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In many classical and quantum systems described by an effective non-Hermitian Hamiltonian, spec-
tral phase transitions, from an entirely real energy spectrum to a complex spectrum, can be observed
as a non-Hermitian parameter in the system is increased above a critical value. A paradigmatic ex-
ample is provided by systems possessing parity-time (PT ) symmetry, where the energy spectrum
remains entirely real in the unbroken PT phase while a transition to complex energies is observed in
the unbroken PT phase. Such spectral phase transitions are universally sharp. However, when the
system is slowly and periodically cycled, the phase transition can become smooth, i.e. imperfect,
owing to the complex Berry phase associated to the cyclic adiabatic evolution of the system. This
remarkable phenomenon is illustrated by considering the spectral phase transition of the Wannier-
Stark ladders in a PT -symmetric class of two-band non-Hermitian lattices subjected to an external
dc field, unraveling that a non-vanishing imaginary part of the Zak phase - the Berry phase picked up
by a Bloch eigenstate evolving across the entire Brillouin zone- is responsible for imperfect spectral
phase transitions.

I. INTRODUCTION

The geometric or Berry phase [1–4], a concept which
was systematized and popularized in the 1980s by Sir
Michael Berry [1], has permeated through all branches
of physics with applications in diverse fields ranging
from atomic and molecular physics [5–7] to condensed-
matter physics [8–10], classical optics [11–13], high en-
ergy and particle physics [14–16], gravity and cosmology
[17]. When a quantum or classical system undergoes a
cyclic evolution governed by a change of parameters, be-
sides the dynamical phase it acquires an additional phase
term, the Berry phase, which depends only on the ge-
ometry of the path but not on how the cycle is run.
In condensed matter physics, the geometric phase man-
ifests itself in many phenomena, such as the quantum
Hall effect, electric polarization, orbital magnetism and
exchange statistics [4, 9, 10]. In a crystal, the appli-
cation of an electric field changes the quasi-momentum
of the electronic wave function over the entire Brillouin
zone, and the accumulated geometric phase is known as
the Zak phase [18]. In one-dimensional (1D) lattices, the
bulk topological properties of the Bloch bands are char-
acterized by the quantized Zak phase [19–25], which can
serve as a topological number.

Several exciting phenomena that are attracting great
interest in modern condensed-matter physics and be-
yond, such as non-Hermitian skin effect, modified bulk-
boundary correspondence, exceptional points, nontrivial
spectral topology and phase transitions, etc. [26–30],
appear in non-Hermitian models, i.e. in models where
the dynamics is described by an effective non-Hermitian
Hamiltonian [31–33] which accounts for energy/particle
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exchange with external reservoirs. A remarkable prop-
erty of certain classes of non-Hermitian Hamiltonians
is to display an entirely real energy spectrum in spite
of non-Hermiticity [34–44]. Among such Hamiltonians,
great attention has been devoted to the ones displaying
parity-time (PT ) symmetry [34–36], a concept that has
become very popular in the past decade and found impor-
tant applications in photonics and beyond [45–51]. For
given parity P and time reversal T operators, an Hamil-
tonian H is said to be PT -symmetric if the commutator
[H,PT ] vanishes, i.e. HPT = PT H. However, since the
operator PT is not linear, PT -symmetry itself does not
necessarily imply that the H and PT operators share the
same set of eigenfunctions. This means that, while the
underlying Hamiltonian H possesses PT symmetry, i.e.
PT H = HPT , the corresponding eigenfunctions |E〉 of
H can (or cannot) display the same symmetry. When
some eigenfunctions of H break the PT symmetry, i.e.
PT |E〉 and |E〉 are distinct states, we have a typical sce-
nario of spontaneous symmetry breaking [36]. Sponta-
neous PT symmetry breaking corresponds to a spectral
phase transition, from an entirely real energy spectrum
in the unbroken PT phase to a complex energy spectrum
in the spontaneously broken PT phase. When a control
parameter in the system is varied above a critical value,
spontaneous PT symmetry breaking is usually observed
and in the broken PT phase energies appear in com-
plex conjugate pairs. This readily follows from the anti-
linear nature of the T operator: if |E〉 is an eigenfunc-
tion of H with eigenenergy E, i.e. H|E〉 = E|E〉, then
HPT |E〉 = PT H|E〉 = PT E|E〉 = E∗PT |E〉. This
means that PT |E〉 is an eigenfunction of H with eigenen-
ergy E∗. When the symmetry is not spontaneously bro-
ken, |E〉 and PT |E〉 are the same eigenfunction, which
necessarily implies E = E∗: in the unbroken PT phase
the energy spectrum is entirely real. On the other hand,
when the symmetry is spontaneously broken, |E〉 is not
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necessarily an eigenfunction of the PT operator, and thus
the eigenfunctions |E〉 and PT |E〉, with non-degenerate
eigenenergies E and E∗, are linearly independent: in this
case the energy spectrum becomes complex and formed
by complex conjugate pairs. The spontaneous symmetry
breaking phase transition is ubiquitously sharp and the
symmetry breaking point corresponds to the appearance
of non-Hermitian degeneracies, i.e. exceptional points
[51–53] or spectral singularities [54–56], at the critical
point.
The concept of geometric phase can be generalized to
non-Hermitian systems, providing a geometrical descrip-
tion of the quantum evolution of non-Hermitian systems
under cyclic variation of parameters [57–72]. As com-
pared to Hermitian systems, different forms of Berry
phases have been introduced. Here we will use the
Berry phase from the biorthogonal basis of the non-
Hermitian Hamiltonain, which is thus rather generally
complex. An interesting property of adiabatic cycling in
non-Hermitian systems is that the energy surface can dis-
play a nontrivial topology: when one follows a loop in the
space of system parameters, even in the absence of de-
generacies the energies and corresponding instantaneous
eigenstates may swap places, which renders the evolu-
tion non-cyclic. The interchange of energies arises when
exceptional points are encircled in the space of system
parameters [51, 53, 73]. The complex Berry phase has
been suggested to provide a topological invariant iden-
tifying different topological phases and quantum phase
transitions in certain non-Hermitian models [30, 74–88],
and some general conditions for the quantization of the
Berry phase under certain generalized symmetries have
been provided [89]. In a non-Hermitian lattice, complex
Berry phase, i.e. Zak phase, naturally arises under an
external dc force or a time-varying magnetic flux [81], so
that a Bloch eigenstate adiabatically evolves across the
entire Brillouin zone accumulating a complex geometric
phase. While the related phenomena of Bloch oscillations
and Zener tunneling have been investigated at some ex-
tent in non-Hermitian lattices [90–100], physical signa-
tures of the complex Zak phase have received so far little
attention and mostly restricted to some specific lattice
models [66, 81].

