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A B S T R A C T

This work presents a procedure to solve the Euler equations by explicitly updating, in a conservative manner,
a generic thermodynamic variable such as temperature, pressure or entropy instead of the total energy. The
presented procedure is valid for any equation of state and spatial discretization. When using complex equations
of state such as Span–Wagner, choosing the temperature as the generic thermodynamic variable yields great
reductions in the computational costs associated to thermodynamic evaluations. Results computed with a state
of the art thermodynamic model are presented, and computational times are analyzed. Particular attention is
dedicated to the conservation of total energy, the propagation speed of shock waves and jump conditions. The
procedure is thoroughly tested using the Span–Wagner equation of state through the CoolProp thermodynamic
library and the Van der Waals equation of state, both in the ideal and non-ideal compressible fluid-dynamics
regimes, by comparing it to the standard total energy update and analytical solutions where available.
1. Introduction

The numerical simulation of fluid-dynamics problems is still an
extremely active field of research despite thousands of researchers
working on the subject for the past century. This is due to a large
number of applications, each characterized by its different needs re-
garding physical modeling, numerical accuracy, and computational
costs. The broader subject of fluid-dynamics can be divided into many
sub-fields, for example, relativistic [1] and magneto-hydrodynamics
(MHD) [2], incompressible [3] or compressible [4] fluid dynamics, and
more. We will concentrate on compressible fluid-dynamics, also named
gas-dynamics, which in turn can be subdivided into two further cate-
gories, namely ideal and non-ideal [5–7] compressible fluid-dynamics
(NICFD). Ideal compressible fluid dynamics has been the main interest
of the broader CFD research and industry landscape, and it is de-
voted to the study of flow fields that follow the ideal gas equation
of state (EoS) [8,9]. Starting from the theoretical work of Bethe [10],
Zel’dovich [11], and finally Thompson [12], a new sub-category of
compressible fluid dynamics was born, interested in the study of non-
ideal fluids [5–7]. Under particular flow conditions, these fluids can
exhibit non-classical behaviors such as expansion shocks and compres-
sion fans [10,11,13,14]. These waves will not occur if the gas is being
described through the ideal gas EoS, therefore more accurate EoS such
as the Van der Waals (VdW) EoS [15], are necessary to describe the
thermodynamic behavior of real fluids. Since the first appearance of
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the VdW EoS, more accurate EoSs have been developed [16–18]. The
current state-of-the-art equation of state is the so-called Span–Wagner
type EoS [19], expressed in terms of the Helmholtz free energy. This
EoS is at the basis of the thermodynamic library CoolProp [20], which
we will use in this work. The method proposed in this paper will be
purposefully developed in an EoS-agnostic manner, that is the proposed
strategy is valid for any equation of state. For a comprehensive recap
of the latest advancements in the theoretical and numerical modeling
of non-ideal compressible fluid dynamics see [21,22].

Non-ideal compressible fluid dynamics is described by the same
Euler equations as the ones that describe ideal compressible fluid dy-
namics. In their conservation form, these are expressed as conservation
equations for mass density 𝜌, momentum 𝜌𝒖, and total energy 𝐸𝑡 =
𝐸 +𝜌𝒖2∕2, with 𝐸 being the internal energy per unit volume. In NICFD
simulations, the most accurate EoS in use is the Span–Wagner type
EoS [19], which is expressed as a function of density and temperature
𝑓 (𝜌, 𝑇 ). To evaluate this EoS using two different variables such as
density and internal energy 𝑓 (𝜌, 𝐸), two different approaches are cur-
rently used: look-up tables [23–26], or root searching algorithms [27–
30]. A similar need also arises in relativistic hydrodynamics where
a root-finding algorithm [31], or more recently, a machine learning
model [32], is often employed to retrieve primitive variables from
the conservative ones. An alternative and interesting approach that
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completely replaces the EoS was presented by Saurel et al. [33] and
is based on mechanical relaxation.

