2 produced 

no benefit (Fig.12K-L versus 12J, 12S-T versus 12R). 



At a general level, the trials showed that the amount of information utilized to describe an 

exploration can be reduced efficiently by distributing it among procedural levels: scene-model, 

design-space and search. 

Scene-model reduction was a major component of the grafting technique; but by itself, it 

produced non-impressive returns (ROIIPRs) (Fig.13-2), due to low predictive reliability 

(NPPRs) (Fig.13-1). On the other hand, it turned out to be a robust strategy, combinable with 

metamodelling and decomposition without altering the rates of change of the ROIIPRs: a clue of 

its suitability to support design decisions based on relative rather than absolute considerations 

(Fig. 14-2). 

Metamodelling produced a significant increase in the returns (Fig.13-2) and showed to be 

useful both in combination with the detailed scene-models and with the simplified ones, and both 

in subspace searches performed on full-scope metamodels and on reduced-scope ones: the 

information reductions obtained were huge, more than one hundredfold. And the block-searches 

showed that high returns could also be obtained from search structures characterized by small 

subspaces sharing small or no overlaps (Fig.10A2, Fig.13-2). 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 



 

 

 

 

Fig. 12. 1) NPPRs of the top performing instances deriving from the full-factorial search “trails” (A-D) and from 

grafting the parameters “height” (“H”), “warping angle” (“W”) and “rotation” (“R”) of the full-scope detailed 

metamodel (FDMm: B) or of the simplified metamodel (FSMm: D) into the reduced-scope detailed metamodel 

(RDMm) or into the simplified metamodel (RSMm). 2) ROIIPRs. Cases: A) FDM; B) FDMm; C) FSM; D) FSMm; 

E) graft of “H” of FDMm in RDMm; F) “H” and “W” of FDMm in RDMm; G) “H” and “R” of FDMm in RDMm; 
H) “H”, “W” and “R” of FDMm in RDMm; I) “H” of FDMm in RDMm; J) “H” and “W” of FDMm in RDMm; K) 

“H” and “R” of FDMm in RDMm; L) “H”, “W” and “R” of of FDMm in RDMm; M) “H” of FSMm in RDMm; N) 

“H” and “W” of FSMm in RDMm; O) “H” and “R” of FSMm in RDMm; P) “H”, “W” and “R” of FSMm in 

RDMm; Q) “H” of FSMm in RDMm; R) “H” and W of FSMm in RDMm; S) “H” and “R” of FSMm in RDMm; T) 

“H”, “W” and “R” of FSMm in RDMm. 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 13. 1) NPPRs of the 12 top performing instances deriving from the full-factorial search trails (A-D) and from 

the instances involving block search. 2) ROIIPRs deriving from the same strategies. The letters and numbers 

assigned to the each case are the same as Fig. 9.  Legend: detailed model: DM; simplified model: SM. Cases: A) 

DM; B) DMm; C) SM; D) SMm; E) C1, from DM;  F) A1, from DM; G) A3, from DM; H) B1, from DM; I B2, 

from DM; J) B3, from DM; K) C1, from SM; L) A1, from SM; M) A3, from SM; N) B1, from SM; O) B2, from 

SM; P) B3, from SM. 

 

 
 

 

 



 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
Fig. 14. 1) Paired comparisons of the rates of change of the NPPRs from the full-factorial search “trails” (A-D) to 

the “trails” involving block search. The left column of each pair derives from the ratio between two full-scope 

detailed models and the right column of each pair derives from the ratio between two full-scope simplified models. 

The letters and numbers assigned to the each case are the same as Fig. 9. 2) Analogue pair comparisons of the rates 

of change of the ROIIPRs. Legend: full-factorial: FF; detailed model: DM;  simplified model: SM. Cases: A) FFDM 

/ FFDMm; B) FFSM / FFSMm; C) FFDM / A1 from DM; D) FFSM / A1 from SM; E) A1 from DM / A3 from DM; 

F) A1 from SM / A3 from SM; G) FFDM / C1 from DM; H) FFSM / C1 from SM, I) FFDM / A1from DM; J) FFSM 

/ A1from SM; K) A1 from DM / A3 from DM; L) A1 from SM / A3 from SM; M) FFDM/ A3 from DM; N) FFDM/ 

A3 from DM; O) FFDM / B2 from DM; P) FFSM / B2 from SM; Q) FFDM / B3 on DM; R) FFSM / B3 from SM. 