In this work we show that the complex Berry phase in
slow-cycled non-Hermitian PT symmetric systems can
lead to imperfect, i.e. smooth, spectral phase transi-
tions. This phenomenon is first illustrated by consider-
ing a general model of two-level PT symmetric systems,
and then applied to explain the imperfect phase transi-
tion of Wannier-Stark ladders found in certain two-band
non-Hermitian lattices [100], which is rooted in the non-
vanishing imaginary part of the Zak phase.

II. PHASE TRANSITIONS IN A CYCLED
TWO-LEVEL PT SYMMETRIC MODEL

A. Model and PT symmetry breaking phase
transition

We consider a classical or quantum two-level system
described by an effective 2 × 2 non-Hermitian matrix
Hamiltonian H = H(k), which depends on a real pa-
rameter k and is periodic in k with a period of 2π, i.e.
H(k+2π) = H(k). As we will discuss in the next section,
in the Wannier-Stark ladder problem of a non-Hermitian
lattice driven by a dc field the matrix Hamiltonian H(k)
corresponds to the Bloch Hamiltonian of a two-band lat-
tice and k is the quasi momentum, that drifts to span
the entire Brillouin zone in the presence of the dc field.
The temporal dynamics of the system is described by the
Schrödinger equation

i
d

dt

(
ψ1

ψ2

)
=

(
H11 H12

H21 H22

)(
ψ1

ψ2

)
= H(k)

(
ψ1

ψ2

)
.

(1)
We assume that the Hamiltonian is PT symmetric with
parity P and time reversal T operators defined by

P = σx =

(
0 1
1 0

)
, T = K (2)

where σx is the Pauli matrix and K the element-wise
complex conjugation operator. PT symmetry, i.e. the
condition PT H = HPT , is satisfied provided that

H22 = H∗11 , H21 = H∗12 (3)

so that the non-Hermiticity in the system is embedded in
a non-vanishing imaginary part ofH11. The most general
form of matrix elements that respect the PT symmetry
is thus

H11 = H∗22 = G(k) + iλW (k) (4)

H12 = H∗21 = R(k) exp[iϕ(k)] (5)

whereG(k),W (k), R(k) are real and periodic functions of
k with period 2π, ϕ(k) is a real function with ϕ(k+2π) =
ϕ(k) mod 2π, and λ ≥ 0 is a real parameter that measures
the strength of non-Hermiticity in the system, the case
λ = 0 corresponding to H(k) Hermitian. Further, we
assume that R(k) is nonvanishing over the entire range
0 ≤ k ≤ 2π.
When the parameter k is kept constant, the eigenenergies
of H(k) are given by

E±(k) = G(k)±
√
R2(k)− λ2W 2(k) (6)

with corresponding (right) eigenvectors

u+(k) =

(
cos
(
θ
2

)
sin
(
θ
2

)
exp(−iϕ)

)
(7)

u−(k) =

(
sin
(
θ
2

)
− cos

(
θ
2

)
exp(−iϕ)

)
. (8)
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In the previous equations, the complex angle θ = θ(k) is
defined by the relation

tan θ(k) =
R(k)

iλW (k)
. (9)

Note that the imaginary part of the angle θ(k) diverges
when R(k) = ±λW (k), corresponding to the simulta-
neous coalescence of the two energies and eigenstates,
i.e. to the appearance of an exceptional point. The left
eigenvectors of H(k), i.e. the (right) eigenvectors of the
adjoint H†(k) with eigenvalues E∗±(k), read

v+(k) =

(
cos∗

(
θ
2

)
sin∗

(
θ
2

)
exp(−iϕ)

)
(10)

v−(k) =

(
sin∗

(
θ
2

)
− cos∗

(
θ
2

)
exp(−iϕ)

)
(11)

and the biorthogonal conditions

〈vn(k)|um(k)〉 = δn,m (12)

are satisfied for any k, with n,m = +,−. After letting

λc(k) ≡ |R(k)/W (k)|, (13)

from Eq.(6) it readily follows that the energy spectrum
is real for λ < λc(k) (unbroken PT phase), and complex
for λ > λc(k) (broken PT phase), with the appearance
of an exceptional point at the critical point λ = λc(k).

B. Phase transition in the cycled system

Let us now consider the two-level system when the
Hamiltonian H(k) is periodically and adiabatically cy-
cled in time. We assume that the parameter k in the
Hamiltonian varies in time according to

k = ωt (14)

where ω is the cycling frequency. The temporal dynamics
of the two-level system is thus described by the equation

i
d

dt

(
ψ1

ψ2

)
= H(ωt)

(
ψ1

ψ2

)
. (15)

In most of our analysis, we will limit our attention con-
sidering the system dynamics in the slow-cycling regime
ω → 0. As we will comment below with reference to some
specific examples, the main motivation thereof is that
to observe smooth spectral phase transitions the system
evolution must be slow enough. Without loss of gener-
ality we can assume G(k) = 0, i.e. H11(k) = H∗22(k) =
iλW (k), so that the instantaneous eigenenergies of H(k)
read

E±(k) = ±
√
R2(k)− λ2W 2(k) (16)

with k = ωt. In fact, a non-vanishing value of G(k) can
be eliminated from the dynamics after the gauge trans-
formation(

ψ1(t)
ψ2(t)

)
→
(
ψ1(t)
ψ2(t)

)
exp

{
− i
ω

∫ ωt

0

G(k)dk

}
.

According to Floquet theory, the most general solution
to the Schrödinger equation (15) is given by(

ψ1(t)
ψ2(t)

)
= U(t) exp(−iRt)

(
ψ1(0)
ψ2(0)

)
(17)

where R is a time-independent 2 × 2 matrix while U(t)
is a time-dependent and periodic 2 × 2 matrix, U(t +
2π/ω) = U(t), with U(0) = I (the identity matrix). The
exponential of the matrix R can be expressed in terms
of the path-ordered integral

exp(−iR) = T̄ exp

[
−i ω

2π

∫ 2π/ω

0

dt H(ωt)

]

where T̄ indicates the time ordering. The two eigen-
values µ± = µ±(λ) of R are the quasi energies of the
time-periodic cycled system. The real parts of the quasi
energies are defined apart from integer multiples than ω.
Note that for G(k) = 0 the trace ofH(k) vanishes, so that
µ− = −µ+, i.e. the two quasi energies can be assumed to
be opposite one another. A non-vanishing value of G(k)
would just lead to a shift of the quasi energies by the

amount (1/2π)
∫ 2π

0
dkG(k).

