L))

Check for
updates

Software Fault Tolerance in Real-Time Systems: Identifying
the Future Research Questions

FEDERICO REGHENZANI, DEIB, Politecnico di Milano, ITA and ESTEC, European Space Agency, NLD
ZHISHAN GUO, Department of Computer Science, North Carolina State University, USA
WILLIAM FORNACIARI, DEIB, Politecnico di Milano, ITA

Tolerating hardware faults in modern architectures is becoming a prominent problem due to the miniaturiza-
tion of the hardware components, their increasing complexity, and the necessity to reduce costs. Software-
Implemented Hardware Fault Tolerance approaches have been developed to improve system dependability re-
garding hardware faults without resorting to custom hardware solutions. However, these come at the expense
of making the satisfaction of the timing constraints of the applications/activities harder from a scheduling
standpoint. This article surveys the current state-of-the-art of fault tolerance approaches when used in the
context of real-time systems, identifying the main challenges and the cross-links between these two topics.
We propose a joint scheduling-failure analysis model that highlights the formal interactions among software
fault tolerance mechanisms and timing properties. This model allows us to present and discuss many open
research questions with the final aim to spur future research activities.

CCS Concepts: « Computer systems organization — Real-time systems; Dependable and fault-
tolerant systems and networks; « Software and its engineering — Software fault tolerance; Real-time
systems software;

Additional Key Words and Phrases: Real-time, fault-tolerance, mixed-criticality

ACM Reference format:

Federico Reghenzani, Zhishan Guo, and William Fornaciari. 2023. Software Fault Tolerance in Real-Time Sys-
tems: Identifying the Future Research Questions. ACM Comput. Surv. 55, 14s, Article 306 (July 2023), 30 pages.
https://doi.org/10.1145/3589950

1 INTRODUCTION AND MOTIVATION

Hard real-time systems must satisfy both temporal and logical requirements. At the design phase,
system correctness is usually proved, for the former, by a scheduling analysis and, for the lat-
ter, by formal verification or extensive testing. However, even assuming flawless design of the

This work has received funding from the European Space Agency (OSIP grant no. 4000133770/21/NL/MH/hm), ICSC Na-
tional Research Center in High-Performance Computing, Big Data and Quantum Computing, and NSF (grant no. CCF-
2028481).

Authors’ addresses: F. Reghenzani, DEIB, Politecnico di Milano, via Ponzio 34/5, Milano, ITA, 20133, ESTEC, European
Space Agency, Keplerlaan 1, Noordjwick, NLD, 2201; email: federico.reghenzani@polimi.it; Z. Guo, Department of
Computer Science, North Carolina State University, 2262 EB II, 890 Oval Dr, Raleigh, North Carolina, USA, 27606; email:
zguo32@ncsu.edu; W. Fornaciari, DEIB, Politecnico di Milano, via Ponzio 34/5, Milano, ITA, 20133; email: william.
fornaciari@polimi.it.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0360-0300/2023/07-ART306 $15.00

https://doi.org/10.1145/3589950

ACM Computing Surveys, Vol. 55, No. 14s, Article 306. Publication date: July 2023.

https://orcid.org/0000-0002-1888-9579
https://orcid.org/0000-0002-5967-1058
https://orcid.org/0000-0001-8294-730X
https://doi.org/10.1145/3589950
mailto:permissions@acm.org
https://doi.org/10.1145/3589950
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3589950&domain=pdf&date_stamp=2023-07-17

306:2 F. Reghenzani et al.

system, hardware can still be the cause of violation of these constraints due to its natural suscep-
tibility to faults. In critical systems, it is essential to guarantee a certain degree of resilience to
hardware faults. No system can tolerate an unlimited amount of hardware faults: safety-critical
standards dictate precise fault rates that functions performed by the system must achieve to be
considered compliant. This necessary dependability can be achieved by employing hardware so-
lutions that mitigate or tolerate the faults, for instance, by redundancy. Alternatively, software
techniques can be employed with the crucial advantage of not requiring any custom hardware com-
ponents. These software techniques, when applied to hardware faults, are usually under the um-
brella term Software-Implemented Hardware Fault Tolerance (abbreviated with different acronyms,
SIFT [104], SWIFT [87], or SIHFT [37]). SIFT solutions have a positive impact on hardware cost
and production development. This convenience becomes a vital requirement for Commercial Off-
The-Shelf (COTS) hardware in which strict fault tolerance is not a common design goal. The avail-
ability of COTS hardware led to significant trends in both the automotive and aerospace sectors
over the past few years in order to reduce design costs and time to market. Even space agen-
cies have active working groups studying how to integrate COTS hardware in critical systems
[70, 80].

The computational power demand of emerging applications is increasing, and hardware manu-
facturers are striving to increase the computational capability of the computing platforms. How-
ever, this process is obstructed by the single-core performance barrier, mainly due to thermal and
power constraints, which make increasing clock frequency difficult. Therefore, to achieve the de-
sired performance, the hardware components are becoming increasingly smaller and implement
complex features (pipelines, multicore, multilevel caches, etc.). These undaunted trends have a
double effect: increasing the fault rate and making the real-time problem of formally guaranteeing
the temporal requirements harder. In turn, they create a challenging environment [21]: on one
hand, the increased fault rate pushes for SIFT approaches; on the other hand, the timing prob-
lem makes their use difficult. The major difficulty in using modern hardware in critical systems
is computation of the Worst-Case Execution Time (WCET) of the tasks, an essential metric to
perform a correct scheduling analysis and, therefore, prove the temporal correctness. A partial so-
lution to the WCET problem is the mixed-criticality model for real-time tasks, as described later in
Section 2.6.

Motivation. Software fault tolerance algorithms have a clear impact on real-time performance:
the necessity to reserve computational resources and time for recovery routines makes schedul-
ing more challenging. Several state-of-the-art fault-tolerant solutions exist, and many real-time
scheduling algorithms have been developed in the last 40 years. However, analyzing the real-time
characteristics of fault tolerance algorithms and improving scheduling in this direction received
less attention from the research community. As we present later in this article, the opposite prob-
lem - how scheduling decisions impact fault tolerance — has been analyzed by very few works.
There is a great potential for the research community to address the many open challenges on
fault-tolerant real-time systems. Special focus can be given to mixed-criticality systems, an attrac-
tive future direction as also stated in the Burns and Davis survey [18]: “Although there is clear link
between Fault-Tolerant and Mixed-Criticality, there has not yet been much work published that
directly addresses fault-tolerant mixed criticality systems”

Contributions. This article summarizes the relevant literature, identifies current open challenges,
and proposes possible future directions for research on real-time fault-tolerant systems, including
mixed-criticality systems. The focus of the article is on SIFT approaches, that is, software tech-
niques to tolerate hardware faults. SIFT and, consequently, this article do not deal with software

ACM Computing Surveys, Vol. 55, No. 14s, Article 306. Publication date: July 2023.

Software Fault Tolerance in Real-Time Systems 306:3

faults, either functional (e.g., bugs) or timing (e.g., incorrect estimation of the WCET). Rather, the
focus is on resilience to hardware faults. In this survey, we:

o Introduce the basic concepts of fault tolerance and related topics, in addition to providing a
background of real-time modeling (Section 2);

e Review the current literature on (hard) real-time scheduling analyses and techniques when
fault tolerance — in particular, SIFT — is considered (Section 3);

e Propose a joint model for scheduling and failure analyses for SIFT, highlighting the interac-
tion between the two analyses (Section 4);

o Thanks to the joint model, outline the current challenges and future possible research direc-
tions for fault-tolerant real-time systems (Section 5).

The goal of this article is not to survey the fault-tolerance approaches, nor the real-time scheduling
algorithms, for which many literature reviews are available.! Instead, we focus on the intersection
of these two topics, particularly on the identification of the open problems.

2 BACKGROUND

This section provides the knowledge on reliability engineering theory needed for understanding
the issues and clearly defines all of the related terminology.

2.1 Terminology

Fault, error, and failure are terms sometimes used interchangeably, but there is a clear distinction
between them. While different definitions exist, in this article, we use the ones from the IEEE
Standard 610.12 [48]:

o A faultis a defect in a hardware device or component. This definition includes any variation of
the actual behavior from the designed behavior, for example, a bit flip or a broken transistor.
There are many models for faults. The most common one for transient faults is the Single
Event Upset (SEU), when a bit is accidentally flipped in the memory: we expect a 1 but it
is actually 0 or vice versa. Many other models exist, such as Multiple Event Upset (MEU) or
Single Hard Error (SHE).

An error is the difference between a computed, observed, or measured value or condition and the
true, specified, or theoretically correct value or condition. The error is the effect on the system
caused by the realization of a fault. An example is an SEU in the memory location containing
the value read from a distance sensor, which changes the computed distance from the real
“10 meters” to the erroneous “26 meters.” In contrast to a fault, an error is a deviation in the
software functionality.

A failure is the inability of a system or component to perform its required functions within
specified performance requirements. A failure occurs when the system does not perform ac-
cording to its requirements due to the presence of one or more errors. Considering the pre-

vious example, if the system is required to carry out the distance value with an accuracy of
1 meter, the “26 meters” output is a violation of the system requirements and, thus, a failure.

From the previous definitions, it is possible to notice that a fault can exist yet it does not produce
an error — for example, an SEU in an unused memory region —and an error can exist while it does
not produce a failure — for example, when the erroneous value in a variable does not impact the
system output or the output is still compliant with the accuracy requirements.

1We omitted citations here due to the large number of survey articles available in the literature for these two vast fields. A
quick search with keywords will return numerous results by major publishers.

ACM Computing Surveys, Vol. 55, No. 14s, Article 306. Publication date: July 2023.

306:4

F. Reghenzani et al.

Table 1. Possible Criteria for Fault Classification Proposed by Avizienis et al. [5]

and Classes Featured in This Article (Third Column)

Criterion Possibility Selected
Phase development/operational operational
Location internal/external internal
Phenomenological cause | natural/human-made natural
Dimension software/hardware hardware”
Temporal persistence permanent/transient all
Objective malicious/non-malicious | non-malicious’
Intent deliberate/non-deliberate irrelevant
Capacity accidental/incompetence irrelevant

* Hardware refers to the cause of the faults, but the presence of a hardware fault may impact
the software behavior.

* Although malicious faults are not the main subject of this work, a brief discussion is
available in Section 5.7.

2.2 Faults Taxonomy

Different ways to classify the characteristics of faults exist. For instance, AviZienis et al. [5] propose
eight different criteria to classify faults as delineated in Table 1. These criteria lead to a combination
of 256 different fault classes. In order to clearly define the boundaries of the discussion in this
article, we restrict our analysis according to the third column of Table 1. The choices have been
driven by the necessity to focus on the faults that are (1) not directly linked to human activities and,
therefore, subject to nondeterministically quantifiable uncertainties; (2) possible to be modeled
with a joint failure-timing model; (3) related to the operational phase of the system, thus, not
considering any design mistake. This selection also allows us to focus on the SIFT techniques
because we consider only the hardware as a fault source.

The temporal persistence criterion plays an important role in the subsequent discussion of model-
ing faults in real-time systems. Avizienis et al. [5] identified two classes for this criterion: transient
and permanent. In the following, we characterize these two classes and add another class: inter-
mittent faults.

Transient faults. Transient faults are defined as the faults that produce a temporary effect on the
system, and their causes disappear (almost) immediately. The SEU model is the most commonly
used representation of these faults. They can originate from three main causes [44]:

(1) Alpha radiations emitted from impurities of the materials used for the chip package that
contain spurious radioactive isotopes.

(2) High-energy cosmic rays that, when hitting the hardware components, emit alpha and
gamma radiations.

(3) Neutron-induced fission, caused by boron atoms used in the reflow soldering process or
p-doped state of the transistors, emitting alpha and gamma radiations.

The probability of events caused by (1) and (3) can be reduced (but not eliminated) by improv-
ing manufacturing processes, whereas the events caused by (2) can be only partially reduced by
shielding the hardware. However, large and heavy shields are often unfeasible from weight and
size standpoints, especially for aerospace applications. In addition to these causes, poorly designed
hardware may introduce transient faults caused by, for example, signal cross-talks, electromag-
netic effects of memory cells [56], or improperly filtered power fluctuations [36]. The continuous
technological advancements in decreasing hardware size and the increasing number of transistors

ACM Computing Surveys, Vol. 55, No. 14s, Article 306. Publication date: July 2023.

Software Fault Tolerance in Real-Time Systems 306:5

make computing systems more susceptible to transient faults. It has been observed [63] that on a
standard server DRAM without Error-Correcting Code (ECC), the fault rate is in the order of 107>
per hour. Approximately 30% of these faults caused a failure in software functionalities. However,
in the space environment or with field-programmable gate array (FPGA) devices, this probability
value is significantly higher, reaching 1072 per hour [71, 96]. Due to the increasing susceptibility
to transient faults of modern architectures, some recent works do not limit the analysis to a single
event. Rather, they also consider MEU faults [3, 7]. The use of error-correcting devices (such as
ECC memories) makes a system resilient to SEUs transparently with respect to the software, and
some approaches can guarantee partial resilience to MEUs. Their implementation, however, re-
quires a specialized hardware implementation that clashes with the goal of using COTS hardware
for critical applications.

Intermittent faults. Intermittent faults are similar to transient faults regarding the persistence
property, but they tend to occur in fault bursts, that is, a continuous and rapid sequence of transient
faults. They are mainly caused by external environmental conditions, such as temperature and
voltage variations, hardware issues (both manufacturing defects and wear out), or High-Intensity
Radiated Fields (HIRF) [39, 67]. The latter case is a sensitive problem for avionics applications [4],
especially in proximity to airports due to the presence of a large number of RF devices. While
temperature-, voltage-, or RF-induced faults tend to occur in random locations, hardware-related
intermittent faults repeatedly affect the same location. This particular case of hardware-related
faults has been studied in the works of Constantinescu [24, 25] and of Gracia-Moran et al. [39].

Permanent faults. Permanent faults have been extensively studied in the literature, and they are
characterized by the fact that a permanent fault continues to exist until the component is repaired
or replaced. Hardware is always subject to faults caused by infant mortality (early-stage faults),
random uncontrollable faults, and component wear out, which comprise the well-known bathtub
curve hazard function [105]. In addition, environmental effects may be sufficiently powerful to
break down one transistor or other components. A resource that suffers from a permanent fault is
usually considered full-failed and removed from the pool of available resources. In 2018, Gunawi
et al. [41] proposed” a further classification of permanent faults that may allow the resource to
remain available in degraded modes:

e Fail-Stop: The resource/component is completely not usable. For example, one of the cores
of the processor stops working.

o Fail-Partial: One part of the resource is offline, whereas another part is still usable. An ex-
ample is a stuck bit in a memory location: that specific cell is considered failed, but we can
continue to use the remaining memory by remapping the task memory spaces.

o Fail-Slow: The resource components still work but at reduced performance. Two examples:
(1) a fault in the cooling system that forces the operating system to reduce the frequency
of processors to keep the temperature in an acceptable range; and (2) the failure of one
out of two requires the shutdown of some computing components to remain in the power
budget.