 

 

 

 



4. Discussion 

4.1 Scene-model reduction 

The fact that scene-model reduction, which is a premise of design-space grafting, is well-suited 

to be combined with the other reduction strategies without distorting the curvatures of design-

spaces can be verified in the rates of change of the returns on investment of information 

(ROIIPRs) between procedural “nodes” along the search-trails involving scene-model reduction: 

in Fig.14-2, it can be seen that the rates of change of the ROIIPRs derived from the full-scope 

detailed models (left columns of each pair) and those derived from the simplified ones (right 

columns) never diverged substantially, despite strong divergences in predictive reliability 

(NPPR) between search-trails (14-1). This suggests that scene-model reduction can be 

confidently utilized for taking design decisions on the basis of relative considerations, 

comparisons. Similar rates of change of the ROIIPR between different search structures are 

shared by scene-models of different resolution – like, indeed, the full-scope detailed model in 

Fig. 7A and the full-scope simplified model in Fig. 7B. 

 

4.2 Grafting 

Subspace grafting produced important information reductions, but increasing the quantity of 

surrogation embodied in it beyond certain levels deteriorated the NPPRs: indeed, while the 

ROIIPRs derived from performing grafting on the reduced-scope simplified metamodel (Fig. 12-

2, M-T) were on average higher than those derived from the detailed model (Fig.12-2, E-L), the 

NPPRs were substantially lower (see Fig.12-1, M-T versus Fig.12-1, E-L). The decrease in the 

ROIIPRs obtainable by overlaying surrogation over surrogation emerged also in the lack of 

substantial differences in NPPRs between the reduced-scope detailed metamodel and the 

simplified one when the graft donor was the full-scope simplified metamodel: the implication is 

that the firmer is the ground onto which a graft is implanted, the better the predictions. 



 The predictive performance reduction deriving from injecting and excessive amount of 

surrogation into grafting may have been favoured by two circumstances: (a) the NPPRs of the 

design-space models from which the metamodels of the receiving spaces were modelled were 

substantially lower than those of the full-scope models; (b) not all the donated parameters had 

the same level of usefulness performance-wise: “warping” had a higher return on investment 

than “rotation”, because it was structured in fewer parameter levels, and therefore entailed 

smaller sampling costs. Moreover, the quality of the predictions produced by the reduced-scope 

scene-models regarding rotation were already satisfactory in the first place, due to to the 

adiabatic boundaries; and also, the fact that the average shapes of the donor scene-models were 

fairly compact did not contribute to differentiating the performances in relation to orientation. 

In any case, a substantial part of the grafting experiments attained a high level of predictive 

reliability, despite the fact that many combinations of solutions had not been tried. This is no 

proof, but it shows that the grafting technique can be up to the task of making it possible to 

merge design solutions at the level of design-space models rather than at that of performances, so 

as to make the mutual alignment of design-space models unnecessary at the root. 

As regards the predictive reliability that may be demanded in a design exploration: because 

predictive reliability is usually a requirement, the NPPR could be set as a threshold. And along 

the same line, because the returns on investment of information are likely to be an objective, 

ROIIPRs could be interpreted as a continuum with no threshold, such that the lower, the better. 

An appropriate procedural strategy could be, therefore, picking the search trail producing the 

highest ROIIPRs among those having an NPPR above the threshold. In the case in question, if 

the NPPR threshold had been set to 0.9 (90%), the most advantageous choice would have been 

that of case F in Fig.12 (entailing grafting “height” and “width” of the full-scope detailed model 

–Fig.6A- into the reduced-scope detailed model –Fig.7C), which shares the same level of returns 

on investment as 12N (same donor and donation, and the reduced-scope detailed model as 



receiver: Fig.7D), but has a substantially lower predictive reliability. In that case, also the highest 

ROIIPRs coincide with low levels of NPPR (Fig.12J, 12R). 

 

4.3 Combining decomposition and metamodelling 

The trials also showed the advantages of combining scene-model reduction, design-space 

metamodelling and search-path reduction-by-optimization. Most of the search-trails taken into 

account, with the exception of those entailing decompositions in tiny subspaces (Fig.13D, 13K) 

or metamodelling reduced-scope simplified scene-models (Fig.13O, 13P) produced high NPPRs, 

well above 80%. This suggests that optimization (here, decomposition-based optimization) can 

be used both as an alternative to metamodelling and in combination with it to pursue information 

reduction. An increase in the ROIIPRS at the cost of a slight decrease of the NPPRs was indeed 

obtained both when decomposition-based optimization was used by itself (Fig.13E, 13F, 13H), 

and when it was used to “seed” metamodelling (from 13E to 13P). 

Metamodelling the whole design-space upfront, and then searching into its subspaces was 

shown to be advantageous for producing information both about the optimal solutions and about 

the design-space shape; while metamodelling the subspaces turned out to be more efficient as 

regards optimization, but less suited to produce knowledge about the design-space shape. This 

can be seen in Fig.16: the results of the search-trail in the former case converged towards the 

reference since the first search cycle, while in the latter, they did only at the second (and last) 

cycle. The overall predictive reliability derived from a block-search on subspace metamodels can 

indeed be lower than a block-search on a whole-space metamodel (Fig.13-1O, 13-1P) even when 

the ROIIPRs are higher (Fig.13-2O, 13-2P): in the former case, the transmission of information 

between subspaces is the only operation in which some of the curvatures into play between the 

borders dividing the active and the inactive parts of each subspace can bring their influence onto 

the search (Fig.17). 