A natural question arises: akin to the non-cycled PT
symmetric system, is there a spectral phase transition,
from real to complex quasi energies, as the non-Hermitian
parameter λ in the system is increased above a critical
value? To answer this question, let us indicate by λ̄c the
minimum value of λc(k) as k spans the range 0 ≤ k ≤ 2π,
i.e.

λ̄c = min
0≤k≤2π

λc(k) = min
0≤k≤2π

∣∣∣∣ R(k)

W (k)

∣∣∣∣ . (18)

Intuitively, for a slowly-cycled system one would expect
the following scenario: for λ < λ̄c, the instantaneous
eigenenergies E±(k = ωt) of H(k = ωt) are real, and
thus we expect the quasi energies µ± to remain real as
well. On the other hand, for λ > λ̄c within the mod-
ulation cycle there are time intervals where the instan-
taneous eigenenergies E±(k = ωt) become complex: in
this case we expect the quasi energies to become complex
too. Hence, according to such an intuitive picture, we
expect a spectral phase transition of the cycled two-level
system, from real to complex quasi energies, when the
non-Hermitian parameter λ is increased above the criti-
cal value λ̄c. This result is indeed what one observes from
a numerical computation of the quasi energies in several
examples of cycled two-level PT symmetric models, as
shown in the next subsection. However, in some other
models it turns out that, for a small but non-vanishing
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oscillation frequency ω, the phase transition is smooth,
i.e. imperfect: below the critical value λ̄c the imaginary
part of the quasi energy takes a small but non-vanishing
value, which scales as ∼ ω, i.e. it exactly vanishes only
in the limit ω → 0. What is the physical origin of such
an imperfect phase transition, which is observed in some
models but not in others?
The answer to this question is rooted in the appearance
of a complex Berry phase in certain models (but not in
others), and can be gained from an adiabatic analysis
of the time evolution of the system in the ω → 0 limit,
which is detailed in the Appendices A and B. In the adi-
abatic analysis, the slow evolution of the amplitudes of
the instantaneous eigenstates u±(k = ωt) of the Hamilto-
nian H(k = ωt) is governed by the non-Hermitian Berry
connection

An,l(k) = −i〈vn|∂kul〉 (19)

(n, l = +,−), which is defined in the context of the
biorthonormal inner product. The integrals of the diag-
onal terms of Berry connection, A+,+(k) and A−,−(k),
over the interval 0 ≤ k ≤ 2π, i.e.

γB+
=

∫ 2π

0

dkA+,+(k) , γB− =

∫ 2π

0

dkA−,−(k) (20)

are the non-Hermitian Berry phases associated to the
two instantaneous eigenstates u±(k). The explicit form
of the Berry connection and Berry phases are derived in
Appendix A. In particular, one has

γB± = ∓1

2

∫ 2π

0

dk
dϕ

dk
± i

2

∫ 2π

0

dk
dϕ

dk
sinhψ(k) (21)

where the function ψ(k) is defined by the relation

tanhψ(k) =
λW (k)

R(k)
. (22)

Note that the Berry phase vanishes in any PT -symmetric
two-level system with (dϕ/dk) ≡ 0.
The adiabatic analysis shows some subtleties and limita-
tions when applied to our model, owing to the appearance
of instantaneous EP on the cycle when λ > λ̄c. Techni-
cal details are given in Appendix B. The main result of
the adiabatic analysis is that, in the limit ω → 0 and for
λ 6= λ̄c, the two quasi energies are given by

µ± =
1

2π

∫ 2π

0

dkE±(k) +
ω

2π
γB± . (23)

Note that, since E−(k) = −E+(k) and γB− = −γB+
,

one has µ− = −µ+, as it should. The above result pro-
vides an approximate form of the quasi energies in the
adiabatic limit ω → 0 for any strength λ of the non-
Hermitian parameter far from the critical value λ = λ̄c,
at which the Berry phase term becomes singular and the
adiabatic analysis fails; a discussion on this point is given
in the Appendix B.

According to Eq.(23), each quasi energy is given by the
sum of two terms. The first one is related to the dynami-
cal phase accumulated by the adiabatic eigenstates in one
cycle and equals the average of the instantaneous ener-
gies E±(k) over one cycle. The dynamical phase term is
clearly independent of the modulation frequency ω and is
real for λ < λ̄c, while its imaginary part is non-vanishing
for λ > λ̄c. The second term on the right hand side in
Eq.(23) is the non-Hermitian Berry phase contribution.
This is a small term which vanishes like ∼ ω as ω → 0.
Interestingly, for λ < λ̄c the imaginary part of the quasi
energies is provided solely by the Berry phase term, and
vanishes as ω → 0. This explains why in the cycled
two-level PT -symmetric system with a vanishing Berry
phase the spectral phase transition of the quasi energies,
at λ = λ̄c, is sharp (exact), while it becomes smooth (im-
perfect) when the non-Hermitian Berry phase along the
cycle is non-vanishing.

C. Illustrative examples

The main result of the adiabatic analysis is that the
spectral phase transition of the quasi energies in the
slow-cycled PT -symmetric two-level system turns out be
be imperfect (smooth) whenever the Berry phase in the
cycle is complex, which requires the derivative (dϕ/dk)
not to identically vanish. On the other hand, the phase
transition is sharp (exact) whenever the Berry phase is
real. Here we illustrate and confirm the predictions of
the adiabatic analysis by considering three examples of
cycled two-level PT -symmetric systems.

1. First example. The first example is a simple
and exactly-solvable model, corresponding to G(k) = 0,
W (k) = 1, R(k) = R0, ϕ(k) = k, i.e. to the PT -
symmetric Hamiltonian

H(k) =

(
iλ R0 exp(ik)

R0 exp(−ik) −iλ

)
(24)

where R0 > 0 is a real parameter. Physically, this model
describes a two-level system, in which the two states
are Hermitian-coupled by an amplitude R0 and a gauge
(Peierls) phase k and with gain (λ) and loss (−λ) rates
in the two levels. The system displays a PT symmetry
breaking at a critical value λc(k) = λ̄c, independent of k,
given by

λ̄c = R0. (25)

In the cycled system with k = ωt, we expect an imperfect
phase transition of quasi energies because (dϕ/dk) = 1 6=
0 and the imaginary part of the Berry phase does not van-
ish. The quasi energies µ± can be calculated in an exact
form, given that the time dependence of the Hamiltonian
H(k = ωt) can be removed from the dynamics after the
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FIG. 1. Behavior of the imaginary part of the quasi energies
µ± versus the non-Hermitian parameter λ for the cycled PT -
symmetric system with Hamiltonian H(k) given by Eq.(24)
for R0 = 1 and for a modulation frequency (a) ω = 0.02, and
(b) ω = 0.1. Open blue circles and red crosses refer to the
exact curves and to the approximate curves obtained from the
adiabatic analysis, respectivley. Note that the spectral phase
transition is imperfect around the critical point λ = λ̄c = R0,
and that near the critical point the adiabatic curves fail to
predict the exact behavior of the quasi energies.

gauge transformation

ψ1(t) = ψ̄1(t) exp

(
i
ωt

2

)
, ψ2(t) = ψ̄2(t) exp

(
−iωt

2

)
.