Clearly, the difference between Fail-Stop and Fail-Partial depends on the granularity that we select
for the resource. For example, if a single processor is considered to be one single resource, it means
that the failure of one core is a Fail-Partial fault, whereas if the core is considered to be a single
resource, its failure is considered to be Fail-Stop.

2The work focused on large-scale systems, but the concepts can also be applied to embedded systems.

ACM Computing Surveys, Vol. 55, No. 14s, Article 306. Publication date: July 2023.

306:6 F. Reghenzani et al.

3 MR Re-execution
(@) o (b)
23
O
_ Voting S A
®3) ~ protocol 32)
71 3) @ 1,1
T Vv - >
CPU3 1,1 >
] > t
_EE @ 25
o s T 5 Re-execute Re-execute
a2 N Vi ~
Ao CPU2 1,1 > o %
£
L0 A t ﬁg Y Y
1 T o T 2 3
CPU1 T1(1) \ « wE "1 T, 1,1 | -
> >
t t
Hot-Standby Checkpoint/ Restore
(c) (d)
— =
o5
_ Output e S OA
(@) = phase 32 11 |(12 [C|T,13
95 T @ @ o @ >
§E& cpuz [T M2 > | e to
5 8 t’ N = Restart from C K PT;
%O T(l) A o3 1
1 D 1o T
CPU1 1,1 g L A 4
Ll O o
t n TI11 |(71,1 R| 1,12 |(: 11,
N
L
t

(k)

Fig. 1. The four main software fault recovery approaches. In (a), (b), and (c), the symbol 7;j represents the
Jj-th job of the i-th task, and k identifies the redundancy or re-execution job. Instead, in (d), 7; j i is the k-th

part of the job 7; ;. In the depicted example, the job 71 1 is composed of three parts.

It should be noted that some classes of faults are categorized as permanent or transient de-
pending on the context. For example, certain Single Event Latchup (SEL) faults can be restored by
cycling the power of the device. However, in the context of hard real-time systems, such faults are
usually considered permanent because, in most applications, the reboot delay potentially causes a
deadline miss or the loss of data.

2.3 Fault Recovery

Software fault recovery techniques are categorized in space redundancy and time redundancy. The
former resembles the traditional hardware fault tolerance techniques by replicating the workload
over different resources. The latter consists of replicating the workload on different time periods,
possibly on the same resource. The four main approaches are depicted in Figure 1.

Space redundancy techniques. The N-modular redundancy (NMR) (also called active redun-
dancy [48]) technique is the simplest approach to software fault tolerance, similar to traditional
hardware redundancy. Each critical task is replicated N times (e.g., 2MR, 3MR). The main task and
the replica tasks perform exactly the same operations, and a voting mechanism decides which out-
put is the correct one. The voter can be implemented in hardware or software. In this article, we
focus on software voters, whose taxonomy is described in the survey-style article by Latif-Shabgahi
etal. [60]. The redundancy tasks usually run on different memory spaces to be resilient with SEUs,
and in the case of availability on multicores/processors, they run on different computational units.
The number of replicas is usually immutable. For this reason, N-MR is also categorized in static-
redundancy techniques. Instead, its dynamic counterpart is reconfigurable duplication (also called
standby redundancy [48]). This technique consists of still having (N — 1) replicas that, however,
remain on standby and perform full computation only if a fault is detected. We can further classify
the standby redundancy techniques in the following.

ACM Computing Surveys, Vol. 55, No. 14s, Article 306. Publication date: July 2023.

Software Fault Tolerance in Real-Time Systems 306:7

e Hot-Standby: Both the main task and replicas compute the output, but only the main task
actually carries out the result, whereas the replicas’ outputs are suppressed in normal opera-
tion. If a fault is detected, the main task output is suppressed and one of the replicas becomes
the main task.

e Cold-Standby: The task replicas do not perform any calculation; they just keep the internal
state updated. If a fault occurs, one cold-standby replica is elected as the new main task and
starts to perform full operations. The delay in carrying out the result when a fault occurs
is higher in this case compared with hot-standby, but it reduces the overhead in normal
operation.

These two definitions may change depending on the context. Other terms are often used inter-
changeably, for example, Warm-Standby is sometimes used as a synonym for Hot-Standby.

Time redundancy techniques. Many different approaches have been proposed as time redun-
dancy fault tolerance techniques. The most common ones are re-execution, checkpoint/restart, re-
covery blocks, and forward error recovery. The underlying concept of all of them is to execute a
recovery routine when a fault is detected. In particular:

e The re-execution (or retry) technique restarts a job (potentially multiple times) if a fault is
detected. The extra computation is identical to the original job. If the state of the job or the
environment needs to be restored after a fault, an additional procedure, called Backward Error
Recovery, is performed. In some previous works (e.g., [43, 78]), due to scheduling reasons,
the currently preempted jobs are also re-executed even if not affected by the fault. This last
technique is called multiple recovery.
The checkpoint/restart (or checkpoint/restore) is an evolution of the re-execution technique,
which periodically saves the state of the tasks (checkpoint). Fault detection triggers the
restart from the last available checkpoint (restart). In contrast to the re-execution technique,
the computation does not have to restart from scratch, reducing the response time in the
case of a fault. However, it introduces an additional overhead for the checkpoint, even in the
absence of faults. This strategy is typical of High-Performance Computing (HPC), in which
tasks take hours or days to complete and restarting from scratch is not affordable.

e Recovery blocks can be considered as another variation of re-execution. In the case of a fault,
a different version of the code is run to perform the same function (possibly with degraded
performance). This technique also allows solving common-mode errors, for example, unex-
pected software bugs.

e Forward error recovery consists of executing a special routine that fixes the error without
re-executing the original task. It is usually implemented with an exception-handling mech-
anism: an exception is raised/thrown, breaking the execution flow, and dedicated handling
code manages the erroneous condition. This is typical of storage and network algorithms
that use error-correcting code to fix the error. However, the use of this technique is usually
limited to a few application scenarios.

2.4 Fault Detection and Isolation

The purposes of fault detection and fault isolation are to determine the presence of a fault (or an er-
ror) in the system and to identify the location and characteristics of the fault, respectively. Together
with the previously mentioned fault recovery techniques, they are bundled under the umbrella
term Fault Detection, Isolation, and Recovery. Many surveys on state-of-the-art hardware/software
strategies are available [47, 92, 99].

A robust fault detection algorithm is essential for certain fault recovery techniques such as re-
execution. In fact, while NMR is intrinsically able to detect and isolate the faults using the voting

ACM Computing Surveys, Vol. 55, No. 14s, Article 306. Publication date: July 2023.

306:8 F. Reghenzani et al.

mechanism, time redundancy techniques need proper methods that do not require re-executing the
whole task to detect the faulty condition. Such methods often detect errors instead of faults. Hard-
ware solutions for fault detection include (1) fail-signal processors [77] that can detect (usually, with
a co-processor) abnormal functional or timing behaviors; (2) error-detecting code, mainly used in
memories, bus, and communication devices; (3) watchdogs, which detect timing violations of the
software; and (4) hardware acceptance tests. For software techniques, dedicated fault detection
routines could run in parallel, at predefined intervals, or at the end of each job. They usually look
for signature verification (e.g., control-flow graph signatures [62, 76]), run software watchdogs, or
perform acceptance tests (also called sanity checks [90]). The acceptance tests can be performed in
many different ways that strongly depend on the application itself. Good examples come from con-
trol theory, in which several different acceptance tests have been developed to verify the output
of controllers (see Hwang et al. [47] for a comprehensive survey).

Hardware fault-detection techniques usually have no impact on the execution time — being
executed in parallel or transparently to the software — or included in the architectural timing
specification. Instead, for software fault detection, algorithm overhead should be taken into ac-
count in the design phase. The most common case is to execute the software acceptance test at the
end of each job. From a modeling standpoint, the overhead of the fault-detection algorithm is usu-
ally included in the WCET of each task [16, 81, 101]. Instead, in the case of algorithms running in
parallel, for example, in a multithreading setup [102], we need to consider the overhead separately.
However, to the best of our knowledge, no works tried to analyze the timeliness of such parallel
software fault-detection approaches.

2.5 Fault Injection

In both industrial and academic fields, testing the system against faults is essential to verify its
resilience to possible errors. To effectively test detection and recovery capabilities, we cannot wait
until a sufficient number of transient faults occurs; thus, artificial faults have to be injected into
the system. Fault injection techniques can be categorized [45, 115] as follows.

e Hardware-Based: Using hardware devices to inject faults, including with contact (e.g., con-
nect a probe to cause voltage spikes) or without contact (e.g., RF disturbances).

e Software-Based: Software that runs “in the background” and writes on memory locations
according to a random or predefined pattern.

e Simulation-Based: The hardware platform is simulated, and the fault injection is introduced
at Register-Transfer Level (e.g., in VHDL). The faults follow specific patterns and distribu-
tions determined at design time and cannot change at runtime.

e Emulation-Based: The hardware platform is written on an FPGA in addition to some extra
blocks to allow a host computer to inject fault in a transparent way with respect to the
processor under analysis.

All of these options have both advantages and disadvantages. Hardware-based fault injections are
perfect representatives of the system and the faults. However, such mechanisms require complex
devices, especially if one is trying to simulate transient faults. For example, nuclear devices are
used to emit ion radiations and test the hardware resilience to faults [55], but this approach is very
expensive and not practical for software development purposes. Simulating a fault in a particular
area of the system (e.g., one particular bit of the memory) is also not easy with hardware tech-
niques. Conversely, software-based solutions are very easy to be implemented, but from a real-time
perspective, they break the timing property of the system, making an analysis of their overhead
necessary. They may also not be able to stimulate certain system parts that are not directly accessi-
ble to software. Consequently, achieving representativeness is challenging [73]. Simulation-based

ACM Computing Surveys, Vol. 55, No. 14s, Article 306. Publication date: July 2023.

Software Fault Tolerance in Real-Time Systems 306:9

solutions are not intrusive and have maximum fault controllability. However, they are tricky to
develop, and a considerable simulation time is needed to gather enough data. Emulation-based ap-
proaches are usually relatively easy to implement, but they have the same issues as software-based
techniques, including the timing properties breaking.

In conclusion, there exist many different techniques to inject faults, each with its own advan-
tages and disadvantages. Which technique to choose depends on the context, the necessary test
accuracy, and the availability of test equipment.

2.6 Mixed-Criticality Systems

In critical systems, not all functions require the same level of guarantees in terms of timing or
functional correctness. Criticality is a concept present in many safety-critical standards (e.g., DO-
178B [89] and IEC 61508 [49]) and is usually assigned to each function provided by the system.
It represents the mapping of the failure of a component (either software or hardware) with the
impact on the whole system and environment safety. For instance, the aviation standard DO-178B
has five criticality levels, named Design Assurance Levels (DALs). The highest DAL, DAL A, is
assigned to the functions whose failure effects can cause catastrophic damage (loss of the airplane
and human lives), while the lowest, DAL E, is the criticality level assigned to functions with no
impact on flight safety in the case of malfunction.

The necessity to reduce design and production costs of systems, also in terms of non-functional
properties (such as energy, power, weight, etc.), spurred the trend to consolidate multiple appli-
cations into the same system, possibly with different criticality levels. Such systems are called
mixed-criticality systems. Regarding the software and timing domains, a criticality level is assigned
to each software task. In the traditional Vestal’s model for mixed-criticality [100], a set of different
WCETs is assigned to the tasks, each one computed with a given confidence level depending on the
criticality. The survey of Burns and Davis [17] recaps the recent developments in mixed-criticality
by the real-time community.

The software failure model of a task is usually considered in the logical sense - the task pro-
duces an incorrect output — or in the timing sense — the task does not produce a correct output by
the prescribed time. In dual-criticality systems, the HI-criticality tasks are allowed to “fail” in the
timing sense by overrunning their LO-criticality WCET due to an underestimation of it. How to
apply fault tolerance and graceful degradation, making the system robust and resilient, has been
the subject of previous works (e.g., see [19]). This concept of tolerating temporal faults is orthog-
onal to the topics in this article. Instead, we focus on hardware faults and SIFT. In Section 4.2, we
describe in detail the failure model for software tasks considered in this work.

3 LITERATURE REVIEW

This section presents the state-of-the-art of the scientific literature dealing with fault tolerance
mechanisms applied to real-time systems. It is not the goal of this section to provide an extensive
review of the fault-tolerance techniques, which is already present in other surveys available in
the literature, for example, [40, 91]. A survey published in 2018 [66] reviewed the state-of-the-art
works on joint fault and timing analyses, focusing on multicores, WCET estimation in the presence
of hardware faults, and on fault injection mechanisms. This survey by Lofwenmark and Nadjm-
Tehrani [66] can be considered orthogonal to this section, which instead focuses on the timing
properties of fault-tolerance techniques.

The classification of the papers according to the used fault tolerance mechanism(s) is summa-
rized in the Venn diagram of Figure 2. In the next subsections, we describe and analyze these
papers.

ACM Computing Surveys, Vol. 55, No. 14s, Article 306. Publication date: July 2023.

306:10 F. Reghenzani et al.

Checkpoint/Restart

Re-Execution

Recovery Blocks Replica/Standby

Fig. 2. The state-of-the-art papers classified based on the used fault tolerance technique.

3.1 Re-execution

The re-execution strategy is the most studied in the literature as the software-level fault tolerance
mechanism for real-time systems. To the best of our knowledge, Pandya and Malek in 1994 [78]*
is the first work on real-time schedulability analysis that considers fault tolerance aspects, specif-
ically the re-execution of the tasks in the case of transient faults. The authors computed the uti-
lization upper bound that guarantees the schedulability of tasks under the Rate Monotonic (RM)
scheduler (U < 0.5), assuming that one fault can occur and tasks restarted. In particular, the fault
must occur with a frequency not greater than the inverse of the maximum task period, that is,
Tr > maxy, T;, where T is the minimum interarrival time for the faults and T; the period of the
7; task. Their approach is multiple recovery; it restarts all of the partially completed tasks when
the fault occurs, including the preempted ones. This has been done in order to guarantee that
the RM priority remains fixed. Ghosh et al. in 1995 [35] extended this work in 1998 [36]. They
proposed the utilization bounds for the re-execution strategy, improving the previous bounds of
Pandya and Malek [78]. The main change is to restart just the failed task and not the whole set of
active tasks. They also briefly studied the case of multiple failures of the same task or of different
tasks.

