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CCS CONCEPTS
• Hardware→ High-level and register-transfer level synthe-
sis; Emerging languages and compilers.
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INTRODUCTION
High-Level Synthesis (HLS) tools automatically translate code from
a general-purpose programming language (typically C or C++) into
a hardware description language (HDL) such as Verilog or VHDL,
significantly reducing the hardware design productivity gap. HLS
benefits from the same compiler optimizations that identify instruc-
tion, memory, and data parallelism for general-purpose processors.
However, they also need to consider specific needs of low-level
circuit design, such as the notion of time, synchronous and asyn-
chronous logic, and wiring delays. Because of the mismatch be-
tween hardware abstractions and general-purpose programming
languages, HLS tools often require the addition of pragma directives
in the input code to guide hardware generation.

In this work we propose to apply high-level optimizations before
HLS, leveraging dedicated abstractions and without relying on tool-
specific annotations. As a case study, we implement a high-level
loop pipelining pass exploiting the Multi-Level Intermediate Repre-
sentation (MLIR) framework [3], a recent contribution to the LLVM
project that enables and encourages the implementation of reusable
compiler infrastructures. Loop pipelining overlaps iterations with
the aim of parallelizing as many operations as possible; the ideal
target is obtaining a loop where a new iteration can start executing
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every clock cycle. With our approach (inspired by classic software
pipelining [2]), there is no need to interfere with the low-level hard-
ware generation steps, and we can take advantage of loop-specific
constructs provided by MLIR dialects. Moreover, our design flow
generates portable pre-optimized code that is not restricted to a
specific HLS tool. The experimental evaluation confirms that our
loop pipelining implementation improves the performance of the
generated accelerators.

PROPOSED APPROACH
We leverage high-level code optimizations to provide a transformed
input description to HLS, without binding it to the requirements of a
specific HLS tool (most notably pragma annotations). The proposed
solution is an alternative to delegating transformations to the HLS
tool itself: for example, Vitis HLS lets users trigger optimizations
in the backend through pragmas in the input C code. Applying
transformations on a specialized, higher-level abstraction increases
flexibility, and portability, and requires less time than implementing
and exploring different techniques within the HLS tool (when this
is possible, as most HLS tools are closed-source). Moreover, MLIR
is built to allow integration and reuse between different optimiza-
tions: this means that loop pipelining may be combined with other
techniques to generate more efficient hardware accelerators.

We implemented two custom MLIR passes to pipeline affine
loops: the first one extracts a data flow graph from the MLIR loop
body, and the second one generates the pipelined loop code accord-
ing to the schedule produced by an external scheduler, HatSchet.
Existing affine constructs significantly simplify the implementa-
tion, confirming that the MLIR dialect-based approach provides a
convenient framework for the introduction of new optimizations.
For example, loop pipelining requires the loop to pass results from

Figure 1: Overview of the proposed optimization flow.
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(a) Latency on double precision floating-point, mini dataset. (b) Latency on integer, medium dataset. (c) Resource consumption overhead and
performance improvement.

Figure 2: PolyBench kernels synthesized with Bambu (pipelined at the MLIR level) and Vitis HLS (pipelined in the backend).

Table 1: Gemm accelerators generated from LLVM IR.

Version Tool Cycles Slices Speedup
double, mini Bambu 82 362 1303 1.91x
double, mini Vitis HLS 206 821 1119 1.29x
int, medium Bambu 21 160 402 506 2.01x
int, medium Vitis HLS 31 764 201 322 2.34x

Table 2: Affine optimizations on gemm (double, mini).

Optimizations Cycles Slices Speedup
none 157 122 724 baseline
loop pipelining 82 362 1303 1.91x
loop permutation + pipelining 81 182 1306 1.93x
loop unrolling + pipelining 17 642 8075 8.91x

one iteration to the next one, and this is usually solved in hard-
ware by using dedicated registers: in MLIR, we can use affine yield
operations and iteration arguments.

If one of the loop bounds is a variable, we introduce a check at
runtime to assess whether there are enough iterations to execute
the new loop safely (at least the iterations started in the prologue,
plus one), falling back on the original loop if this is not the case.
This causes additional area overhead in the generated accelerator
but no degradation in performance.

EXPERIMENTAL RESULTS
We perform a set of experiments on the PolyBench benchmark suite
to validate the effectiveness and portability of our approach using
Vitis HLS and Bambu [1]. Figures 2a-b show that loop pipelining
provides a significant reduction in clock cycles, as expected, both
when it is applied within the HLS tool and when it is implemented
as a high-level MLIR optimization.

Pipelining loops increases resource consumption; however, in
most cases the area overhead is adequately compensated by the re-
duction in the number of clock cycles. Figure 2c visualizes this trend
by plotting the performance increase with respect to the overhead
in slices utilization in the experiments with Bambu and MLIR-based
loop pipelining (labeled points are outliers due to multiple loops in
the code or variable loop bounds).

We also synthesized the generated LLVM IRs through Vitis HLS,
setting up a compilation flow that bypasses the standard frontend to
feed LLVM IR directly to the closed-source backend (Table 1). The
introduction of loop pipelining as an MLIR high-level optimization
positively affects accelerator performance also through the Vitis
HLS backend. The compilation flow is more experimental than the
one through Bambu, as Vitis HLS is optimized primarily for anno-
tated C/C++ code; nevertheless, these results provide motivation
to further explore synthesis-oriented transformations in MLIR that
can benefit multiple HLS backends.

Finally, the introduction of loop pipelining as a high-level affine
pass allows to combine it with other affine passes in MLIR. Table
2 shows that, for example, the Bambu backend benefits from an
increase in the number of iterations in the pipelined loop, which
can be obtained through loop permutation: this reduces the number
of cycles with a minimal increase in resource utilization. Increasing
the size of the loop body through unrolling, instead, results in an
even faster design at the cost of significant area consumption.

These experiments open the way to further explore the intro-
duction of new optimization techniques that can benefit HLS when
they are applied at a higher level of abstraction than existing so-
lutions. Code for our implementation is available at https://gitlab.
pnnl.gov/sodalite/soda-opt/-/tree/experimental/loop_pipelining.
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