(26)
The exact expression of the quasi energies can be readily
computed, yielding

µ± = ±
√
R2

0 +
(ω

2
+ iλ

)2
∓ ω

2
(27)

A typical behavior of the imaginary parts of the quasi en-
ergies versus λ, in the adiabatic limit ω � R0, is depicted
in Fig.1, clearly showing the appearance of an imperfect
spectral phase transition near λ = λ̄c. Note that, when λ
is not too close to λ̄c = R0, in the adiabatic limit ω → 0
we can expand the right hand side of Eq.(27) in power
series of ω and, up to first order in ω, the following ap-
proximate expression of quasi energies is obtained

µ± ' ±
√
R2

0 − λ2 ∓
ω

2
± i λω

2
√
R2

0 − λ2
. (28)

It can be readily shown that Eq.(28) precisely reproduces
the result predicted by the adiabatic analysis [Eq.(23)].
In fact, the dynamical phase contribution to the quasi
energy is given by

1

2π

∫ 2π

0

dkE±(k) = ±
√
R2

0 − λ2

while the Berry phase contribution reads

ω

2π
γB± = ∓ ω

4π

∫ 2π

0

dk
dϕ

dk
± iω

4π

∫ 2π

0

dk
dϕ

dk
sinhψ(k)

= ∓ω
2
± iω

2
sinhψ = ∓ω

2
± i λω

2
√
R2

0 − λ2
. (29)

FIG. 2. Behavior of the imaginary part of the quasi energies
µ± versus the non-Hermitian parameter λ for the cycled PT -
symmetric system with Hamiltonian H(k) given by Eq.(30)
for t1 = 1, t2 = 0.5 and for a modulation frequency (a) ω =
0.02, and (b) ω = 0.1. Open blue circles and red crosses refer
to the exact curves, obtained from a numerical computation of
quasi energies, and to the approximate curves obtained from
the adiabatic analysis, respectivley. Note that the spectral
phase transition is sharp around the critical point λ = λ̄c =
t1 − t2 = 0.5.

In deriving Eq.(29), we used the property that ψ(k),
defined by the relation tanhψ(k) = λ/R0, is independent
of k and (dϕ/dk) = 1. Note that the behavior of the
imaginary part of the quasi energies, predicted by the
adiabatic analysis, well reproduces the exact curves,
except near the phase transition point λ = λ̄c where the
Berry phase contribution displays a singularity.

2. Second example. As a second example, let us
consider the PT -symmetric two-level Hamiltonian

H(k) =

(
iλ t1 + t2 cos k

t1 + t2 cos k −iλ

)
(30)

corresponding to G(k) = 0, W (k) = 1,
R(k) = t1 + t2 cos k, and ϕ(k) = 0, where t1 and
t2 are real and positive parameters with t1 > t2. Since
(dϕ/dk) = 0, the Berry phase vanishes and, according
to the adiabatic analysis, when the system is slowly
cycled with k = ωt the spectral phase transition of
the quasi energies is sharp (exact) and occurs at the
critical value λ̄c = t1 − t2 of the non-Hermitian pa-
rameter λ. The numerical computation of the quasi
energies µ± versus λ, as obtained by a direct numerical
integration of the Schrödinger equation (15) using an ac-
curate variable-step fourth-order Runge-Kutta method,
confirms that the phase transition is sharp and the
curves Im(µ±(λ)) are well approximated by the behav-
ior predicted by the adiabatic analysis, as shown in Fig.2.

3. Third example. As a third example, let us consider
the PT -symmetric two-level Hamiltonian

H(k) =

(
iλ+ t0 cos k t1 + t2 exp(ik)

t1 + t2 exp(−ik) −iλ+ t0 cos k

)
(31)

corresponding to G(k) = t0 cos k, W (k) = 1, R(k) =√
t21 + t22 + 2t1t2 cos k, and ϕ(k) = atan[t2 sin k/(t1 +
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FIG. 3. Behavior of the imaginary part of the quasi energies
µ± versus the non-Hermitian parameter λ for the cycled PT -
symmetric system with Hamiltonian H(k) given by Eq.(31)
for t0 = 0.3, t1 = 0.5, t2 = 1 and for a modulation frequency
(a) ω = 0.02, and (b) ω = 0.1. Open blue circles and red
crosses refer to the exact curves, obtained from a numerical
computation of quasi energies, and to the approximate curves
obtained from the adiabatic analysis. Note that in (a) (slow-
cycling limit) the spectral phase transition is smooth around
the critical point λ = λ̄c = |t2 − t1| = 0.5, displaying a char-
acteristic knee shape. In (b) the system is cycled faster and
the knee shape of the curves is spoiled out. In both cases the
adiabatic theory fails to the predict the correct behavior of
the quasi energies near the critical point.

t2 cos k], where t0, t1 and t2 are real and positive pa-
rameters with t1 6= t2. Since (dϕ/dk) 6= 0, the imaginary
part of the Berry phase does not vanish and, according
to the adiabatic analysis, when the system is slowly cy-
cled with k = ωt the spectral phase transition of the
quasi energies is imperfect (smooth). The phase transi-
tion occurs at the critical value λ̄c = |t2− t1| of the non-
Hermitian parameter λ. The numerical computation of
the quasi energies µ± versus λ, as obtained by a direct
numerical integration of the Schrödinger equation (15),
confirms that the phase transition is imperfect and the
curves Im(µ±(λ)) are well approximated by the behavior
predicted by the adiabatic analysis for λ 6= λ̄c, as shown
in Fig.3. Note that in the slow-cycling regime [Fig.3(a)]
the curves Im(µ±) versus λ display a characteristic knee
shape, indicating a smooth spectral phase transition. We
remark that the terminology ”smooth” phase transition
is meaningful in the adiabatic limit ω → 0 solely, while
when we cycle the system faster, so as ω becomes compa-
rable to the other characteristic frequencies of the Hamil-
tonian (such as the separation of adiabatic energies), the
knee shape of the curves is continuously spoiled out and
there is not any evident sharp transition of the imaginary
part of the quasi energies as λ is increased; see Fig.3(b).