The concept of interarrival time for the faults was also considered by Burns and Davis [16] in
1996, in which the authors proposed a schedulability analysis based on the response time analysis
for fixed-priority schedulers as a function of Tr. The authors computed the schedulability condi-
tions for re-execution, forward error recovery, recovery blocks, and checkpoint/restart techniques.
In 1999, this work was extended [20] by providing probabilistic bounds and the exact formulation
for the minimum interarrival time of faults when they are distributed according to the Homoge-
neous Poisson Process assumption (described later in Section 4.3).

In 2009, Zhu and Aydin [114] studied the effect of dynamic voltage and frequency scaling (DVFS)
on reliability. While reducing frequency and voltage has beneficial effects regarding permanent
faults, it also increases the probability of transient faults, which has been analyzed by the authors.
Their scheduling algorithm also reclaims the slack space to run recovery tasks. A 2022 survey on

3The paper had been published in the IEEE journal in 1998, but the original technical report has been available since 1994.
This is also verifiable in the paper of Burns and Davis [16] published in 1996.

ACM Computing Surveys, Vol. 55, No. 14s, Article 306. Publication date: July 2023.

Software Fault Tolerance in Real-Time Systems 306:11

energy-aware scheduling algorithms [110, Section 5] describes some works that considered both
the scheduling and reliability problems when transient faults are caused by DVFS settings.

The re-execution technique was also studied by Many and Doose [67] in the case of intermittent
fault bursts, focusing more on disturbance duration rather than fault frequency. Their approach
works for RM or Deadline Monotonic (DM) scheduling. They provided the schedulability analysis
as a function of burst duration and max processor utilization. Similarly, in 2014, Haque et al. [43]
proposed the utilization bound per Earliest Deadline First (EDF) with re-execution as a function of
the burst duration. Thekkilakattil et al. [98] suggest a fault-tolerant scheme such that the schedu-
lability is guaranteed if no more than one fault burst per hyperperiod occurs. If more than one
fault burst occurs, the processor frequency is increased to provide the best possible computational
power to schedule the re-execution and the remaining jobs.

In 2022, Kritikakou [58] studied the timing impact of re-execution in heterogeneous computing
when applied to GPUs subject to SEUs.

3.2 Mixed-Criticality

The first two works on mixed criticality and fault tolerance were proposed in 2014 by Pathan [79]
and Huang et al. [46]. Both converted the fault tolerance problem to a dual-criticality problem.
The former exploits the re-execution mechanism and the recovery routines for HI-criticality tasks,
whereas the LO-criticality tasks are dropped. The latter work used the re-execution mechanism and
proposed a degradation of the performance of LO-criticality tasks instead of task dropping. The
authors also derived a simple failure analysis to estimate the probability of a LO-criticality task to
be dropped or degraded, linking it with the requirement of the probability of failure per hour. As a
follow-up of the previous work, Lin et al. [65] proposed an EDF scheduling scheme based on the re-
execution of faulty HI-criticality tasks and the maximization of the LO-criticality task executions.
Then, an online slack reclaiming algorithm to accommodate recovery tasks for LO-criticality tasks
is discussed. Re-execution in a mixed-criticality context was also considered by von der Briiggen
et al. [101], which modeled a system with normal and abnormal modes. In normal mode, all of the
tasks meet the deadlines. When a fault occurs, the abnormal mode is activated, and the deadlines
are guaranteed for HI-criticality tasks only, whereas LO-criticality tasks have bounded worst-case
tardiness. The authors also considered intermittent faults.

In 2017, Zhou et al. [113] proposed another mixed-criticality approach in which the HI-criticality
tasks have redundancy similar to a replica but with a time redundancy. To tolerate 1 fault, they
run the HI-criticality task 3 times, and a voting mechanism decides the output. To tolerate 2 faults,
5 identical jobs are run, and so on. If needed, the LO-criticality jobs are dropped. Thekkilakat-
til et al. [97] proposed in 2015 an extension of their previous work on re-execution tasks [98]
which guarantees the fault tolerance requirements for the HI-criticality task only, whereas for LO-
criticality the fault tolerance execution is not guaranteed after the occurrence of a fault. A different
approach based on the application of re-execution and/or replica to task graph-based application
has been proposed by Kang et al. [54] in 2014. They analyzed the static schedulability problem in
mixed-criticality and multiprocessor context. More recently, in 2019, Safari et al. [90] studied the
scheduling of replica tasks in a dual-criticality and multicore setup by also considering energy op-
timization. In 2022, Chen et al. [23] studied the link between resource sharing and transient faults
in a mixed-criticality context. The authors developed a fault-tolerant scheme in which the normal
sections of the tasks are protected by re-execution, whereas the critical sections are protected by
replicas executed on a multicore processor.

Two mixed-criticality approaches were presented in 2011 and 2013 by Axer et al. [6] and Bolchini
Miele [14]. Both papers considered a simplified mixed-criticality model in which the importance
of each task affects only the fault tolerance and not the task timing properties, thus focusing more

ACM Computing Surveys, Vol. 55, No. 14s, Article 306. Publication date: July 2023.

306:12 F. Reghenzani et al.

on design-space exploration at the system level rather than on mixed-criticality schedulability
analysis.

Finally, it is worth citing Gonzalez [38], who, in 1997, years before the seminal Vestal [100] paper
on mixed-criticality, proposed an adaptive fault tolerance technique that degrades the execution
of noncritical tasks when faults occur.

3.3 Checkpoint/Restart

The Checkpoint/Restart (C/R) strategy is a common approach for HPC systems, but it has also
been studied for real-time systems. The first works on timing properties for C/R can be found in
the 1970s [34, 108] and 1980s [95]. However, the first works considering hard real-time require-
ments are the papers on the response time analysis by Burns et al. [16, 20] in 1996 and 1999. The
subsequent works focused on studying mainly the checkpoint rate, including the follow-up of the
works by Burns et al. by Punnekkat et al. [81]. The same year, in 2001, Kwak et al. [59] studied the
optimality of checkpoint periods using a Markov chain to model the Poisson distributed faults. The
work uses a control theory-like approach considering the multiple tasks case only with timeline
scheduling. In 2014, Zhengyong et al. [112] studied the optimality of the checkpoint rate when
considering intermittent burst faults and compared C/R with the re-execution strategy.

The first paper on real-time and fault tolerance with the goal of reducing the energy consump-
tion of a C/R approach was published in 2004 by Melhem et al. [68]. They assumed one single
transient fault per job. They followed two approaches: (1) periodic checkpoints; and (2) check-
point intervals have different sizes, increasing the frequency when approaching the deadline. They
find the optimal period length for the first case; they computed the reduction in the processor’s
speed for the second case. The reference scheduler is EDF. Two years later, in 2006, Zhang and
Chakrabarty [109] proposed another approach for power and energy management based on the
C/R mechanism. Their work focused on hyperperiod-oriented feasibility tests, that is, guarantee-
ing that k faults occurring in one hyperperiod are tolerable for a fixed-priority scheduler.

In 2016, Salehi et al. [93] proposed a tuning of the checkpoints frequency and processor fre-
quency based on both offline and online decisions. The nonuniformity of checkpoint intervals
(that are postponed as much as possible while guaranteeing k-fault tolerance) allows the energy
to be reduced. The authors focused more on the energy and fault aspects than timing properties.

In HPC, C/R has also been used to implement predictive reliability. A health monitor constantly
checks the system status, estimating its reliability to proactively report an imminent fault. This
strategy usually applies to permanent faults and allows the resource manager to migrate a task to
a different core or even a different system [85, 103].

3.4 Other Approaches

In 1997, Mosse et al. [72] studied standby-sparing systems on single- and multiprocessor scenarios,
providing a theoretical model for certain classes of applications and standby-sparing strategies.

The extensive work in 2013 of Zhao et al. [111] studied the case of frame-based tasks with
precedence constraints, expressed as a Direct Acyclic Graph (DAG) running on a system with
energy management strategies (DVFS) and a novel shared recovery scheme. This strategy is based
on recovery blocks that share the same time slots, turning to active in the case of fault. In this way,
it is not necessary to allocate time to each recovery block task (considering a single-fault scenario).
A DAG was also used by Chen et al. [22] to model a mixed fault tolerance approach that includes
both NMR and re-execution. The authors provided design strategies for real-time systems to select
the best fault-tolerance approach according to scheduling requirements in multicore systems.

In 2018, a short paper by Niu et al. [74] proposed the development of a scheduler for standby-
sparing systems (2NR hardware redundancy) with the aim of minimizing energy consumption.

ACM Computing Surveys, Vol. 55, No. 14s, Article 306. Publication date: July 2023.

Software Fault Tolerance in Real-Time Systems 306:13

In 2016, a mixed hardware/software approach was proposed by the authors of [2]. This paper
exploited the Simplex architecture that provides a hardware rescue computing unit that monitors
the main unit. When a fault is detected, the rescue unit reboots the main unit and provides simple
control of the system outputs to guarantee a minimal set of functional requirements while the
main unit is rebooting. This is an example of re-execution fault tolerance applied to the whole
system instead of at the task level.

Many other approaches to fault tolerance have been proposed in the context of distributed real-
time embedded systems. We decided to not include them in this literature review section because
they are out of scope with respect to timing analysis. Some examples include the work of Feng and
Lee [32] in event-based systems with the C/R mechanism and the work of Emberson and Bate [27]
based on hot backup replicas.

3.5 SIFT and Industry Standards

Depending on the application domain, different standards apply for safety-critical systems. Some
standards allow or suggest the use of software fault tolerance techniques, for example, the EN
50128 [31] for critical software in the railway industry explicitly cites all of the aforementioned
fault recovery techniques. The ECSS-Q-HB-60-02A handbook [30] by the European Space Agency
(ESA) describes various software replica approaches as possible SIFT mechanisms for COTS hard-
ware. However, the standards do not generally allow use of the failure rate at the software level.
ISO 26262 (Functional Safety in Road Vehicles) [50], DO-178B/C (Software Considerations in Air-
borne Systems and Equipment Certification) [88], and EN 50128 explicitly disallow the software
to have a defined probability of failure. This limitation comes from the impossibility of estimating
the probability of a software fault — intended as a bug or defect — to occur. However, if we imple-
ment SIFT by restricting the fault model according to Table 1, it is possible to compute exactly the
fault and failure rate after SIFT because the probability of the original event (the hardware fault)
is known. Reconciling the software and hardware fault/failure probability, as described in the fol-
lowing sections, allows better exploitation of the computing resources and formally guarantees
the satisfaction of the failure rate requirements.

4 CROSS-MODELING A FAULT-TOLERANT REAL-TIME SYSTEM

Most of the state-of-the-art works presented in the previous section used a traditional real-time
model. In this section, we propose a model extension based on resource assignment functions,
which allows a more accurate representation of the fault probabilities for each task. Then, we
present how to compute the probability that a job is affected by a fault and the consequent impact
on the failure requirement. As shown in Section 4.3, the use of this joint time-fault model can
improve the satisfaction of failure and schedulability requirements. Section 5 discusses possible
future work that may exploit this model.

4.1 Task and System Model

The task model is defined like a traditional real-time task model: the task set is identified by 7 =
{71, 72, ..., Tn}, and each task 7; = (C;, T;, Dy, p;°?) is modeled with the WCET C;, the period or
minimum interarrival time T; of the jobs, and the deadline D; (assumed constrained: D; < T;). It
is possible to consider further timing properties, but they are not necessary for the goals of this
work, since we are not focusing on a particular scheduling algorithm. The value p;°? represents
the safety requirement, that is, the maximum probability of a task failure to occur that we must
guarantee. All time values are expressed in workload units, that is, as the number of clock cycles

when the task is run on a unit-speed processor. The p;“? value is instead expressed as frequency

ACM Computing Surveys, Vol. 55, No. 14s, Article 306. Publication date: July 2023.

306:14 F. Reghenzani et al.

over time unit, as detailed in Section 4.3. Each activation of a task is called a job and is represented
by 7; ;. Each job has an activation or release time a; j, a start time s; ;, and a finishing time f; ;.

The resources of the systems R = {Ry, Ry, ..., Ry} represent all of the hardware components
that can be assigned to each task, for example, processors, memories, and I/O devices. Each task
is assigned to at least one resource. The assignment is performed statically offline or dynamically
online depending on the scheduling and resource management strategy employed. We express the
association of a task to its resource with the resource assignment function:

a(r.R) = {1 ifr assi.gned toR (1)
0 otherwise

With the resource assignment function, it is already possible to express the failure requirement

by considering the probability that a fault occurs in a job 7; j as the merged probability of a fault

to occur in the resources assigned to the task, that is, YR : a(z;, R) = 1. To improve the granularity

of the fault computation, we create more detailed representations of the resource usage by a task:

e The active space-share assignment function 0 < ag‘(r,R) < 1 and the inactive space-share
assignment function 0 < aé(r, R) < 1. They are a generalization of the previous definition of
resource assignment function representing the amount (in percentage) of the resource R that
is used by the task 7 with respect to the fault probability. The active space-share assignment
refers to when one job of the task started its execution but not yet finished (interval [s; ;, f; ;]).
In this case, any fault occurring during the job execution can directly cause an error. The
inactive refers to the time after the finishing time and before the next start time [f; ;, si, j+1]-
In this second case, any fault occurring before the next job execution may cause an error
during the next job execution. This distinction is typical of memory resources and allows a
better fine-grained estimation of the fault probability, reducing total job fault probability by
excluding unused memory regions from the calculus. For example, let us consider a memory
modelled with a uniform fault rate among the memory cells. Thus, if the task 7; is assigned
to memory R; of size 1024 MB, then a‘S“(ﬁ,Rl) = 0.25 and aé(rl,Rl) = 0.125 mean that the
task is using at most 256 MB of R; when active and 128 MB of R; when inactive. For CPUs,
this function typically assumes the Boolean values 0/1, that is, a task can be assigned or not
to the CPU, but not half-assigned.

e The exposure time share 0 < ar(r,R) < 1, which is the maximum percentage of the task
to be active in the resource R over its period. If the resource active period corresponds to
the task active period, then ar(7;,Rj) = (maxi(fix — sik))/T;. Note that ar(7;,R;) < 1;
otherwise, the scheduling would not be feasible. The difference T; — ar(7;, R;) is the inactive
time according to the definition of active and inactive space-share assignment.