In a finite volume CFD code using MUSCL for second-order spatial
convergence, one must obtain the thermodynamic state twice for each
face separating two control volumes in the mesh. Since in 3D the
number of faces scales faster than the number of control volumes, the
EoS evaluation costs can add up. In addition to the aforementioned
complications introduced by the need to evaluate a more complex EoS,
the Riemann solvers used to compute numerical fluxes have also been
re-worked to allow for generic EoS [34,35].

Analogously to ideal compressible fluid dynamics, conservation [36]
is a pivotal ingredient in the construction of a robust numerical tool for
NICFD problems. Many industrial codes use the finite volume method
to discretize the Euler equations due to the conservation properties it
naturally embeds. In the compressible regime, the Euler equations are
almost universally solved in their conservative form. There exist many
different primitive formulations that have been employed in different
contexts. For example, Van der Heul et al. [37] proposed a method
that conservatively solves the Euler equations in primitive form with
good performance across a large range of Mach numbers. This is done
thanks to a particular choice of the pressure scaling and an implicit
pressure-correction formula that is only valid for the ideal gas EoS.
Toro [38,39] described a set of schemes to solve hyperbolic PDEs in
non-conservative form and applied them to the Euler equations. Unfor-
tunately, these methods are not conservative by design, and as found by
the authors themselves, they tend to compute the wrong shock position.
Hughes recapped his works on stabilized methods for compressible
fluid-dynamics in [40], which also focused on the development of
methods using either primitive or entropy variables [41–43], mostly
aimed at the creation of a unified scheme for all-speed flows. As before,
these schemes are not conservative by nature. One additional way
of dealing with non-conservative formulations is the concept of path-
conservation [44,45], although its capability of converging to the exact
solution has been questioned [46]. Extended Euler systems for multi-
phase and multi-component flows have sometimes been presented in
primitive form [47–50] as they can be better suited to avoid spurious
oscillations across multi-material interfaces [51]. A common issue of
all primitive formulations is how to preserve conservation. Although
they are well-behaved on smooth problems, when discontinuities such
as shocks arise in the flow, the loss of conservation can lead to errors
in captured shock positions and jump conditions.

Over the years, different approaches have been explored to robustly
solve the Euler equations when not using the conservation form. Space–
time coupled approaches such as [52,53] look promising but have not
been widely adopted. Also, their implementation could require large
reworks in well-established CFD codes. Zhang et al. [54] presented a
primitive update of the conservative Euler equations that leverages an
implicit dual-time formulation to retrieve exact conservation that was
lost by using an approximate linearization of the time derivative to
change variables. This approach works well, but it can only recover
conservation up to the tolerance on the dual-time integration, which
can become expensive for unsteady simulations. Also, Dumbser and
Casulli [55] presented a semi-implicit conservative solver for generic
EoS that updates pressure instead of total energy. This is done by
using a Newton-type technique [56] to solve a system for the unknown
pressure on a staggered grid, which could be complicated to implement
in already established 2D and 3D unstructured CFD solvers. In the
context of shock-free compressible flows, De Michele and Coppola [57]
presented an analysis of different kinetic-energy-preserving schemes,
which are currently limited to the ideal gas assumption and the use of
central finite difference schemes. More recently, Abgrall [58] described
a residual correction for the explicit and arbitrarily high-order solution
of the primitive Euler equations. This correction works well for any
set of variables [𝜌, 𝒖, 𝜑], as long as we have a constant derivative of
he internal energy with respect to the primitive variable 𝜑, that is
2

𝐸𝜑,𝜌 = (𝜕𝐸∕𝜕𝜑)𝜌 = const.
In this paper, we will present an update procedure that is explicit
in time and allows us to solve the conservative form of the Euler
equations by updating [𝜌, 𝜌𝒖, 𝜑] instead of [𝜌, 𝜌𝒖, 𝐸𝑡] in a conservative
manner without worrying about the spatial discretization. Indeed, we
can therefore replace the total energy by any independent generic ther-
modynamic variable 𝜑. This procedure does not require the derivation
of an evolution equation for 𝜑 and does not affect any of the properties
of its standard total energy update counterpart. The effective choice
of 𝜑 is entirely dependent on the problem at hand. Some applications
could require the imposition of boundary conditions on a particular
variable such as the pressure (𝜑 = 𝑃 ), while some others could use
a particular EoS where using the enthalpy (𝜑 = ℎ) is beneficial. We are
primarily interested in non-ideal compressible fluid dynamics, so we
will showcase results obtained mostly using the temperature (𝜑 = 𝑇 )
since we can drastically reduce the computational time spent evaluating
the thermodynamic properties when using a Span–Wagner type EoS.