III. WANNIER-STARK LADDER PHASE
TRANSITION

The imperfect spectral phase transition, arising from
the complex Berry phase in a slowly-cycled two-level sys-
tem presented in the previous section, finds an interesting

illustrative application to the problem of Wannier-Stark
ladder formation in non-Hermitian lattices subjected to a
weak external dc field and the transition from periodic to
aperiodic Bloch-Zener oscillations recently observed for
some models in Ref.[100]. In this case the Berry phase
is also referred to as the Zak phase [18], which is the ge-
ometric phase acquired during an adiabatic motion of a
Bloch particle across the Brillouin zone.

A. Model

Let us consider a two-band tight-binding lattice model
driven by a dc force F . In physical space, the tempo-
ral evolution of the single-particle state of the system is
described by the Schrödinger equation

i
dan
dt

=
∑
l

ρn−lal +
∑
l

σn−lbl − Fnan (32)

i
dbn
dt

=
∑
l

θn−lal +
∑
l

ηn−lbl − Fnbn (33)

for the amplitudes an and bn in the two sublattices A and
B of the n-th unit cell of the crystal. In the above equa-
tions, the coefficients ρ0 and η0 are the on-site energy
potentials in the two sublattices A and B, respectively;
ρl and ηl (l 6= 0) are the intra-dimer hopping amplitudes;
finally, σl and θl are the inter-dimer hopping amplitudes.
In the absence of the dc force, i.e. for F = 0, we can as-
sume an(t) = ψ1(t) exp(ikn) and bn(t) = ψ2(t) exp(ikn),
where k is the Bloch wave number that spans the Bril-
louin zone 0 ≤ k ≤ 2π. In this case, from Eqs.(32) and
(33) one obtains

i
d

dt

(
ψ1

ψ2

)
= H(k)

(
ψ1

ψ2

)
(34)

where the elements of the 2× 2 Bloch Hamiltonian H(k)
are given by

H11(k) =
∑
l

ρl exp(−ikl) (35)

H12(k) =
∑
l

σl exp(−ikl) (36)

H21(k) =
∑
l

θl exp(−ikl) (37)

H22(k) =
∑
l

ηl exp(−ikl). (38)

The Bloch Hamiltonian is PT -symmetric, with P = σx
and T = K, provided that

θ∗−l = σl , η∗−l = ρl. (39)

Such conditions ensure that H22(k) = H∗11(k) and
H21(k) = H∗12(k). In this case, the lattice does not
display the non-Hermitian skin effect [101] and the en-
ergy spectrum is absolutely continuous and composed by
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two energy bands, with the dispersion relation given by
Eq.(6). A PT symmetry breaking phase transition of
Bloch bands arises when the non-Hermitian parameter
λ in the system is increased above the critical value λ̄c,
alike in the two-level system discussed in Sec.II.

B. Wannier-Stark ladders

When the external dc force is applied, i.e. for F 6= 0,
the energy spectrum becomes pure point and composed
by two Wannier-Stark ladders [102, 103], with the allowed
energies given by

El = lF ±Θ (40)

where l = 0,±1,±2,±3, .. and Θ describes the en-
ergy shift of the two ladders. The corresponding eigen-
states are normalizable (localized) with a higher-than-
exponential localization.
In an Hermitian lattice, the energy shift Θ is real and the
dynamics in the time domain is generally aperiodic and
corresponds to a superposition of Bloch oscillations and
Zener tunneling between the two bands [102–109]. The
dynamics is characterized by two time periods: The first
one, T1 = 2π/F , is determined by the mode spacing of
each WS ladder and is related to the Bloch oscillation
dynamics, whereas the second one, T2 = π/Θ, is deter-
mined by the shift of the two interleaved WS ladders.
In a non-Hermitian lattice the energy shift Θ can become
complex and, as we show below, in the small-forcing limit
F → 0 it contains the complex Zak phase of the Bloch
Hamiltonian H(k). More precisely, we will show below
that Θ is the quasi energy µ+ of the Bloch Hamilto-
nian H(k), cycled over the Brillouin zone at a frequency
ω = F , i.e. with k = Ft. This means that the WS energy
spectrum undergoes a phase transition as λ is increased
above λ̄c, from real to complex energies, and the phase
transition can be either sharp or smooth, depending on
whether the imaginary part of the Zak phase for λ < λ̄c
is vanishing or not.
To calculate the WS energy spectrum E, let us assume
an(t) = ān exp(−iEt), bn(t) = b̄n exp(−iEt) in Eqs.(32-
33), and let us introduce the spectral variables

ψ1(k) = exp(−iEk/F )
∑
n

ān exp(−ikn) (41)

ψ2(k) = exp(−iEk/F )
∑
n

b̄n exp(−ikn). (42)

It readily follows that ψ1,2(k) satisfy the Sturm-Liouville
problem

iF
d

dk

(
ψ1

ψ2

)
= H(k)

(
ψ1

ψ2

)
(43)

on the interval 0 ≤ k ≤ 2π, with the boundary conditions

ψ1,2(2π) = ψ1,2(0) exp

(
−2πiE

F

)
. (44)

Once the spectral amplitudes ψ1,2(k) and eigenenergies
E have been determined, the eigenvectors (ān, b̄n), cor-
responding to the energy E, are determined using the
inverse relations

ān =
1

2π

∫ 2π

0

dkψ1(k) exp(ikn+ iEk/F ) (45)

b̄n =
1

2π

∫ 2π

0

dkψ2(k) exp(ikn+ iEk/F ). (46)

Interestingly, after letting k = ωt Eq.(43) indicates that
ψ1,2(k) can be viewed as the amplitudes of a two-level
PT -symmetric system, with Hamiltonian H(k), which is
slowly cycled in time at the frequency ω = F . This ba-
sically corresponds to the fact that in Bloch space the
external force introduces a uniform drift of the quasi-
momentum k to span the entire Brillouin zone. The
Sturm-Liouville problem, defined by Eqs.(43) and (44),
can be solved as follows. Let us indicate by ψ+ and
ψ− the eigenvectors of the Floquet matrix R, introduced
in Sec.II.B, with eigenvalues (quasi energies) µ±. Then
Eq.(43) is satisfied by letting either(

ψ1(k)
ψ2(k)

)
= U

(
k

F

)
exp(−iRk/F )ψ+

= exp(−iµ+k/F )U
(
k

R

)
ψ+

or (
ψ1(k)
ψ2(k)

)
= U

(
k

F

)
exp(−iRk/F )ψ−

= exp(−iµ−k/F )U
(
k

F

)
ψ−.

Since U(0) = U(2π/F ) = I (the 2×2 identity matrix), to
satisfy the boundary conditions Eq.(44) one should have

2π

F
µ± =

2πE

F
− 2lπ

i.e.