Example 1. Let us consider a single-core single-memory system composed of two tasks 7; and
7, with D; = T; = 50, D, = T, = 100, and C; = 15,C; = 45 (the choice of harmonic periods
and implicit deadlines has been made to simplify the example, but they are not limitations of the
model). By using a preemptive RM scheduler,* we obtain the schedule depicted in Figure 3, which
is identically repeated in each hyperperiod. Let us also assume that the memory size is 128 MB and
both tasks use 1 MB of the memory when inactive and 16 MB when active. With these assumptions,
the tasks will suffer from an error in their next job execution if a fault occurs during their inactive

4The task set is schedulable because the utilization is U = % + % = 0.75, which is compliant with the 2-task RM
schedulability condition: 0.75 < 0.8284.

ACM Computing Surveys, Vol. 55, No. 14s, Article 306. Publication date: July 2023.

Software Fault Tolerance in Real-Time Systems 306:15

A A
" | |

T T T T T T T T T }
t
T T | T T T T T T T T ;
0 20 40 60 80 100 t
< > <€ > <€ >
T2 T2 T2
Inactive Active Inactive

Fig. 3. An example of two tasks scheduled with preemptive RM. The active and inactive periods of 7, are
annotated.

period inside the 1 MB of memory or during the active period inside the 16 MB of memory. We
can then compute the following values for the assignment functions:

af (r;, MEM) = a§(t;, MEM) = 0.125
ak (1, MEM) = a%(z,, MEM) ~ 0.007
ag(r;,CPU) = af(r,,CPU) = 1

I

ak(r1,CPU) = al(r,,CPU) = 0
ar(r1,CPU) = ar(r;, MEM) = 0.3
aT(Tg,CPU) = (ZT(TZ, MEM) =0.6

4.2 Failure Models

In the this subsection, we propose a failure model and analysis to show how the previous task
model - particularly the assignment functions - is helpful to improve the ability to comply with
the requirements. As with the previous task model, the failure model will allow us in Section 5 to
propose novel research directions. We limit the discussion of this section to transient and perma-
nent hardware faults by assuming them independent and identically distributed. This assumption
is realistic and widely adopted in industrial contexts [82].

Hardware fault rate. We split the hardware fault rate into transient fault rate Ar(R;) and
permanent fault rate Ap(R;, t). In the latter case, the fault probability of a resource R; depends on
the time, while the former is independent. The two fault rates are independent among them; thus,
the total fault rate can be expressed as A(R;,t) = Ap(R;,t) + Ar(R;). The traditional model for
permanent faults is the bathtub curve [1]: hardware components have, in general, higher failure
rates when they are young or old because of infant mortality and aging effects, respectively.
Conversely, they exhibit a nearly-constant failure rate in the middle of their life due to random
failures. Many approaches in safety-critical systems considered only this part of the device
lifetime by assuming extensive initial testing and the setting of an expiration date for the device
[57]. Conversely, the failure rate of components related to transient faults does not change
with time, and it is constant if the system parameters are kept constant (e.g., same voltage and
frequency, controlled temperature, etc.). As stated at the beginning of this section, all of the faults
are assumed to be identically distributed. If this assumption is not valid, that is, a resource having
different sub-components with different fault rates, this model can still be used by considering
the sub-components as separated resources.

The dangerous failure model. To build a failure model for our tasks, we first need to describe
how fault probabilities are modeled in reliability engineering. The basic metric for requirements

ACM Computing Surveys, Vol. 55, No. 14s, Article 306. Publication date: July 2023.

306:16 F. Reghenzani et al.

is called failure rate A, which is expressed as the number of failures per unit of time. When consid-
ering dangerous failure requirements, the system is considered non-repairable because its failure
can cause immediate damage. In this case, the Mean-Time To Failure (MTTF) and the Mean-Time
Between Failure (MTBF) are equal and defined as % In 2015, the standard ISO 13849-1[75] defined
the MTTFp as Mean-Time To Dangerous Failure to better identify the probability of a failure that
has the potential to put the system in a hazardous state. In the traditional definition of hard real-
time systems, a task can never miss its deadlines; otherwise, the system is considered failed. This
matches with the concept of dangerous failures. In what follows, we assume that a hard real-time
system performs a critical safety function that can potentially create a dangerous situation if the
output is incorrect or not provided in time. This assumption has a crucial impact on what we
have to compute for the failure analysis: we are not interested in how much frequent subsequent
job failures (logical or timing) occur, but we need to compute the first failure probability, i.e., the
MTTFp. For example, let us consider these two scenarios:

e The job 7; ; of a task overruns the deadline or outputs a wrong result, and all subsequent

jobs 7 j41, 7i j42, . . . are correct.
e The job 7; ; of a task overruns the deadline or outputs a wrong result, and all subsequent
jobs i ji1, Ti, j+2, . . . are dropped and never executed.

These two situations are equivalent when analyzing dangerous failures because even a single fail-
ure of a job of the task may cause unacceptable consequences in our safety-critical system.

The (k,n)-failure model. In contrast to dangerous failures, the (k,n)-failure model allows a lim-
ited number of jobs to fail in a given interval, that is, the system is considered to be working if
at least k-out-of-n jobs correctly execute. This failure definition, from a real-time standpoint, is
related to the umbrella term weakly hard real-time systems [9]. The next subsection focuses on the
dangerous failure model and not on the (k,n)-failure model. However, (k,n) still presents interesting
research challenges; we will resume the discussion of this model in Section 5.7.

4.3 Verifying the Task Failure Requirements

The statistical process representing the occurrence of faults is the Bernoulli process, which models
a sequence of Boolean random variables E1, E,, . . . ,. These random variables assume the following
values: E;. = 1ifafault occurs at time® t = k, E; = 0 otherwise. We also define the random variable
E(t) = Y} E; as the number of faults occurring in a time interval [0;¢]. In the case of dangerous
faults, we are looking to the probability P(E(t) > 0). Since E(t) can only be a positive or null value,
it can be written as

P(E(t) > 0)=1-P(E@®) =0)=1-] |[1-p)=1-(1-p)",)
t

where p is the probability of observing a fault in a single time unit. This formula is valid because the
fault probabilities are independent for transient and permanent faults as discussed in Section 4.2.
The following shows how to derive the probability of a job failure from the hardware failure rate
A(R;) in order to verify whether the task complies or not with the failure requirements. For the
sake of completeness, it should be noted that for large t and small p, this probability converges to
the Poisson distribution with k = 0, that is, P(E; > 0) — 1 —e~"’. This is frequently used in safety
analyses [82] and is called the Homogeneous Poisson Process (HPP) hypothesis.
Probability of a fault to occur in a given job. The hardware fault rate is often expressed as the
probability of observing a fault in a given time interval, usually per hour. For this reason, we write

5We consider the time as a discrete variable because, in computing, at the finest scale it corresponds to clock cycles, which
is a discrete quantity.

ACM Computing Surveys, Vol. 55, No. 14s, Article 306. Publication date: July 2023.

Software Fault Tolerance in Real-Time Systems 306:17

& to represent how many time units are in the time interval used as reference for the hardware
fault rate A(R;). For example, if A(R;) is expressed per hour and the unit-speed processor has a
frequency of 1 MHz, then § = 3.6 - 10°. Having this number, we compute the fault probability at
any time unit by inverting Equation (2):

N(R) =1-[1-AR)]F. 3)

We then derive the probability that a fault affects the job execution of a given task. This probability
depends on which resources it uses, the space-share value and time-share value, and the execution
time. The probability that a fault affects a task 7; during the active period is

aT(T,R)Ti
pr=1-| [] (1-afRA) (@)
Vk:Rk eR
and during the inactive period is
(1-ar(z.R)]T;
pl=1- ﬂ (1- af(ri. Re) 1Y) . (5)
Vk:Rk eR

Finally, we derive the probability of task failure as p*/ = 1 — (1 — p#)(1 — p!) and use it to verify
the requirement p;°® by changing the time scale from job to the measurement unit that is used by
"9 in expressed, in a similar way we performed in Equation (3).

p;

Example 2. Consider the tasks of Example 1 and their assignment functions. The probability of
the CPU to experience a fault is A(CPU) = 107°/h and the probability of the memory to suffer
from an SEU in a memory cell is A(MEM) = 10~*/h. We then compute the respective probability
at the single time unit, in this case by considering the unit-speed processor frequency at 1 MHz.
Then, A’(CPU) = 3.3-1071% and A’(MEM) = 2.7 - 1071, respectively. Having computed both the
assignment functions and the probability of hardware fault, we can now compute the probability
that a job fails in the absence of fault-tolerance mechanisms:

o pA=57-10""andpl =7.7-1071°
e pf=23-10"andp! =8.8-107"

from which we derive pA*! = 6.4 - 107 and p/*! = 2.4 - 10713, Since there are, respectively,
72000000 and 36 000 000 jobs each hour, the probability that at least one job fails per hour is
poUT = 4.6+ 107/h and p)°U" = 8.5 - 107°/h. As a term of comparison, without using the space
assignment function, this value would be ~ 107 for both tasks, and by considering the space

assignment function but not the time assignment function, the value would be ~ 1.3-107°/h. O

This example showed how, in the proposed model, a tight estimation of the failure probability
reduces the time and space utilization of the resources and, in turn, improves satisfaction of the
scheduling and failure requirements.

5 OPEN CHALLENGES AND FUTURE RESEARCH DIRECTIONS
In this penultimate section before conclusions, we enumerate the key challenges that arise from
the literature review and proposed model.

5.1 How Scheduling Decisions Impact on Fault Tolerance

As a trivial example to show why scheduling decisions can impact failure requirements, consider
the same example of Figure 3. According to Example 1, the two tasks are scheduled with a pre-
emptive RM scheduler. However, if we consider a non-preemptive version for RM, task r, is not

ACM Computing Surveys, Vol. 55, No. 14s, Article 306. Publication date: July 2023.

306:18 F. Reghenzani et al.

preempted at t = 50 and runs until ¢ = 60. The active time for task 7, is then considerably reduced,
while the 71 active period remains equivalent and it can finish its execution by the deadline. By
recomputing the probability following the same procedure of Example 2, we obtain 6.5 - 107%/h,
which is = 24% lower than the previous failure rate. An RM scheduler gives high priority to shorter
tasks (and, consequently, the lowest exposed period), but they are not necessarily the most critical
tasks, that is, with the lowest value of p;?. In general, we can state that reducing the preempt-
ability of the task set reduces the active time of the tasks (and, thus, their failure rate), but it also
reduces the schedulability of the task set.

The initial part of the inactive time of a job is the time interval between the activation and the
start of the task. In the example of Figure 3, this value is 20 for the task 7;. Depending on the
application, the data input of the task can be read by the task itself or they may be already stored
somewhere in memory. In this case, the input data are also subject to faults. If the data size is
sufficiently large, it may be convenient to further split the inactive period into separate periods
(i.e., [a; j;si ;] and [fi j; a;i j+1]) and analyze them separately from the failure analysis: The inactive
period after the job execution does not require taking into account the faults occurring in the input
memory area. Novel scheduling algorithms may be developed to reduce the s; ; — a; ; time for the
jobs with large input data quantities. To the best of our knowledge, no previous works address the
problem of faults occurring in the input data memory region.

A challenge related to the input problem is data dependency among tasks. Many recent works
in the real-time community use the DAG task model [11], in which each task (or sub-task) is
functional dependent on the input/output of other tasks (or sub-tasks), in a so-called parent—child
relation. The presence of such a model creates new challenges in failure analysis because a fault
may cause a cascade fault in subsequent tasks. The data shared among the tasks are also affected
during the time interval between the end of the parent and the start of the child. Similar to the
earlier discussion, a scheduling algorithm that minimizes this time may improve compliance with
the failure requirements.

Research Question 1. How can we build reliability-aware schedulers that minimize the active
time and, consequently, the exposure time ar(z, R), thus reducing the task failure rate pf” while
maintaining good schedulability levels?

Research Question 2. If a task requires the reading of a large amount of input data, how do we
implement a scheduler aware of this condition and that minimizes the delay between the activation
time and the start time of such task(s)?

Research Question 3. The DAG task model presents several challenges for real-time schedulers,
and the data dependency among the tasks creates a shared region of memory that can be affected
by faults. How can we perform proper scheduling to minimize the exposure time of these memory
areas?

5.2 Scheduling Analysis of Fault Tolerance Approaches

Fault tolerance techniques are usually analyzed separately in the state-of-the-art works, sometimes
comparing one against the other. An evolution of this approach is to combine multiple techniques,
for example, NMR and re-execution. The optimization of the integration of multiple techniques can
be advantageous from the scheduling standpoint to improve schedulability and, at the same time,
the compliance of failure requirements. The optimization of the checkpoint rate in the context of
heterogeneous fault tolerance mechanisms is another possible research direction.

Sporadic tasks are, in general, more difficult to handle in real-time systems unless we consider
them as periodic, allocating the same amount of time a periodic task would need. This problem

ACM Computing Surveys, Vol. 55, No. 14s, Article 306. Publication date: July 2023.

Software Fault Tolerance in Real-Time Systems 306:19

becomes even more critical when multiple fault tolerance mechanisms have to be employed for
such tasks, because allocating the required time in each period may lead to waste a consistent
amount of resources that would be underutilized when the sporadic task is not released. However,
in the presence of multiple sporadic tasks, we can say, in general, that it is improbable that multiple
tasks are both activated and affected by a fault at the same time. If the probability of activation is
known or estimable, the time required for the fault tolerance routines can be shared among the
sporadic tasks and the failure analysis correctly computed. Further investigations on how to deal
with sporadic tasks, allocate their fault tolerance routines and evaluate different fault tolerance
strategies are needed to better comprehend the effects on scheduling and failure analyses.

Conversely, the class of intermittent faults (described in Section 2.2) requires proper handling
of multiple faults in a short time period (fault bursts). This is challenging for both fault tolerance
and scheduling. A few works recently dealt with this class of faults that also lack well-assessed
fault models. Ferreira et al. [33] showed that intermittent faults are the cause of 90% of the total
faults of a CAN network when used in an automotive context. Linked to the fault burst problem
is the handling of MEU faults occurring at the same time.

Permanent faults are not necessarily full-system failures: as described in Section 2.2, they can be
categorized as fail-stop, fail-partial, and fail-slow. These failure modes present different challenges
from the real-time standpoint: the total or partial unavailability of the resource or the resource
slowdown reduces the computational capabilities in different ways, which should be managed
to allows the critical tasks to run, possibly without the fault tolerance routines or by dropping
non-critical tasks. This scheduling involves several of the following challenges. For instance, the
challenges in using DVFS are the same as those of the fail-slow case (see Section 5.4) or the mixed-
criticality approach to select the task to drop (see Section 5.3).