Basing a search on subspace metamodels produced the advantage of reducing the relevance of 

the errors introduced by the metamodelling operations (because it made the metamodels smaller) 

and lowered the computational investment. But it also left the task of preserving the relations 

between the different metamodelled design-space zones to the transmission of information taking 

place within the cascaded search process. By sampling and metamodelling the subspaces one by 

one, the curvatures existing between the performance of instances located in different subspaces 

get indeed lost, but they re-emerge as outcomes of the transmission of information taking place 

in the search at the overlaps (or shared instance) between subspaces. 

As always, subdividing a space in block-descent requires balancing the differences between 

subspaces (assuring search efficiency – like in Fig.10C1-13E) and the commonalities between 

them (assuring the transmission of information from a subspace search to the next, like in the 

cases Fig.10A1-13F and Fig.10A3-13G) (Brunetti, 2016). The fact that the predictive reliability 

deriving from subspace metamodelling was here satisfactory also with no overlaps (like in 

Fig.10B3-13J) took place in the context of the fact that block-search on subspace metamodels 

settles optimally only the curvatures of the last-searched subspace, not those of the earlier-

searched ones. The strategy of “cascading” a search on the basis of subspace metamodels is 

indeed only suited to metamodel the space of the optimal and near-optimal instances, and not the 

whole design-space, because the results of the explorations based on subspace metamodels are 

quality-skewed towards the optimal solutions. The reason why block search on subspace 

metamodels works is, therefore, that, even when the curvatures between subspaces are not well 

detected in the absence of overlaps, the subspace searches are “launched” towards the “right”, 

hopefully-optimal directions because each subspace search takes place on the basis of the 

optimal solution of the previous one (Fig.16). In other words, the reason is not that the procedure 

adds the missing curvatures to the design-space model, but that it lets the subspace searches be 

“cast” in the directions of those curvatures. 

 

 



 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Fig. 15. Example of outcomes of the block-coordinate descent based on partial metamodels, of the type shown in 
Fig. 13I, focusing on the consequences of stochastic sampling. Continuous line: the reference data series, ordered by 

performance (resultant temperatures, °C). In 4 colours: the instances of 4 block coordinate descents which have been 

averaged for returning the value shown in Fig. 11I. The temperature scale has here been inverted to make the 

maximization problem look like a minimization one, and the best performances have been plotted towards the right 

and bottom of the graph. The graph must therefore be read from left to right: the rightmost datum is the search 

outcome. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 16. Example comparing the resultant temperatures collected in a block-coordinate descent based on 2 non-

overlapping subspaces of 4 variables when performed on the multi-zone metamodel (case Fig. 10B2) and on 

subspace metamodels (case Fig. 10B3). The outcomes of the first search cycle are shown in clear colour, and those 

of the second search cycle are shown in dark colour. The plot follows the same criteria as Fig. 15. 

 

 

4.4 Cascading the search phases 

The trials have also shown that: (a) both the strategies involving operations on scene-models 

and those involving operations on design-space models can benefit from the fact that the 

transformations take place in conditions of constant configuration; (b) a combination of constant 



and variable configuration is the premise for utilizing grafting and cascaded search 

synergistically. Decomposition-based search benefits indeed from the fact that the topological 

transformations relative to the scene-model domain are concentrated between constant-

configuration search phases; and subspace grafting makes it possible to unify the involved scene-

models under a constant configuration obtained at design-space model level. This, in turn, opens 

up the possibility of combining decomposition-based search and grafting of design-space models 

of different scope or resolution, so as to make diversity between scene-models at different search 

states possible even without resorting to scene-model transformations in variable configuration. 

This means that, while, for example, limiting the reduction strategies to scene-models domain 

would make it possible to base a cascaded search on a full-scope simplified model (like that in 

Fig. 6B) and then on a full-scope detailed model (like that in Fig .6A), extending the reduction 

strategies to the design-space domain through grafting would make possible to chain a search-

phase based on a full-scope (detailed or simplified) model (Fig.6B) with one based on a reduced-

scope one (like those in Fig.6C and 6D), provided that the models have been represented with 

the same parameter structure. 

By subdividing the search into discrete blocks, sequential decomposition makes it possible that 

not only transformations regarding the search path can take place between search phases, but 

also transformations regarding the scene models, involving increases and reductions of scope. 