E = lF + µ± (47)

where l = 0,±1,±2, .... Equation (47) provides the gen-
eral form of the Wannier-Stark ladders of allowed energies
in terms of the quasi energies µ± of the cycled two-level
Bloch Hamiltonian H(k). It is precisely Eq.(40) with the
energy shift parameter Θ given by Θ = µ+.
When the external dc force is weak, i.e. in the limit
F → 0, the Bloch wave number k = Ft in the two-level
Bloch Hamiltonian H(k) varies slowly with time, and
thus the quasi energies can be approximated by Eq.(23).
One obtains

E = lF +
1

2π

∫ 2π

0

dkE±(k) +
F

2π
γB± (48)

corresponding to the energy shift

Θ = µ+ =
1

2π

∫ 2π

0

dkE+(k) +
F

2π
γB+

. (49)
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FIG. 4. Schematic of two binary non-Hermitian lattices dis-
playing (a) perfect, and (b) imperfect Wannier-Stark phase
transitions under a dc force. t0, t1 and t2 are Hermitian hop-
ping amplitudes. The non-Hermiticity in the system is pro-
vided by the gain and loss terms ±λ in the two sublattices A
and B. The Bloch Hamiltonian of the two lattices is given by
Eq.(30) for model (a), and by Eq.(31) for model (b).

Therefore, under a weak external driving the Wannier-
Stark energy spectrum undergoes a phase transition at
λ = λ̄c, which is either sharp or smooth depending on
whether the imaginary part of the Zak phase γB+

is

vanishing or not when λ < λ̄c. We mention that, con-
trary to other non-Hermitian lattice models where the
spectral (PT symmetry breaking) phase transition coin-
cides with a localization/delocalization phase transition
[110–112], in the Wannier-Stark ladder problem the spec-
tral phase transition does not correspond to a localiza-
tion/delocalization phase transition because the eigen-
states of the Wannier-Stark Hamiltonian are always lo-
calized, for both λ < λ̄c and λ ≥ λ̄c. This very general
result follows from the fact that the spectral amplitudes
ψ1,2(k) exp(iEk/F ), with ψ1,2(k) solutions to the Sturm-
Liouville problem [Eqs.(43,44)], are periodic and contin-
uously differentiable functions of k and thus their Fourier
coefficients ān, b̄n decay as n→ ±∞ at least like ∼ 1/n,
regardless of the value of λ.
In a non-Hermitian lattice below the Wannier-Stark
phase transition point, i.e. for λ < λ̄c, the dynamical sig-
nature of a complex Zak phase can be probed looking at
the temporal behavior of Bloch-Zener oscillations [100].
When the imaginary part of the Zak phase is vanishing,
the temporal dynamics is rather generally aperiodic and
characterized by the two periods T1 and T2, like in an
ordinary Hermitian lattice under a dc field: only acciden-
tally the dynamics can be periodic. On the other hand,
when the imaginary part of the complex Zak phase does
not vanish, after an initial transient the dynamics be-
comes periodic with period T1. In fact, a rather arbitrary
excitation of the system at initial time t = 0 can be de-
composed as a superposition of localized Wannier-Stark
eigenstates belonging to the two ladders, and the dynam-
ics at successive times is governed by the interference of
such localized eigenstates. The localized Wannier-Stark
eigenstates in one ladder, excited by the initial condi-
tion, decay in time with a damping rate ∼ F Im(γB+

),

while the eigenstates in the other ladder are amplified in
time with an amplification rate ∼ F Im(γB+

). Therefore,
after a transient time of order ∼ 1/F Im(γB+

) only the
Wannier-Stark eigenstates in the former ladder survive
and the dynamics become periodic with the period T1
[100].

As illustrative examples, let us consider the binary lat-
tices depicted in Figs.4(a) and 4(b). The non-Hermiticity
in the lattices is introduced by assuming energy gain and
loss terms ±λ in the two sub lattices A and B. The binary
lattice of Fig.4(a) was introduced in a previous work [93]
and its Bloch Hamiltonian H(k) is given by Eq.(30), pre-
viously introduced in Sec.II.C. Since (dϕ/dk) ≡ 0, the
Wannier-Stark ladder phase transition in this model is
sharp. The model shown in Fig.4(b) is a non-Hermitian
extension of the Rice-Mele model [66] and its Bloch
Hamiltonian is given by Eq.(31). For this model, the
spectral phase transition of the Wannier-Stark energies is
imperfect. We emphasize that our analysis is very general
and could be applied to a generic PT -symmetric binary
lattice, also displaying long-range hopping.

IV. CONCLUSIONS AND DISCUSSION

In many classical and quantum systems described by
an effective non-Hermitian Hamiltonian, where energy
and particles can be exchanged with external reservoirs,
the energies of the Hamiltonian are rather generally com-
plex. However, in certain classes of non-Hermitian sys-
tems the energy spectrum can remain entirely real in
spite of non-Hermiticity. A paradigmatic example is pro-
vided by systems possessing parity-time symmetry, where
the energy spectrum remains entirely real in the unbro-
ken PT phase. When the strength of non-Hermiticity
in the system is increased, a spectral phase transition to
complex energies is usually observed, corresponding to
the unbroken PT phase. Such spectral phase transitions
are universally sharp. In this work we considered periodi-
cally and slowly cycled non-Hermitian models possessing
instantaneous PT symmetry and showed that the phase
transition can remain exact (sharp) or become imperfect
(smooth) when the strength of non-Hermiticity in the
system is increased above a critical value. The imperfect
nature of the phase transition in the latter case is univer-
sally ascribable to a non-vanishing imaginary part of the
complex Berry phase associated to the cyclic adiabatic
evolution of the system. This remarkable phenomenon
has been illustrated by considering a rather general class
of PT -symmetric two-level systems, for which a rigorous
adiabatic analysis both below and above the phase tran-
sition point has been developed. The results have been
applied to describe the spectral phase transitions of the
Wannier-Stark ladders in a broad class of PT -symmetric
two-band non-Hermitian lattices subjected to an external
dc field, however our analysis is expected to hold for more
general multi-band systems. In fact, under the adiabatic
conditions and assuming no state flip after one adiabatic
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cycle, the form of quasi energies can be given in terms of
dynamic and geometric (Zak) phases, and the complex or
real nature of the latter defines the smooth or sharp na-
ture of the spectral phase transitions in the slow-cycling
regime. Our results provide fresh and novel insights into
phase transitions of open quantum or classical systems,
providing important examples of smooth phase transi-
tions in non-Hermitian physics and unraveling the main
role played by the non-Hermitian Berry phase.
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Appendix A: Berry connection and Berry phase