At the end of Section 5.1, we discussed how scheduling decisions impact the failure analysis of
DAG tasks. When the computed failure probability of the tasks does not adhere to the requirements,
the implementation of fault tolerance strategies becomes necessary. However, time redundancy
fault tolerance algorithms, such as re-execution, make real-time scheduling more difficult because
in the DAG task model, each task can delay all of the child tasks if a fault occurs and, for example,
a re-execution is needed. On the other hand, the main advantage of DAG task models - that is,
the possibility of parallelizing the workload — would be reduced if space-redundancy techniques
are employed, such as NMR, which occupies the processor to run the fault-tolerance algorithms
instead of running the parallel workload. However, the presence of a DAG task model can also
be beneficial. It allows exploitation of the idle processors when subsequent tasks are blocked by
dependencies to dynamically run preventive fault-tolerant executions and reduce the number of
time-redundancy algorithms required. The DAG task model presents many challenges and oppor-
tunities for future works.

Research Question 4. Integrating different fault tolerance techniques may improve the satisfac-
tion of failure requirements while providing better schedulability conditions. How do we allocate
resources and perform scheduling in this heterogeneous context?

Research Question 5. Sporadic tasks are difficult to handle in real-time systems, and more chal-
lenges are present when fault-tolerance routines need to be scheduled. How do we efficiently
schedule tasks without wasting resources when sporadic tasks are not activated? What are the
consequences for failure analysis and schedulability?

Research Question 6. Which fault models, fault-tolerance strategies, and scheduling algorithms
can be developed to react to intermittent faults and MEUs effectively?

ACM Computing Surveys, Vol. 55, No. 14s, Article 306. Publication date: July 2023.

306:20 F. Reghenzani et al.

Research Question 7. How do we reconfigure real-time scheduling to react to fail-stop, fail-
partial, and fail-slow permanent faults with the goal of maximizing system utility?

Research Question 8. How do we efficiently schedule fault tolerance algorithms when DAG task
models are employed? Is it possible to exploit the parallelism information available in the DAG to
better allocate preventive fault tolerance jobs?

5.3 Mixed-Criticality and Fault Tolerance

As briefly introduced in Section 2.6, Vestal proposed the mixed-criticality model for real-time sys-
tems in his seminal 2007 paper [100], in which a criticality level is assigned to each task that
conceptually corresponds to the criticality specified for the safety analysis. From the timing anal-
ysis perspective, a task is characterized by one or more WCET values estimated at different levels
of assurance. In the event that a task overruns one of its WCET estimations, a system mode switch
occurs. In this case, the system reconfigures the scheduling strategy to still guarantee the timing
constraints of the high-criticality tasks. The traditional method consists of dropping the lower-
criticality tasks. For example, let us assume to have two criticality levels (LO and HI). To each
LO-criticality task, we assign a WCET CIFO. For HI-criticality tasks, we assign a WCET Cl.LO and a
WCET Cif, with C}° < CHI. The scheduler begins scheduling the tasks by considering the C;° of all
tasks. If an overrun occurs, the LO-criticality tasks are dropped to allow the HI-criticality tasks to be
scheduled according to C!''. However, several discussions recently emerged on the task-dropping
strategy [13, 29], which is considered far from the industry and standards viewpoint.

The reason why task-dropping does not fit with the safety standards is the common misconcep-
tion of what criticality is [29]. If a task is LO-criticality, it does not mean that is also a non-important
task that can be dropped when needed: a LO-criticality task is still a critical task, performing a crit-
ical function subject to certification requirements. Dropping tasks during mode switch creates a
“dependency” between the tasks: the functional correctness of a task does not depend only on the
task itself; rather, it is influenced by the behavior of other tasks. This is a violation of the indepen-
dence property, which is instead required by safety-critical standards, such as IEC61508-3 [49]: ‘Tt
shall be demonstrated either (1) that independence is achieved by both in the spatial and temporal
domains, or (2) that any violation of independence is controlled.” To solve this problem, we propose
to “control” this violation by joining the scheduling and failure analyses in order to obtain quanti-
tative data on the probability that task dropping occurs, which can be, in turn, used in the safety
analysis. Recent works tried to overcome this issue by applying different strategies than job drop-
ping: for example, precise scheduling the task by using DVFS to sacrifice energy in HI-criticality
mode [12, 94, 106].

Instead of triggering the mode switch due to an optimistic estimation of the WCET (an event
for which we do not know its probability), we propose to trigger it when faults occur and fault-
tolerance mechanisms need to be scheduled. In this way, we obtain two benefits:

(1) The probability of the mode switch can be computed and used in the failure analysis to
quantify the “violation of independence””

(2) The MC scheduling algorithms improve the schedulability ratio compared with traditional
non-MC scheduling.

To better describe this concept, we consider the following motivational example:

Example 3. Let us consider the task set depicted in Table 2. Tasks 7; and 7, belong to the highest
level, DAL A, 73 to DAL B, and 74 to DAL D. The maximum probabilities of failure associated to
the tasks are derived from the DO-254 standard [89]. According to the failure probability, we can

ACM Computing Surveys, Vol. 55, No. 14s, Article 306. Publication date: July 2023.

Software Fault Tolerance in Real-Time Systems 306:21

Table 2. Example of a Task Set, where T; is
the Period, D; is the Deadline, C; is the WCET,
and pireq is the Required Probability of Failure

Task | T; = D; | C; | Criticality | p;*
T 50 | 10 | DALA | 107
) 1000 | 75| DALA | 107°
T3 250 | 50 | DALB | 1077
T4 100 | 25| DALD | 1073

consider three criticality levels: 7; and 7, are HI-criticality tasks, 73 is an MI-criticality task, and 74
is a LO-criticality task.

We could have estimated the WCET at different levels of assurance (not shown in Table 2), as
we did in a traditional mixed-criticality setup. However, for instance, it is not possible to drop the
MI-criticality task 75 because of the overrun of the MI-criticality WCET of the HI-criticality task.
The task 73 still provides an essential and inalienable feature with a well-defined probability of
failure. By allowing other tasks to drop its execution, we are violating the previously mentioned
task-independence requirement. Our proposal instead maps the mode switch to a fault event. Let
us consider that the job fault probability is p = 107*/h for all of the tasks and that we use re-
execution to improve the resilience to faults. In this case, task 74 does not require re-execution
because the job fault probability already complies with the failure requirements. Instead, task z3
must be restarted one time in the case of a fault, whereas 7; and 7, requires tolerating two faults,
that is, two re-executions, to reach the requirement p = 10~°/h. Having these values, we can map
the WCET as follows:

° CID = 10, Cf = 20 (1% re-execution), Cf = 30 (2" re-execution)

° CZD =75, CZB = 150 (1% re-execution), Cg‘ = 225 (2" re-execution)
e CP =50, CP =100 (1* re-execution)

e CP =25

If a fault occurs in a job of 73, the system mode switches, the job of 73 is re-executed, and 74 is
dropped. However, in contrast to the usual mixed-criticality case, we know the exact probability
that this occurs (p = 107*/h). Thus, we can control the effect of 7; on the failure requirements of
74. The same applies for faults occurring in 7; and 7.

The use of this MC model modified for re-execution adds new challenges for real-time sched-
uling but also provides the opportunity to exploit the traditional MC theory in a compliant way.
Reghenzani et al. [83] showed, in 2022, that the use of MC scheduling algorithms with task sets
having re-execution jobs can improve the schedulability of such task sets. At the same time, we
can obtain an MC system compliant with safety-critical standards.

A 2021 work by Burns [15] outlined a similar model for fault tolerance in which the WCET is
categorized as C(NotRobust) and C(Robust). Existent works on mixed-criticality can be re-adapted
for such similar cases. For example, the work by Guo et al. [42] studied the dynamic priority
scheduling of tasks with permitted failure probability. The task failure probability relates to the
execution time distribution but can be remapped to the fault probability.

Research Question 9. How do we build a convincing set of arguments to introduce into industry
standards the use of an exactly computed software failure probability in the context of SIFT?

Research Question 10. What are the challenges in using current academic approaches on mixed-
criticality setups in industrial applications subject to safety-critical standards?

ACM Computing Surveys, Vol. 55, No. 14s, Article 306. Publication date: July 2023.

306:22 F. Reghenzani et al.

Research Question 11. When the mixed-criticality strategy of Section 5.3 is employed, we know
the exact probability of a mode switch to occur. Can this information be exploited to perform safe
probabilistic scheduling?

Research Question 12. How do we exploit joint scheduling and failure analysis to explore the
trade-off between schedulability and compliance with failure requirements in the mixed-criticality
context?

5.4 The Effect of Power Management Techniques

Dynamic Voltage and Frequency Scaling (DVES) is the most common approach to optimizing the
trade-off between performance and power/energy consumption. Frequency scaling directly im-
pacts timing requirements; vast literature is available on this topic (see the survey of Bambagini
et al. [8]). Reducing power consumption also has side effects, first and foremost thermal effects
and, in turn, effects on reliability. Reducing the average temperature and thermal stress decreases
the probability of permanent faults. However, frequency and voltage cannot be selected arbitrar-
ily without considering their relation. Usually, the lower the frequency, the lower the voltage.
This relation leads to the trade-off between permanent and transient faults: while reducing the
frequency/voltage is beneficial for permanent faults, low voltages increase the probability of tran-
sient faults to occur [114]. It has been observed [26] that in cache memories the SEU probability
increases by one order of magnitude when running in low power mode. The optimal DVFS operat-
ing point with respect to energy does not correspond to the optimal operating point with respect
to transient fault probability [28]. The cross-links between permanent faults, transient faults, and
real-time requirements have not been thoroughly studied.

Another interesting aspect for future research is the fact that the use of lower frequencies in-
creases the execution time and, in turn, the exposure time of our tasks ar(z, R), as defined in our
previous model of Section 4.1. Two opposing goals are then present: (1) the traditional use of DVFS
for improving the reliability in terms of permanent faults; and (2) the minimization of exposure
time to transient faults. To model such a trade-off, let us begin with stating the Arrhenius equation
for reliability according to the standard JESD91A [51]:

Ao = CEaa (11 ©)
TEER TN T
/Is = Ar - Ar, (7)

where

e), is the system fault rate at temperature T; (in K).

e A, is the reference system fault rate at the reference temperature T, (in K).

® E,4. k are constants, the apparent activation energy and the Boltzmann’s constant, respec-
tively.

During system runtime, the fault rate equation becomes a monotonically non-decreasing function
of only the temperature, A; = f(Ts), according to the Arrhenius equation. The steady-state tem-
perature is a monotonically non-decreasing function of the power consumption, that is, in turn, a
monotonically non-decreasing function of the voltage/frequency assigned to the processor. This
explains how DVFS strategies have a direct impact on reliability concerning the fault rate for per-
manent faults. Decreasing the voltage/frequency decreases the fault rate; on the other hand, it
increases the execution time of the task. This has a side impact on the reliability of the overall sys-
tem when we also consider transient faults: decreasing the frequency has the effect of increasing
the execution time and, then, the exposure time of our tasks, that is, the ar(z, R) value, increasing
the probability of a transient fault to occur.

ACM Computing Surveys, Vol. 55, No. 14s, Article 306. Publication date: July 2023.

Software Fault Tolerance in Real-Time Systems 306:23

Research Question 13. How does energy-aware real-time scheduling impact the reliability prob-
lem with respect to both permanent and transient fault rates? Can mixed-criticality be exploited
for this optimization problem?

Research Question 14. Which is the optimal DVES strategy that, while guaranteeing the hard real-
time constraints, minimizes the failure rate of the overall system, taking into account all factors
(thermal, transient faults susceptibility, and exposure time) that affect reliability?

5.5 The Implementation of the OS and Scheduler

Quis custodiet ipsos custodes?® This historical Latin quote perfectly describes the problem of realis-
tic implementations of software fault tolerance: How can we be sure that a fault does not happen
in critical system software, such as the scheduler, the fault-detection mechanism, or, in general,
any other operating system component? Most of the literature presented in Section 3 assumed the
system software and fault tolerance routines to be flawless, neglecting this aspect. Dealing with
system software faults has non-trivial theoretical and engineering challenges.

The first solution to address these challenges is to compute the probability that a fault happens
in critical system software and add it to the failure analysis. Depending on the number of tasks,
the complexity of fault tolerance/detection techniques, and the services offered by the operating
system, this solution is potentially feasible or not. Suppose that the system software has a small
memory footprint and executes fast. In that case, the values of a’s“(r, R) and ar(r,R) are usually
very limited. Consequently, the probability that a transient fault affects a system software is small.
Applying the previous model to system software allows the system integrator to compute the fail-
ure probability for the whole system, which is, hopefully, compliant with the failure requirement.

The second solution is the use of hardware-based voter or recovery strategies. For example, Yim
et al. [107] implemented a programmable hardware voter that takes the decision on the NMR soft-
ware tasks outputs. In such a way, the risk of a fault happening in the voting procedure is moved to
the hardware, which is implemented to be fault tolerant. While the concept of applying this scheme
to a general application is straightforward, how to propagate the result of OS routines back from
the hardware to the software is non-trivial and still subject to faults. Future works can investigate
how to implement an OS capable of exploiting this mixed software-hardware fault tolerance via
hardware voters. However, the fact that these solutions require special-purpose processors or, in
general, custom hardware should also be considered, cancelling out one of the major advantages
of software fault tolerance techniques, that is, their possible use in COTS hardware.

The third solution is to implement SIFT mechanisms for system software. For example, in a
multicore system, the scheduler could run with the NMR fault-tolerance strategies simultaneously
on different cores. Then, the scheduling decision is compared and applied via a voting procedure.
While the idea looks quite trivial, the actual implementation and the computation of failure prob-
ability are not trivial. To the best of our knowledge, no works have addressed software fault toler-
ance concerning system software.

Research Question 15. How do we develop system software to reduce its failure probability by
improving aé(f,R), a‘s“(r,R), and ar(r,R)?

Research Question 16. How to exploit integrated software-hardware fault tolerance mechanisms
(such as software NMR linked to a hardware voter) to improve system software reliability?

Research Question 17. How do we implement SIFT for system software?
®Who guards the guards?

ACM Computing Surveys, Vol. 55, No. 14s, Article 306. Publication date: July 2023.

306:24 F. Reghenzani et al.