This strategy requires performing transformations in constant configuration within the subspaces 

and frees the search from the necessity of a configurational correspondence between the two 

“ends” (start and arrival) of a configurational “leap”, transformation. 

 

4.5 Multidomain inquiries 

All the here presented trials were limited to the thermal domain, but the approach in question 

could also allow for multidomain analyses. The condition required for that would be the 

existence of multi-domain performance context shared by all the models. In an operation aimed 



to grafting a “specialized” design-space model (involving, for example, high-resolution 

simulations regarding some specific performance domain – solar radiative, lighting, acoustic...) 

into an all-purpose, generic model, this would also require creating in the generic model some 

“handles” of performance information relative to the specific domain, at least as regards one 

parameter combination. That information would be necessary for “anchoring” the donated 

information into the generic model via the donated gradients. In other words, the exploration 

would require the availability of a complete range of the performance information for each 

model: all models should be sampled, at least partially, as regards their multidomain 

performances, because the grafting operations require the existence of point-to-point 

correspondences on the side of design-space models. 

 

5. Conclusions 

This paper presents a novel approach to graft a design-space model onto another of different 

scope and/or resolution. At its core, the operation making this possible is a progressive point-to-

point adaptation relaxing the mutual calibration requirements concerning different scene-models. 

The approach can constitute an alternative or a complement (depending on how it is used) to that 

of undertaking a preliminary analysis on a high-resolution model to select a reduced number of 

design parameters onto which to perform a full-factorial multilevel analysis. The here presented 

approach, thanks to its ability to take into account simultaneous variations of non-reduced sets of 

parameters, makes it possible to produce design landscapes of a completeness that is difficult to 

obtain otherwise at the same computational expense; and the features of the specific 

metamodelling method on which it is based (the distance-weighted gradient-network) entail that 

the procedure does not necessarily need automation beyond that included in its implementation. 

The main automation task would remain, indeed, in any case, that of managing the detailed 

scene-model transformations - which the procedure lightens substantially, in number and 

complexity; to the point of making the strategy of re-using the samples produced in hand-driven 



explorations or in sensitivity analyses often sufficient for fully populating a design landscape. 

The metamodelling-and-grafting procedure and variance-based sensitivity analyses are affine to 

different sampling strategies (the former “prefers” strikes of contiguous vectors, the latter Latin 

hypercube samplings), but sampling strategies satisfying the requirements of both can be 

arranged: for example, “clouds” of star samplings, or hypercube samplings based on pairs of 

adjacent vectors rather than on isolated vectors. 

At the most general level, the here presented trials showed that the grafting technique can 

produce levels of design-space-model reduction of order comparable with that obtainable from 

subspace metamodelling by sequential decomposition, and have also highlighted the mutual 

combinability of the alternative forms of design-space-model reduction taken into account 

(metamodelling and decomposition), as well as their combinability with scene-model reduction. 

By simplifying the task of aligning models of different scope and/or resolution, design-space 

grafting can increase the efficiency of design-space explorations and opens up the possibility of 

inspecting a design space on the basis of loosely related models in a manner that is leaner – and 

also, potentially, more flexible and nuanced – than the alternative one, based on the mutual 

calibration of models. A great deal remains to be assessed as regards the conditions of integration 

of the grafting technique in the broadest context, its conditions of applicability, and the level of 

uncertainty related to the grafting operations; but the present results suggest that a savvy 

combination of the technique with other information reduction strategies could ultimately make 

possible (computational costs being equal) to explore wider design spaces, or to utilize higher-

resolution simulations. 

Striking similarities exist between decomposition-based subspace metamodelling and the 

subspace grafting technique, which indeed do very much the same thing: they manipulate – fill, 

extend, substitute, merge – design subspaces. Only, in decomposition-based search, the 

boundaries between subspaces are drawn on the basis of procedural time (iterations), while in 



subspace grafting they are drawn on the basis of configurational considerations regarding the 

design-space. But these are only distinctions deriving from how we represent things. 

Subspace grafting, metamodelling, scene-model reduction and search decomposition have in 

common that they all surrogate something: a simplified scene-model surrogates a non-simplified 

one; a decomposition-based search surrogates a full-factorial multi-level one; a metamodel 

surrogates the reference design-space, the original, true, “perfect” one; and the graft of a design-

space model surrogates a part of another design-space model, blurring even the distinction 

between scene-model and design-space model. The ultimate consideration that can be extracted 

from this situation is that there is no dividing line between the treatment of descriptive 

information taking place within the contexts of scene-models, design-space models, and 

information flows related to search, and that, therefore, that information could be managed 

interchangeably for reducing the overall computational loads entailed by simulations. In this 

perspective, the different possible levels of problem attack could be seen as components of the 

procedural trail aimed at the search, and could therefore be treated as constituent parts of the 

search. 
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