For the cycled two-level PT symmetric model consid-
ered in Sec.II.A, the elements of the 2× 2 matrix of the
non-Hermitian Berry connection are given in terms of the
biorthogonal product as

An,l = −i〈vn|∂kul〉 (A1)

where n, l take the values + or −. Using Eqs.(7,8) and
(10,11) given in the main text, the explicit form of the
Berry connection can be readily calculated and read

A+,+ = −dϕ
dk

sin2

(
θ

2

)
(A2)

A+,− = −1

2
i
dθ

dk
+

1

2

dϕ

dk
sin θ (A3)

A−,+ =
1

2
i
dθ

dk
+

1

2

dϕ

dk
sin θ (A4)

A−,− = −dϕ
dk

cos2
(
θ

2

)
. (A5)

The Berry phases associated to the two adiabatically-
evolving eigenstates u±(k) are given by

γB+ ≡
∫ 2π

0

dkA+,+ = −
∫ 2π

0

dk
dϕ

dk
sin2

(
θ

2

)
(A6)

γB− ≡
∫ 2π

0

dkA−,− = −
∫ 2π

0

dk
dϕ

dk
cos2

(
θ

2

)
. (A7)

From Eqs.(A6) and (A7) it readily follows that γB+
+

γB− = −
∫ 2π

0
dk(dϕ/dk) is either zero or an integer mul-

tiple than 2π. Since the Berry phase is defined apart
from integer multiples than 2π, we can thus write

γB+
= −γB− = (A8)

= −1

2

∫ 2π

0

dk
dϕ

dk
+

1

2

∫ 2π

0

dk cos θ
dϕ

dk
.

The complex angle θ = θ(k) is defined by Eq.(9) given in
the main text, i.e.

tan θ(k) =
R(k)

iλW (k)
(A9)

which can be solved by letting

θ(k) = π/2− iψ(k), (A10)

where the function ψ(k) is given by

tanhψ(k) =
λW (k)

R(k)
. (A11)

Using Eqs.(A8) and (A10), one finally obtains

γB± = ∓1

2

∫ 2π

0

dk
dϕ

dk
± i

2

∫ 2π

0

dk
dϕ

dk
sinhψ(k) (A12)

The above expression of the Berry phase is formally valid
for any value of the non-Hermitian parameter, except for
λ = λ̄c. Note that for λ < λ̄c one has |λW (k)/R(k)| < 1
and thus the function ψ(k) is real over the entire interval
0 ≤ k ≤ 2π. In this case Eq.(A12) shows that the real
part of the Berry phase is quantized and can take only
the two values 0 or π (mod. 2π), whereas the imaginary
part of the Berry phase is not quantized and vanishes
whenever (dϕ/dk) ≡ 0.

Appendix B: Adiabatic analysis

In this Appendix we derive an analytical expression of
the quasi energies µ± of the cycled two-level PT sym-
metric system, considered in Sec.II.B of the main text,
in the adiabatic limit of slow cycling ω → 0. It should be
mentioned that special attention is required when using
adiabatic methods to slowly-evolving non-Hermitian sys-
tems because: (i) Owing to possible nontrivial topologies
of the energy curves in complex plane, even in absence of
eigenvalue degeneracies it could happen that an adiabat-
ically evolving eigenstate, after one cycle, does not come
back to its initial state because of energy and eigenvector
flipping [53, 73]; (ii) Even in the slow cycling regime the
adiabatic approximation can easily break down when the
instantaneous eigenenergies are complex [113–115], and
the adiabatic approximation can be safely applied only
to the most dominant eigenstate of the system.
After letting k = ωt, the Schrödinger equation (15) reads

iω
d

dk

(
ψ1

ψ2

)
= H(k)

(
ψ1

ψ2

)
. (B1)

To perform the adiabatic analysis, let us distinguish two
cases.
First case: λ < λ̄c. In this case the two energy curves
E±(k), as k spans the interval (0, 2π), are straight and
non-intersecting segments on the real energy axis; see
Fig.5(a). Therefore, the energy curves are line gapped
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and there is not any eigenvalue/eigenstate flip after one
cycle. From the point of view of the adiabatic analy-
sis, the system thus behaves like an Hermitian one, even
though the Hamiltonian is not Hermitian. We then ex-
pand the state vector (ψ1(k), ψ2(k))T as a superposi-
tion of the instantaneous eigenstates u+(k) and u−(k)
of H(k), i.e. let us set(

ψ1(k)
ψ2(k)

)
= a+(k)u+(k) exp

{
− i
ω

∫ k

0

dξE+(ξ)

}

+ a−(k)u−(k) exp

{
− i
ω

∫ k

0

dξE−(ξ)

}
(B2)

where a+(k) and a−(k) are the adiabatic amplitudes and

E±(k) = ±
√
R2(k)− λ2W 2(k) (B3)

are the instantaneous eigenenergies. The evolution equa-
tions of the amplitudes a±(k) are readily obtained by
substitution of the Ansatz (B2) into Eq.(B1) and taking
the scalar product of the equation so obtained by 〈v+|
and 〈v−|. Using the biorthogonal conditions (12), one
obtains

i
da+
dk

= A+,+a+ + (B4)

+ A+,−a− exp

{
i

ω

∫ k

0

dξ [E+(ξ)− E−(ξ)]

}

i
da−
dk

= A−,−a− + (B5)

+ A−,+a+ exp

{
− i
ω

∫ k

0

dξ [E+(ξ)− E−(ξ)]

}
where An,l (n, l = +,−) is the non-Hermitian Berry con-
nection, given by Eqs.(A1-A5). In the adiabatic limit
ω → 0, since the energy difference E+(k)− E−(k) is en-
tirely real and non-vanishing over the interval 0 ≤ k ≤
2π, the rapidly oscillating terms on the right hand sides
of Eqs.(B4) and (B5) do not induce on average transi-
tions between the two adiabatic amplitudes and can be
disregarded (rotating-wave approximation). Hence one
obtains

a±(2π) ' a±(0) exp(−iγB±) (B6)

where γB± are the Berry phases associated to the two
adiabatically-evolving eigenstates u±(k). The explicit
form of the Berry phases is given by Eq.(A12).
The quasi energies µ± are the eigenvalues of the matrix
R, which is obtained from the condition [Eq.(17) in the
main text with t = 2π/ω](

ψ1(2π/ω)
ψ2(2π/ω)

)
= exp(−2πiR/ω)

(
ψ1(0)
ψ2(0)

)
. (B7)

From Eqs.(B2) and (B5) it readily follows that u±(0) are
the eigenvectors of R with corresponding quasi energies