5.6 Exploiting Probabilistic Information

The model to compute the failure rate presented in Section 4 uses the WCET to compute the
maximum exposure time of a given job, that is, the function ar(r;, R;) is computed by using C;.
Therefore, the value we obtain for the failure rate A is a worst-case failure rate. This approach is
not typical in reliability engineering, which instead tends to use the average value when a failure
rate cannot be considered constant [53]. Conversely, in our approach, we assume that every job
instance of a task is exposed for at least its WCET in addition to the preempted time. While this
is a safe assumption, this is also very pessimistic because running until the WCET is a rare condi-
tion [64]. Moreover, the WCET in modern architectures is difficult to estimate statically, and the
estimation is often overly pessimistic [61].

A possible solution to reducing such pessimism is to estimate an average value for the failure
rate using probabilistic information. The most straightforward approach is to exploit the central
limit theorem to compute the average execution time and its confidence interval. A similar solu-
tion is to use the measurement-based probabilistic-WCET (pWCET). The pWCET represents the
distribution of large values of execution time and can considerably reduce the overestimation of
the traditional WCET analysis techniques. However, while some recent works addressed the esti-
mation uncertainty of the pWCET [84, 86], the safety of pWCET results is still controversial. This
is mainly due to the well-known representativity problem of the observed execution time, which
intrinsically contains epistemic uncertainty. The same problem also affects the central limit theo-
rem and, in general, any statistical technique. However, epistemic uncertainty is also present in
many estimation methods for reliability engineering because the fault models are never perfect.
Its presence is, to some extent, accepted, and some theories have been developed to handle the
epistemic uncertainty [52].

Research Question 18. Can we trust probabilistic information on the execution time for the sake
of failure rate computation? If not, which hardware/software strategies and analyses can be em-
ployed to reduce the epistemic uncertainty and improve the representativity of the observed exe-
cution time?

5.7 Other Research Directions

The (k,n) failure model was briefly discussed at the end of Section 4.2. In such a case, the different
failure requirement plays a key role in the schedulability analysis because dropping jobs becomes a
permitted action (under the specified limits). In safety-engineering terms, the (k,n) failure model is
linked to the availability concept rather than reliability. While many works exist on (k,n) schedu-
lability, the failure analysis of Section 4.3 must be reshaped to allow job failures. Similar to the
model considered in this article, the failure analysis may impact the scheduling decision and vice
versa.

Similarly, approximate computing can be considered in this context. Once a fault occurs, the
overhead introduced by time redundancy techniques may require the system to degrade the appli-
cation quality-of-service, for instance, by reducing the result accuracy. The presence of approxi-
mate computing adds a new dimension to be explored for trade-offs, that is, the output accuracy
is traded for real-time and/or fault-tolerant guarantees.

Finally, we would like to put a focus on security, in particular, on malicious faults. Attackers can
act in several ways on the system: software or hardware, remote or local, with contact or without
contact, system violation, or service degradation (Denial-of-Service [DoS]). However, even if we
find a way to model these malicious faults, they are usually characterized by one unknown or
human-dependent parameter: for example, the probability that an attack occurs or the probability
that a vulnerability is present. It is difficult, if not impossible, to precisely estimate these quantities.

ACM Computing Surveys, Vol. 55, No. 14s, Article 306. Publication date: July 2023.

Software Fault Tolerance in Real-Time Systems 306:25

Even if some metrics exist and they are already used in the security world - for example, the CVSS
score [69] — their application to safety-critical systems looks limited due to their expert-provided
nature. This is a crucial difference compared with natural faults, which instead follow well-known
or estimable distributions. Additionally, not all SIFT techniques may be the best solutions to tackle
malicious faults: for instance, re-executing a workload may worsen a DoS scenario.

Research Question 19. How does the (k,n) failure model impact the failure analysis and the in-
teractions between scheduling and fault tolerance?

Research Question 20. Approximate computing can be exploited to carry out less-precise results
during/after a fault event. How do fault tolerance, real-time scheduling, and output precision in-
teract in this context? Can schedulability be linked to the result precision and fault tolerance re-
quirements?

Research Question 21. Is it possible to model the probability of malicious faults to occur such
that hard real-time requirements are guaranteed and a sound failure analysis is possible?

6 CONCLUSIONS

Real-time scheduling, failure analysis, and software fault tolerance techniques have been thor-
oughly studied in the past few decades. However, most studies treat them separately, and their
interactions still present numerous challenges. This article surveyed state-of-the-art scientific
works analyzing the SIFT mechanisms and their real-time schedulability, including in the mixed-
criticality context. We proposed a new joint model that integrates failure and timing requirements
and highlighted a series of related open research questions.

REFERENCES

[1] M. V. Aarset. 1987. How to identify a bathtub hazard rate. IEEE Transactions on Reliability R-36, 1 (1987), 106—-108.
https://doi.org/10.1109/TR.1987.5222310

[2] Fardin Abdi Taghi Abad, Renato Mancuso, Stanley Bak, Or Dantsker, and Marco Caccamo. 2016. Reset-based recovery
for real-time cyber-physical systems with temporal safety constraints. IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA’16). Berlin, 1-8. https://doi.org/10.1109/ETFA.2016.7733561

[3] Fatimah Adamu-Fika and Arshad Jhumka. 2015. An investigation of the impact of double bit-flip error variants on
program execution. In 8th International Conference on Dependability, Lecture Notes in Computer Science, Vol. 9531.
Springer, Venice, Italy, 15-22. https://doi.org/10.1007/978-3-319-27140-8_55

[4] AE-4 Electromagnetic Compatibility (EMC) Committee. 2010. Guide to Certification of Aircraft in a High-Intensity Ra-
diated Field (HIRF) Environment. Technical Report. SAE International. 130 pages. https://doi.org/10.4271/ARP5583A

[5] Algirdas Avizienis, Jean-Claude Laprie, and Brian Randell. 2004. Dependability and its threats: A taxonomy. In Build-
ing the Information Society, René Jacquart (Ed.). Springer US, Boston, MA, 91-120. https://doi.org/10.1007/978-1-4020-
8157-6_13

[6] P. Axer, M. Sebastian, and R. Ernst. 2011. Reliability analysis for MPSoCs with mixed-critical, hard real-time con-
straints. In 2011 Proceedings of the 9th IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and
System Synthesis (CODES+ISSS’11). IEEE, Taipei, Taiwan, 149-158. https://doi.org/10.1145/2039370.2039396

[7] Fatemeh Ayatolahi, Behrooz Sangchoolie, Roger Johansson, and Johan Karlsson. 2013. A study of the impact of single
bit-flip and double bit-flip errors on program execution. In Computer Safety, Reliability, and Security, Friedemann
Bitsch, Jérémie Guiochet, and Mohamed Kaéniche (Eds.). Springer, Berlin, 265-276. https://doi.org/10.1007/978-3-
642-40793-2_24

[8] Mario Bambagini, Mauro Marinoni, Hakan Aydin, and Giorgio Buttazzo. 2016. Energy-aware scheduling for real-
time systems: A survey. ACM Trans. Embed. Comput. Syst. 15, 1, Article 7 (Jan. 2016), 34 pages. https://doi.org/10.
1145/2808231

[9] G. Bernat, A. Burns, and A. Liamosi. 2001. Weakly hard real-time systems. IEEE Trans. Comput. 50, 4 (April 2001),
308-321. https://doi.org/10.1109/12.919277

[10] Anand Bhat, Soheil Samii, and Ragunathan Raj Rajkumar. 2017. Practical task allocation for software fault-tolerance

and its implementation in embedded automotive systems. In Proceedings of the IEEE Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS’17). IEEE, Pittsburgh, PA, 87-97. https://doi.org/10.1109/RTAS.2017.33

ACM Computing Surveys, Vol. 55, No. 14s, Article 306. Publication date: July 2023.

https://doi.org/10.1109/TR.1987.5222310
https://doi.org/10.1109/ETFA.2016.7733561
https://doi.org/10.1007/978-3-319-27140-8_55
https://doi.org/10.4271/ARP5583A
https://doi.org/10.1007/978-1-4020-8157-6_13
https://doi.org/10.1145/2039370.2039396
https://doi.org/10.1007/978-3-642-40793-2_24
https://doi.org/10.1145/2808231
https://doi.org/10.1109/12.919277
https://doi.org/10.1109/RTAS.2017.33

306:26 F. Reghenzani et al.

[11] Ashikahmed Bhuiyan, Zhishan Guo, Abusayeed Saifullah, Nan Guan, and Haoyi Xiong. 2018. Energy-efficient real-
time scheduling of DAG tasks. ACM Trans. Embed. Comput. Syst. 17, 5, Article 84 (Sept. 2018), 25 pages. https://doi.
org/10.1145/3241049

[12] A.Bhuiyan, F. Reghenzani, W. Fornaciari, and Z. Guo. 2020. Optimizing energy in non-preemptive mixed-criticality
scheduling by exploiting probabilistic information. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 39, 11 (2020), 3906-3917. https://doi.org/10.1109/TCAD.2020.3012231

[13] Konstantinos Bletsas, Muhammad Ali Awan, Pedro Souto, Benny Akesson, Alan Burns, and Eduardo Tovar. 2018. De-
coupling criticality and importance in mixed-criticality scheduling. In 6th International Workshop on Mixed Criticality
Systems (WMC’18). WMC, Nashville, TN, 25-30.

[14] Cristiana Bolchini and Antonio Miele. 2013. Reliability-driven system-level synthesis for mixed-critical embedded
systems. IEEE Trans. Comput. 62, 12 (2013), 2489-2502. https://doi.org/10.1109/TC.2012.226

[15] Alan Burns. 2020. Multi-model systems — an MCS by any other name. In Workshop on Mixed Criticality Systems
(WMC’21). RTSS, Virtual, 4.

[16] Alan Burns and Robert Davis. 1996. Feasibility analysis of fault-tolerant real-time task sets. In Proceedings of the
8th Euromicro Workshop on Real-Time Systems. IEEE, L’Aquila, Italy, 29-33. https://doi.org/10.1109/EMWRTS.1996.
557785

[17] A. Burns and R. L. Davis. 2017. A survey of research into mixed criticality systems. ACM Computer Surveys 50, 6
(2017), 1-37.

[18] Alan Burns and Robert Davis. 2019. Mixed Criticality Systems — A Review. (2019), 81 pages. https://www-users.cs.
york.ac.uk/burns/review.pdf.

[19] AlanBurns, RobertI. Davis, Sanjoy Baruah, and Iain Bate. 2018. Robust mixed-criticality systems. IEEE Trans. Comput.
67, 10 (2018), 1478-1491. https://doi.org/10.1109/TC.2018.2831227

[20] A. Burns, S. Punnekkat, L. Strigini, and D. R. Wright. 1999. Probabilistic scheduling guarantees for fault-tolerant
real-time systems. In Dependable Computing for Critical Applications 7. IEEE, San Jose, CA, 361-378. https://doi.org/
10.1109/DCFTS.1999.814306

[21] Ramon Canal, Carles Hernandez, Rafa Tornero, Alessandro Cilardo, Giuseppe Massari, Federico Reghenzani, William
Fornaciari, Marina Zapater, David Atienza, Ariel Oleksiak, Wojciech Piundefinedtek, and Jaume Abella. 2020. Pre-
dictive reliability and fault management in exascale systems: State of the art and perspectives. ACM Comput. Surv.
53, 5, Article 95 (Sept. 2020), 32 pages. https://doi.org/10.1145/3403956

[22] K. Chen, G. v. der Briiggen, and J. Chen. 2018. Reliability optimization on multi-core systems with multi-tasking and

redundant multi-threading. IEEE Trans. Comput. 67, 4 (2018), 484-497. https://doi.org/10.1109/TC.2017.2769044

Nan Chen, Shuai Zhao, Ian Gray, Alan Burns, Siyuan Ji, and Wanli Chang. 2022. MSRP-FT: Reliable resource sharing

on multiprocessor mixed-criticality systems. In 2022 IEEE 28th Real-Time and Embedded Technology and Applications

Symposium (RTAS’22). IEEE, Milano, Italy, 201-213. https://doi.org/10.1109/RTAS54340.2022.00024

Cristian Constantinescu. 2007. Intermittent faults in VLSI circuits. IEEE Workshop on Silicon Errors in Logic-System

Effects. 7183 (2007), 1-3.

Cristian Constantinescu. 2008. Intermittent faults and effects on reliability of integrated circuits. In 2008 Annual

Reliability and Maintainability Symposium. IEEE, Las Vegas, NV, 5. https://doi.org/10.1109/RAMS.2008.4925824

V. Degalahal, Lin Li, V. Narayanan, M. Kandemir, and M. J. Irwin. 2005. Soft errors issues in low-power caches. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems 13, 10 (2005), 1157-1166. https://doi.org/10.1109/TVLSL

2005.859474

Paul Emberson and Iain Bate. 2008. Extending a task allocation algorithm for graceful degradation of real-time

distributed embedded systems. In Proceedings - Real-Time Systems Symposium. IEEE, Barcelona, Spain, 270-279. https:

//doi.org/10.1109/RTSS.2008.24

D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, Nam Sung Kim, and K. Flautner. 2004. Razor: Circuit-level

correction of timing errors for low-power operation. IEEE Micro 24, 6 (2004), 10-20. https://doi.org/10.1109/MM.2004.

85

Rolf Ernst and Marco Di Natale. 2016. Mixed criticality systems — a history of misconceptions? IEEE Design & Test

33, 5 (2016), 65-74. https://doi.org/10.1109/MDAT.2016.2594790

ESA-ESTEC. 2016. Techniques for Radiation Effects Mitigation in ASICs and FPGAs Handbook. Handbook ECSS-Q-HB-

60-02A. European Cooperation for Space Standardization, Noordwijk, The Netherlands.

European Committee for Electrotechnical Standardization. 2011. Railway Applications - Communication, Signalling

and Processing Systems - Software for Railway Control and Protection Systems. Standard EN50128. CENELEC.