FIG. 5. Schematic behavior of the energy curves E±(k) of the
PT -symmetric two-level HamiltonianH(k) in complex energy
plane as k spans the interval 0 ≤ k ≤ 2π (solid lines). In (a)
λ < λ̄c, the two energy curves lie on the real energy axis and
are line gapped. In (b) λ > λ̄c and the two energy curves cross
at E = 0 (instantaneous exceptional point) at the critical
values k = kc such that λW (kc) = ±R(kc). The dashed
curves in (b) show the behavior of the energy curves for the
modified Hamiltonian Hε(k), which avoids energy crossing
and exceptional points.

given by

µ± =
1

2π

∫ 2π

0

dkE±(k) +
ω

2π
γB± . (B8)

Note that, since E−(k) = −E+(k) and γB− = −γB+ ,
the two quasi energies are opposite one another, i.e.
µ− = −µ+, as it should be whenever G(k) = 0. Note
also that each quasi energy is given by the sum of two
terms. The first term on the right hand side of Eq.(B8)
is the usual dynamical phase term that one would obtain
by a standard WKB analysis neglecting the Berry phase
[96, 100], whereas the second term on the right hand side
of Eq.(B8) is the Berry phase contribution. While the
dynamical phase term is always real and independent of
the modulation frequency ω, the Berry phase contribu-
tion vanishes as ω → 0 and can display a nonvanishing
imaginary part in models where (dϕ/dk) 6= 0. Therefore,
we may conclude that for λ < λ̄c the imaginary part of
the quasi energies, as predicted by the adiabatic analysis,
reads

Im (µ±) =
ω

2π
Im(γB±) = ± ω

4π

∫ 2π

0

dk
dϕ

dk
sinhψ(k)

(B9)
where the real function ψ(k) is defined by Eq.(A11).

Second case: λ > λ̄c. In this case the two energy curves
E±(k), as k spans the interval (0, 2π), may touch one an-
other at E = 0, as shown by the solid curves in Fig.5(b).
The crossing occurs when k equals the critical values
k = kc such that λW (kc) = ±R(kc). At such points,
the instantaneous Hamiltonian H(kc) is not diagonaliz-
able and displays an exceptional point. Eventually, if
W (k) does not vanish in the entire range (0, 2π), at large
values of λ the two energy curves can become separated
and fully lie on the imaginary axis.
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The occurrence of the instantaneous exceptional points
and energy curve touching at k = kc during the cycle
when λ > λ̄c makes it formally invalid the adiabatic anal-
ysis discussed in the previous case. To overcome such a
limitation, we slightly modify the Hamiltonian of the sys-
tem, from H(k) to Hε(k), by letting

(Hε(k))11 = iλW (k) + ε , (Hε(k))22 = − (Hε(k))11
(B10)

where ε > 0 is a small real parameter. For ε = 0 we re-
cover the original Hamiltonian H(k). The instantaneous
eigenenergies of Hε(k) read

Eε ± = ±
√
R2(k)− (λW (k)− iε)2. (B11)

A non-vanishing (albeit small) value of ε breaks exact PT
symmetry and avoids the energy curve touching and the
appearance of the instantaneous exceptional points dur-
ing the adiabatic cycle, as shown by the dashed curves
in Fig.5(b). Since the two energy curves are now line
gapped and there are not exceptional points along the
cycle, we can again expand the state vector of the sys-
tem as a superposition of the instantaneous eigenstates
of Hε(k) with adiabatic amplitudes a±(k), which evolve
according to Eqs.(B4) and (B5) (these are exact equa-
tions). The main difference is that the Berry connection
and instantaneous eigenenergies entering in such equa-
tions are now those of the modified Hamiltonian Hε(k)
rather than H(k). The expressions of the instantaneous
(right and left) eigenstates of Hε(k), and thus of Berry
connection and Berry phases, are formally the same as
those of H(k), with the complex angle θ = θ(k) now de-
fined by the relation

tan θ(k) =
R(k)

iλW (k) + ε
. (B12)

It should be noted that, as ε → 0 the imaginary part
of θ(k) diverges at the critical values k = kc, however
for a linear crossing, such that λW ′(kc) 6= ±R′(kc),
the singularity of cos θ(k) near k = kc is of the type
cos θ(k) ∼ 1/

√
k − kc and thus integrable, leading to a

finite value of the Berry phase according to Eq.(A8).
To calculate the quasi energies, we exploit the fact that

µ− = −µ+, so that we can compute the quasi en-
ergy of the dominant adiabatic eigenstate of the sys-
tem, i.e. with the largest imaginary part of instanta-
neous energy [corresponding to the dashed curve in the
first quadrant of Fig.5(b)]. For such a state we can
in fact safely apply the adiabatic approximation, avoid-
ing the problem of adiabaticity breakdown that could
arise for the non-dominant eigenstate [113, 114]. For
example, assuming that u+(k) is the dominant instan-
taneous eigenstate, i.e. with Im(E+(k)) ≥ 0, we can
safely apply the rotating-wave approximation to the sec-
ond term on the right hand side of Eq.(B4), thus obtain-
ing a+(2π) ' a+(0) exp(−iγB+). Proceeding as in the
previous case, in the adiabatic limit one then obtains the
following expression of the quasi energy µ+, associated
to the dominant adiabatic eigenstate

µ+ =
1

2π

∫ 2π

0

dkE+(k) +
ω

2π
γB+ . (B13)

The other quasi energy is then given by µ− = −µ+.
This result formally coincides with the one obtained in
the case λ < λ̄c [see Eq.(B8)], however in Eq.(B13) the
Berry phase term should be obtained from the modified
angle θ, given by Eq.(B12), and then taking the limit
ε→ 0. The main difference in the λ > λ̄c case is that the
dynamical phase contribution to the quasi energy has a
non-vanishing imaginary part, which dominates over the
imaginary contribution of the Berry phase term in the
adiabatic (ω → 0) limit.
Finally, we mention that at the phase transition point
λ = λ̄c the crossing of the exceptional point during the os-
cillation cycle, at k = kc, is quadratic rather than linear,
i.e. one has λW (kc) = ±R(kc) and λW ′(kc) = ±R′(kc).
In this case, as ε → 0 the singularity of cos θ(k) near
k = kc is of the type cos θ(k) ∼ 1/(k − kc) and thus
it is not integrable, leading to a diverging value of the
Berry phase according to Eq.(A8). Therefore, the adi-
abatic analysis fails to predict the correct values of the
quasi energies as λ approaches the critical value λ̄c, ei-
ther from below or from above. Such a failure is clearly
illustrated in the exactly-solvable model with Hamilto-
nian H(k) given by Eq.(24), discussed in the main text
[see specifically Eq.(29) and Fig.1(b)].
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