[32] Thomas Huining Feng and Edward A. Lee. 2008. Real-time distributed discrete-event execution with fault tolerance.
In Proceedings of the IEEE Real-Time and Embedded Technology and Applications Symposium, RTAS. IEEE, St. Louis,
MO, 205-214. https://doi.org/10.1109/RTAS.2008.22

[23

—

[24

[l

(25

=

[26

[l

[27

—

[28

=

[29

—

(30

[t

(31

—

ACM Computing Surveys, Vol. 55, No. 14s, Article 306. Publication date: July 2023.

https://doi.org/10.1145/3241049
https://doi.org/10.1109/TCAD.2020.3012231
https://doi.org/10.1109/TC.2012.226
https://doi.org/10.1109/EMWRTS.1996.557785
https://www-users.cs.york.ac.uk/burns/review.pdf
https://doi.org/10.1109/TC.2018.2831227
https://doi.org/10.1109/DCFTS.1999.814306
https://doi.org/10.1145/3403956
https://doi.org/10.1109/TC.2017.2769044
https://doi.org/10.1109/RTAS54340.2022.00024
https://doi.org/10.1109/RAMS.2008.4925824
https://doi.org/10.1109/TVLSI.2005.859474
https://doi.org/10.1109/RTSS.2008.24
https://doi.org/10.1109/MM.2004.85
https://doi.org/10.1109/MDAT.2016.2594790
https://doi.org/10.1109/RTAS.2008.22

Software Fault Tolerance in Real-Time Systems 306:27

[33]
[34]
[35]
[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]
[45]

[46]

[47]
[48]
[49]

[50]
[51]

[52]
[53]

[54]

[55]

[56]

J. Ferreira, A. Oliveira, P. Fonseca, and J. Fonseca. 2004. An experiment to assess bit error rate in CAN. In Proceedings
of 3rd International Workshop of Real-Time Networks. IEEE, Seoul, Korea, 15-18.

Erol Gelenbe. 1979. On the optimum checkpoint interval. J. ACM 26, 2 (April 1979), 259-270. https://doi.org/10.1145/
322123.322131

S. Ghosh, R. Melhem, and D. Mosse. 1995. Enhancing real-time schedules to tolerate transient faults. In Proceedings
of the 16th IEEE Real-Time Systems Symposium. IEEE, Pisa, Italy, 120-129. https://doi.org/10.1109/REAL.1995.495202
Sunondo Ghosh, Rami Melhem, Daniel Mossé, and Joydeep Sen Sarma. 1998. Fault-tolerant rate-monotonic schedul-
ing. Real-Time Systems 15, 2 (1998), 149-181. https://doi.org/10.1023/A:1008046012844

O. Goloubeva, M. Rebaudengo, M. S. Reorda, and M. Violante. 2006. Software-Implemented Hardware Fault Tolerance.
Springer, Boston, MA.

O. Gonzalez, H. Shrikumar, J. A. Stankovic, and K. Ramamritham. 1997. Adaptive fault tolerance and graceful degra-
dation under dynamic hard real-time scheduling. In Proceedings of the Real-Time Systems Symposium. IEEE, San
Francisco, CA, 79-89. https://doi.org/10.1109/REAL.1997.641271

J. Gracia-Moran, D. Gil-Tomas, L. J. Saiz-Adalid,]J. C. Baraza, and P. J. Gil-Vicente. 2010. Experimental validation
of a fault tolerant microcomputer system against intermittent faults. In 2010 IEEE/IFIP International Conference on
Dependable Systems & Networks (DSN’10). IEEE, Chicago, IL, 413-418. https://doi.org/10.1109/DSN.2010.5544288

R. Guerraoui and A. Schiper. 1997. Software-based replication for fault tolerance. Computer 30, 4 (1997), 68-74. https:
//doi.org/10.1109/2.585156

Haryadi S. Gunawi, Riza O. Suminto, Russell Sears, Casey Golliher, Swaminathan Sundararaman, Xing Lin, Tim
Emami, Weiguang Sheng, Nematollah Bidokhti, Caitie McCaffrey, Deepthi Srinivasan, Biswaranjan Panda, An-
drew Baptist, Gary Grider, Parks M. Fields, Kevin Harms, Robert B. Ross, Andree Jacobson, Robert Ricci, Kirk
Webb, Peter Alvaro, H. Birali Runesha, Mingzhe Hao, and Huaicheng Li. 2018. Fail-slow at scale: Evidence of
hardware performance faults in large production systems. ACM Transactions on Storage 14, 3 (2018), 15. https:
//doi.org/10.1145/3242086

Z. Guo, S. Vaidhun, L. Satinelli, S. Arefin, J. Wang, and K. Yang. 2021. Mixed-criticality scheduling upon permit-
ted failure probability and dynamic priority. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 40, 5 (2021), 1-1. https://doi.org/10.1109/TCAD.2021.3053232

M. A. Haque, H. Aydin, and D. Zhu. 2014. Real-time scheduling under fault bursts with multiple recovery strategy. In
2014 IEEE 19th Real-Time and Embedded Technology and Applications Symposium (RTAS’14). IEEE, Berlin, Germany,
63-74. https://doi.org/10.1109/RTAS.2014.6925991

Tino Heijmen. 2002. Radiation-induced Soft Errors in Digital Circuits. Technical Report 828. Philips Electronics. 19
pages. Retrieved April 6, 2023 from https://www.nowpublishers.com/article/DownloadSummary/EDA-018.

Mei Chen Hsueh, Timothy K. Tsai, and Ravishankar K. Iyer. 1997. Fault injection techniques and tools. Computer 30,
4 (1997), 75-82. https://doi.org/10.1109/2.585157

Pengcheng Huang, Hoeseok Yang, and Lothar Thiele. 2014. On the scheduling of fault-tolerant mixed-criticality sys-
tems. In Proceedings of the Design Automation Conference. IEEE, New York, NY, 1-6. https://doi.org/10.1145/2593069.
2593169

1. Hwang, S. Kim, Y. Kim, and C. E. Seah. 2010. A survey of fault detection, isolation, and reconfiguration methods.
IEEE Transactions on Control Systems Technology 18, 3 (2010), 636-653. https://doi.org/10.1109/TCST.2009.2026285
IEEE. 1990. IEEE Standard 610.12-1990 Glossary of Software Engineering Terminology (Reaffirmed 2002). Standard. IEEE,
New York, NY,. https://doi.org/10.1109/IEEESTD.1990.101064

International ~ Electrotechnical ~Commission. 2010. IEC 61508 - Functional Safety of Electri-
cal/electronic/programmable Electronic Safety-related Systems. (Apr 2010).

International Standard Organization. 2018. Road Vehicles — Functional Safety. Standard ISO-26262. ISO.

JEDEC. 2003. JESD91A - Method for Developing Acceleration Models for Electronic Component Failure Mechanisms.
(Aug 2003). Global Standards for the Microelectronics Industry.

C. Jiang, Z. Zhang, X. Han, and J. Liu. 2013. A novel evidence-theory-based reliability analysis method for structures
with epistemic uncertainty. Computers & Structures 129 (2013), 1-12. https://doi.org/10.1016/j.compstruc.2013.08.007
M. P. Kaminskiy. 2012. Reliability Models for Engineers and Scientists. Taylor & Francis, Boca Raton. https://doi.org/
10.1201/b13701

S.Kang, Hoeseok Yang, Sungchan Kim, I. Bacivarov, Soonhoi Ha, and L. Thiele. 2014. Static mapping of mixed-critical
applications for fault-tolerant MPSoCs. In 51st ACM/EDAC/IEEE Design Automation Conference (DAC’14). IEEE, New
York, NY, 1-6. https://doi.org/10.1145/2593069.2593221

J. Karlsson, P. Liden, P. Dahlgren, R. Johansson, and U. Gunneflo. 1994. Using heavy-ion radiation to validate fault-
handling mechanisms. IEEE Micro 14, 1 (Feb 1994), 8-23. https://doi.org/10.1109/40.259894

Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur
Mutlu. 2014. Flipping bits in memory without accessing them. In ISCA’14 Proceedings of the 41st Annual International
Symposium on Computer Architecture. IEEE, Minneapolis, MN, 361-372. https://doi.org/10.1145/2678373.2665726

ACM Computing Surveys, Vol. 55, No. 14s, Article 306. Publication date: July 2023.

https://doi.org/10.1145/322123.322131
https://doi.org/10.1109/REAL.1995.495202
https://doi.org/10.1023/A:1008046012844
https://doi.org/10.1109/REAL.1997.641271
https://doi.org/10.1109/DSN.2010.5544288
https://doi.org/10.1109/2.585156
https://doi.org/10.1145/3242086
https://doi.org/10.1109/TCAD.2021.3053232
https://doi.org/10.1109/RTAS.2014.6925991
https://www.nowpublishers.com/article/DownloadSummary/EDA-018
https://doi.org/10.1109/2.585157
https://doi.org/10.1145/2593069.2593169
https://doi.org/10.1109/TCST.2009.2026285
https://doi.org/10.1109/IEEESTD.1990.101064
https://doi.org/10.1016/j.compstruc.2013.08.007
https://doi.org/10.1201/b13701
https://doi.org/10.1145/2593069.2593221
https://doi.org/10.1109/40.259894
https://doi.org/10.1145/2678373.2665726

306:28 F. Reghenzani et al.

[57] G. A. Klutke, P. C. Kiessler, and M. A. Wortman. 2003. A critical look at the bathtub curve. IEEE Transactions on

Reliability 52, 1 (2003), 125-129. https://doi.org/10.1109/TR.2002.804492

Angeliki Kritikakou, Panagiota Nikolaou, Ivan Rodriguez-Ferrandez, Joseph Paturel, Leonidas Kosmidis, Maria K.

Michael, Olivier Sentieys, and David Steenari. 2022. Functional and timing implications of transient faults in critical

systems. In IEEE 28th International Symposium on On-Line Testing and Robust System Design (IOLTS 22). IEEE, Torino,

Italy, 1-10. https://doi.org/10.1109/IOLTS56730.2022.9897537

[59] Seong Woo Kwak, Byung Jae Choi, and Byung Kook Kim. 2001. An optimal checkpointing-strategy for real-time

control systems under transient faults. IEEE Transactions on Reliability 50, 3 (2001), 293-301. https://doi.org/10.1109/

24.974127

G. Latif-Shabgahi,]. M. Bass, and S. Bennett. 2004. A taxonomy for software voting algorithms used in safety-critical

systems. IEEE Transactions on Reliability 53, 3 (2004), 319-328. https://doi.org/10.1109/TR.2004.832819

[61] E. A. Lee. 2008. Cyber physical systems: Design challenges. In 11th IEEE International Symposium on Object and

Component-Oriented Real-Time Distributed Computing (ISORC’08). IEEE, Orlando, FL, 363-369. https://doi.org/10.

1109/ISORC.2008.25

Aiguo Li and Bingrong Hong. 2007. Software implemented transient fault detection in space computer. Aerospace

Science and Technology 11, 2 (2007), 245-252. https://doi.org/10.1016/j.ast.2006.06.006

Xin Li, Michael C. Huang, Kai Shen, and Lingkun Chu. 2010. A realistic evaluation of memory hardware errors and

software system susceptibility. In Proceedings of the 2010 USENIX Conference on USENIX Annual Technical Conference.

ACM, Boston, MA, 6. http://dl.acm.org/citation.cfm?id=1855840.1855846.

Yau-Tsun Steven Li and Sharad Malik. 1995. Performance analysis of embedded software using implicit path enu-

meration. SIGPLAN Not. 30, 11 (Nov. 1995), 88-98. https://doi.org/10.1145/216633.216666

Jian Denny Lin, Albert M. K. Cheng, Douglas Steel, and Michael Yuchi Wu. 2014. Scheduling mixed-criticality real-

time tasks with fault tolerance. In Proceedings of the 2nd Workshop on Mixed Criticality Systems (WMC’14), RTSS.

WMC, Rome, Italy, 39-44.

Andreas Lofwenmark and Simin Nadjm-Tehrani. 2018. Fault and timing analysis in critical multi-core systems: A

survey with an avionics perspective. Journal of Systems Architecture 87 (2018), 1-11. https://doi.org/10.1016/j.sysarc.

2018.04.001

Florian Many and David Doose. 2011. Scheduling analysis under fault bursts. In Real-Time Technology and Applica-

tions — Proceedings. IEEE, Chicago, IL, 113-122. https://doi.org/10.1109/RTAS.2011.19

Rami Melhem, Daniel Mossé, and Elmootazbellah Elnozahy. 2004. The interplay of power management and fault

recovery in real-time systems. IEEE Trans. Comput. 53, 2 (2004), 217-231. https://doi.org/10.1109/TC.2004.1261830

P. Mell, K. Scarfone, and S. Romanosky. 2006. Common vulnerability scoring system. I[EEE Security Privacy 4, 6 (2006),

85-89. https://doi.org/10.1109/MSP.2006.145

ESA COTS WG 2/3 members. 2020. ESA COTS Initiative, WG 2/3 Work Synthesis. Technical Report. European Space

Agency, Noordwijk, Netherlands.

[71] Microsemi. 2011. FPGA Reliability and the Sunspot Cycle. Technical Report. Microsemi. Retrieved April 6, 2023 from
https://www.microsemi.com/document-portal/doc.

[72] D. Mosse, R. Melhem, and S. Ghosh. 1994. Analysis of a fault-tolerant multiprocessor scheduling algorithm. In

Proceedings of IEEE 24th International Symposium on Fault-Tolerant Computing. IEEE, Austin, TX, 16-25. https:

//doi.org/10.1109/FTCS.1994.315661

R. Natella, D. Cotroneo, J. A. Duraes, and H. S. Madeira. 2013. On fault representativeness of software fault injection.

IEEE Transactions on Software Engineering 39, 1 (2013), 80-96. https://doi.org/10.1109/TSE.2011.124

Linwei Niu, Jonathan Musselwhite, and Wei Li. 2018. Work-in-progress: Enhanced energy-aware standby-sparing

(58

[t

—_
(=)
(=}

=

(62

—

(63

[t

[64

flan?

(65

[

66

=

(67

—

(68

—

(69

—

(70

=

(73

=

(74

[l

techniques for fixed-priority hard real-time systems. Proceedings of the Real-Time Systems Symposium, 165-168. https:

//doi.org/10.1109/RTSS.2018.00031

ISO/TC 199 Safety of machinery. 2015. ISO 13849-1:2015 — Safety of Machinery — Safety-related Parts of Control

Systems, Part 1: General Principles for Design Hardware. International Organization for Standardization. (Dec 2015).

Retrieved April 6, 2023 from https://www.iso.org/standard/69883.html.

[76] N. Oh, P. P. Shirvani, and E. J. McCluskey. 2002. Control-flow checking by software signatures. IEEE Transactions on
Reliability 51, 1 (2002), 111-122. https://doi.org/10.1109/24.994926

[77] Sam K. Oh and Glenn H. Macewen. 1992. Toward Fault-tolerant Adaptive Real-time Distributed Systems. Technical

Report. Department of Computing and Information Science, Queen’s University, Kingston, Ontario, CA. Retrieved

April 6, 2023 from https://research.cs.queensu.ca/TechReports/Reports/1992-325.pdf.

Mihir Pandya and Miroslaw Malek. 1998. Minimum achievable utilization for fault-tolerant processing of periodic

tasks. IEEE Trans. Comput. 47, 10 (1998), 1102-1112. https://doi.org/10.1109/12.729793

Risat Mahmud Pathan. 2014. Fault-tolerant and real-time scheduling for mixed-criticality systems. Real-Time Systems

50, 4 (01 Jul 2014), 509-547. https://doi.org/10.1007/s11241-014-9202-z

(75

=

(78

[t

(79

—

ACM Computing Surveys, Vol. 55, No. 14s, Article 306. Publication date: July 2023.

https://doi.org/10.1109/TR.2002.804492
https://doi.org/10.1109/IOLTS56730.2022.9897537
https://doi.org/10.1109/24.974127
https://doi.org/10.1109/TR.2004.832819
https://doi.org/10.1109/ISORC.2008.25
https://doi.org/10.1016/j.ast.2006.06.006
http://dl.acm.org/citation.cfm?id=1855840.1855846
https://doi.org/10.1145/216633.216666
https://doi.org/10.1016/j.sysarc.2018.04.001
https://doi.org/10.1109/RTAS.2011.19
https://doi.org/10.1109/TC.2004.1261830
https://doi.org/10.1109/MSP.2006.145
https://www.microsemi.com/document-portal/doc
https://doi.org/10.1109/FTCS.1994.315661
https://doi.org/10.1109/TSE.2011.124
https://doi.org/10.1109/RTSS.2018.00031
https://www.iso.org/standard/69883.html
https://doi.org/10.1109/24.994926
https://research.cs.queensu.ca/TechReports/Reports/1992-325.pdf
https://doi.org/10.1109/12.729793
https://doi.org/10.1007/s11241-014-9202-z

Software Fault Tolerance in Real-Time Systems 306:29

[80] Jonathan Pellish. 2018. Commercial Off-The-Shelf (COTS) Electronics Reliability for Space Applications. Technical Re-

[81
[82

[83

[84

[85

[86
[87
(88
(89

[90

[91

[92

[93

(94

[95

[96

[97

[98

[99

[100

]
]
]

]

]

]
]
]
]
]

]
]

]

=

]
]

—

—

]

—

port. NASA/Goddard Space Flight Center, Greenbelt, MD. Retrieved April 6, 2023 from https://ntrs.nasa.gov/api/
citations/20180002659/downloads/20180002659.pdf.

Sasikumar Punnekkat, Alan Burns, and Robert Davis. 2001. Analysis of checkpointing for real-time systems. Real-
Time Systems 20, 1 (01 Jan 2001), 83-102. https://doi.org/10.1023/A:1026589200419

Marvin Rausand. 2014. Reliability of Safety—Critical Systems. John Wiley & Sons, Ltd, Hoboken, NJ. 25-51 pages.
https://doi.org/10.1002/9781118776353

Federico Reghenzani, Zhishan Guo, Luca Santinelli, and William Fornaciari. 2022. A mixed-criticality approach to
fault tolerance: Integrating schedulability and failure requirements. In IEEE 28th Real-Time and Embedded Technology
and Applications Symposium (RTAS’22). IEEE, Milan, Italy, 27-39. https://doi.org/10.1109/RTAS54340.2022.00011
Federico Reghenzani, Giuseppe Massari, and William Fornaciari. 2020. Probabilistic-WCET reliability: Statistical test-
ing of EVT hypotheses. Microprocessors and Microsystems 77 (2020), 103135. https://doi.org/10.1016/j.micpro.2020.
103135

Federico Reghenzani, Gianmario Pozzi, Giuseppe Massari, Simone Libutti, and William Fornaciari. 2016. The MIG
framework: Enabling transparent process migration in open MPL In Proceedings of the 23rd European MPI Users’
Group Meeting (EuroMPI’16). ACM, New York, NY, 64-73. https://doi.org/10.1145/2966884.2966903

Federico Reghenzani, Luca Santinelli, and William Fornaciari. 2020. Dealing with uncertainty in pWCET Estimations.
ACM Trans. Embed. Comput. Syst. 19, 5, Article 33 (Sept. 2020), 23 pages. https://doi.org/10.1145/3396234

G. A.Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August. 2005. SWIFT: Software implemented fault tolerance.
In International Symposium on Code Generation and Optimization. IEEE, San Jose, CA, 243-254. https://doi.org/10.
1109/CG0.2005.34

RTCA/EUROCAE. 1992. DO-178B - Software Considerations in Airborne Systems and Equipment Certification. Standard.
RTCA/EUROCAE.

RTCA/EUROCAE. 2000. DO-178C — Design Assurance Guidance for Airborne Electronic Hardware. (Apr 2000).

S. Safari, M. Ansari, G. Ershadi, and S. Hessabi. 2019. On the scheduling of energy-aware fault-tolerant mixed-
criticality multicore systems with service guarantee exploration. IEEE Transactions on Parallel and Distributed Systems
30, 10 (2019), 2338-2354. https://doi.org/10.1109/TPDS.2019.2907846

Goutam Kumar Saha. 2006. Software based fault tolerance: A survey. Ubiquity 2006, July, Article 1 (July 2006), 1 pages.
https://doi.org/10.1145/1149633.1147995

F. SalarKaleji and A. Dayyani. 2013. A survey on fault detection, isolation and recovery (FDIR) module in satellite
onboard software. In 6th International Conference on Recent Advances in Space Technologies (RAST’13). IEEE, Istanbul,
Turkey, 545-548. https://doi.org/10.1109/RAST.2013.6581270

Mohammad Salehi, Mohammad Khavari Tavana, Semeen Rehman, Muhammad Shafique, Alireza Ejlali, and Jorg
Henkel. 2016. Two-state checkpointing for energy-efficient fault tolerance in hard real-time systems. IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems 24, 7 (2016), 2426—2437. https://doi.org/10.1109/TVLSI.2015.
2512839

Tianning She, Sudharsan Vaidhun, Qijun Gu, Sajal Das, Zhishan Guo, and Kecheng Yang. 2021. Precise scheduling
of mixed-criticality tasks on varying-speed multiprocessors. In 29th International Conference on Real-Time Networks
and Systems. RTNS, Virtual, 10.

K. G. Shin, T. Lin, and Y. Lee. 1987. Optimal checkpointing of real-time tasks. IEEE Trans. Comput. C-36, 11 (1987),
1328-1341. https://doi.org/10.1109/TC.1987.5009472

Lucas Antunes Tambara, Paolo Rech, Eduardo Chielle, Jorge Tonfat, and Fernanda Lima Kastensmidt. 2016. Analyzing
the impact of radiation-induced failures in programmable SoCs. IEEE Transactions on Nuclear Science 63, 4 (2016),
2217-2224. https://doi.org/10.1109/TNS.2016.2522508

Abhilash Thekkilakattil, Radu Dobrin, and Sasikumar Punnekkat. 2015. Fault tolerant scheduling of mixed criticality
real-time tasks under error bursts. Procedia Computer Science 46 (2015), 1148-1155. https://doi.org/10.1016/j.procs.
2015.01.027

Proceedings of the International Conference on Information and Communication Technologies, ICICT 2014, 3-5
December 2014 at Bolgatty Palace & Island Resort, Kochi, India.

Abhilash Thekkilakattil, Radu Dobrin, Sasikumar Punnekkat, and Huseyin Aysan. 2012. Resource augmentation for
fault-tolerance feasibility of real-time tasks under error bursts. In Proceedings of the 20th International Conference on
Real-Time and Network Systems (RTNS’12). ACM, New York, NY, 41-50. https://doi.org/10.1145/2392987.2392992
Massimo Tipaldi and Bernhard Bruenjes. 2015. Survey on fault detection, isolation, and recovery strategies in
the space domain. Journal of Aerospace Information Systems 12, 2 (2015), 235-256. https://doi.org/10.2514/1.1010307
arXiv:https://doi.org/10.2514/1.1010307

Steve Vestal. 2007. Preemptive scheduling of multi-criticality systems with varying degrees of execution time assur-
ance. In Proceedings of the Real-Time Systems Symposium. IEEE, Tucson, AZ, 239-243. https://doi.org/10.1109/RTSS.
2007.47

ACM Computing Surveys, Vol. 55, No. 14s, Article 306. Publication date: July 2023.

https://ntrs.nasa.gov/api/citations/20180002659/downloads/20180002659.pdf
https://doi.org/10.1023/A:1026589200419
https://doi.org/10.1002/9781118776353
https://doi.org/10.1109/RTAS54340.2022.00011
https://doi.org/10.1016/j.micpro.2020.103135
https://doi.org/10.1145/2966884.2966903
https://doi.org/10.1145/3396234
https://doi.org/10.1109/CGO.2005.34
https://doi.org/10.1109/TPDS.2019.2907846
https://doi.org/10.1145/1149633.1147995
https://doi.org/10.1109/RAST.2013.6581270
https://doi.org/10.1109/TVLSI.2015.2512839
https://doi.org/10.1109/TC.1987.5009472
https://doi.org/10.1109/TNS.2016.2522508
https://doi.org/10.1016/j.procs.2015.01.027
https://doi.org/10.1145/2392987.2392992
https://doi.org/10.2514/1.I010307
http://arxiv.org/abs/https://doi.org/10.2514/1.I010307
https://doi.org/10.1109/RTSS.2007.47

306:30 F. Reghenzani et al.

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

G. von der Briggen, K. H. Chen, W. H. Huang, and J. J. Chen. 2016. Systems with dynamic real-time guarantees
in uncertain and faulty execution environments. In 2016 IEEE Real-Time Systems Symposium (RTSS’16). IEEE, Porto,
Portugal, 303-314. https://doi.org/10.1109/RTSS.2016.037

C. Wang, H. Kim, Y. Wy, and V. Ying. 2007. Compiler-managed software-based redundant multi-threading for tran-
sient fault detection. In International Symposium on Code Generation and Optimization (CGO’07). IEEE, San Jose, CA,
244-258. https://doi.org/10.1109/CGO.2007.7

C. Wang, F. Mueller, C. Engelmann, and S. L. Scott. 2008. Proactive process-level live migration in HPC environments.
In Proceedings of the 2008 ACM/IEEE Conference on Supercomputing (SC’08). IEEE, Austin, TX, 1-12. https://doi.org/
10.1109/SC.2008.5222634

J. H. Wensley, L. Lamport, J. Goldberg, M. W. Green, K. N. Levitt, P. M. Melliar-Smith, R. E. Shostak, and C. B.
Weinstock. 1978. SIFT: Design and analysis of a fault-tolerant computer for aircraft control. Proc. IEEE 66, 10 (1978),
1240-1255. https://doi.org/10.1109/PROC.1978.11114

Geoff Whittington. 2016. A critical look at the IASB. Pioneers of Critical Accounting 52, 1 (2016), 179-200. https:
//doi.org/10.1057/978-1-137-54212-0_10

K. Yang, A. Bhuiyan, and Z. Guo. 2020. F2VD: Fluid rates to virtual deadlines for precise mixed-criticality scheduling
on a varying-speed processor. In 2020 IEEE/ACM International Conference on Computer Aided Design (ICCAD’20).
IEEE/ACM, San Diego, CA, 1-9. https://doi.org/10.1145/3400302.3415716

K. S. Yim, V. Sidea, Z. Kalbarczyk, D. Chen, and R. K. Iyer. 2012. A fault-tolerant programmable voter for software-
based N-modular redundancy. In 2012 IEEE Aerospace Conference. IEEE, Big Sky, MT, 1-20. https://doi.org/10.1109/
AERO.2012.6187253

John W. Young. 1974. A first order approximation to the optimum checkpoint interval. Commun. ACM 17, 9 (Sept.
1974), 530-531. https://doi.org/10.1145/361147.361115

Ying Zhang and K. Chakrabarty. 2006. A unified approach for fault tolerance and dynamic power management in
fixed-priority real-time embedded systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 25, 1 (2006), 111-125. https://doi.org/10.1109/TCAD.2005.852657

Yi-Wen Zhang and Rong-Kun Chen. 2022. A survey of energy-aware scheduling in mixed-criticality systems. Journal
of Systems Architecture 127 (2022), 102524. https://doi.org/10.1016/j.sysarc.2022.102524

Baoxian Zhao, Hakan Aydin, and Dakai Zhu. 2013. Shared recovery for energy efficiency and reliability enhance-
ments in real-time applications with precedence constraints. ACM Transactions on Design Automation of Electronic
Systems 18, 2 (2013), 21. https://doi.org/10.1145/2442087.2442094

Z. Zhengyong, P. Liping, and Y. Fumin. 2014. Schedulability analysis for fault tolerance real-time system under
fault bursts. In 2014 IEEE 7th Joint International Information Technology and Artificial Intelligence Conference. IEEE,
Chongqing, China, 20-27. https://doi.org/10.1109/ITAIC.2014.7064998

Junlong Zhou, Min Yin, Zhifang Li, Kun Cao, Jianming Yan, Tongquan Wei, Mingsong Chen, and Xin Fu. 2017. Fault-
tolerant task scheduling for mixed-criticality real-time systems. Journal of Circuits, Systems and Computers 26, 1
(2017), 1-17. https://doi.org/10.1142/50218126617500165

D. Zhu and H. Aydin. 2009. Reliability-aware energy management for periodic real-time tasks. IEEE Trans. Comput.
58, 10 (2009), 1382-1397. https://doi.org/10.1109/TC.2009.56

Haissam Ziade, Rafic Ayoubi, and Raoul Velazco. 2004. A survey on fault injection techniques. The International Arab
Journal of Information Technology 1, 2 (2004), 171-186.

Received 23 April 2021; revised 19 January 2023; accepted 23 March 2023

ACM Computing Surveys, Vol. 55, No. 14s, Article 306. Publication date: July 2023.

https://doi.org/10.1109/RTSS.2016.037
https://doi.org/10.1109/CGO.2007.7
https://doi.org/10.1109/SC.2008.5222634
https://doi.org/10.1109/PROC.1978.11114
https://doi.org/10.1057/978-1-137-54212-0_10
https://doi.org/10.1145/3400302.3415716
https://doi.org/10.1109/AERO.2012.6187253
https://doi.org/10.1145/361147.361115
https://doi.org/10.1109/TCAD.2005.852657
https://doi.org/10.1016/j.sysarc.2022.102524
https://doi.org/10.1145/2442087.2442094
https://doi.org/10.1109/ITAIC.2014.7064998
https://doi.org/10.1142/S0218126617500165
https://doi.org/10.1109/TC.2009.56