The paper is structured as follows: firstly, in Section 2.1, we will
shortly describe the employed spatial discretization. In Section 2.2.1,
we will derive an approximate formula to explicitly update the generic
thermodynamic variable 𝜑 by using the spatial residuals of the total
energy equation. Then, in Section 2.2.2, we will describe a simple
procedure to fix the approximate formula described in the previous
section, in order to obtain the exact total energy conservation. To aid
the implementation of the presented method, we report a simplified
recap in Section 2.2.3. Various results are then presented using both the
VdW EoS and Span–Wagner type EoS by using the thermodynamic li-
brary CoolProp [20]. We start with a carbon-dioxide shock tube close to
saturation using the Span–Wagner EoS [19] in Section 3.1 to showcase
the method’s robustness (Section 3.1.1) and the computational costs
associated to EoS evaluations (Section 3.1.2). We then show a dilute
nitrogen shock tube with the VdW EoS in Section 3.2 to demonstrate
how wave speeds and jump conditions are satisfied when using the
presented procedure when compared to a simplified approximation.
The spatial convergence order is evaluated using the VdW EoS and
the Method of Manufactured Solutions (MMS) [59] in Section 3.3.
The proposed approach is then tested on multiple dilute gas tests in
Section 3.4 and dense gas tests in Section 3.5 with the VdW EoS, and
conclusions are drawn in Section 4.

2. Numerical scheme

The goal of this work is to describe an update procedure that is
explicit in time, capable of solving the conservative Euler equations
by updating a generic thermodynamic variable 𝜑(𝑥, 𝑡) instead of the
total energy 𝐸𝑡(𝑥, 𝑡), in a conservative manner. We will test the method
by using 𝜑(𝑥, 𝑡) = [𝑇 , 𝑃 , 𝑒, ℎ, 𝑠], namely temperature, pressure, internal
energy, enthalpy, and entropy per unit mass. In short, we will store
and update 𝜑 instead of 𝐸𝑡, while still solving the conservative Euler
equations. The procedure is structured as follows:

1. We compute the spatial discretization of the conservative Euler
equations, as described in Section 2.1

2. Instead of updating the total energy 𝐸𝑡, we use an approximate
explicit update formula for 𝜑, obtained through a linearization
which does not conserve total energy, described in Section 2.2.1

3. We use a secant root searching algorithm to compute the lin-
earization coefficients present in the aforementioned approxi-
mate update formula for 𝜑, such that total energy is conserved
exactly, described in Section 2.2.2

As mentioned, the first step to perform this procedure is to compute
the spatial residuals of the conservative Euler equations, Eq. (1), which
we can already compute since we are integrating explicitly in time.

⎧

⎪

⎪

⎨

⎪

⎪

𝜕𝜌
𝜕𝑡

+∇ ⋅ (𝜌𝒖) = 0

𝜕𝜌𝒖
𝜕𝑡

+∇ ⋅ (𝜌𝒖⊗ 𝒖 + 𝑃 ) = 𝟎

𝜕𝐸𝑡
+∇ ⋅

((

𝐸𝑡 + 𝑃
)

𝒖
)

= 0

(1)
⎩ 𝜕𝑡
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Fig. 1. Variable arrangement and MUSCL reconstruction sketch for a generic variable 𝑞 on two neighboring control volumes 𝐶𝑖 and 𝐶𝑗 .
w

We will briefly describe the finite volume spatial discretization
f the Euler equations we employ in Section 2.1. We then describe
he explicit time update strategy in Section 2.2. To simplify the im-
lementation, we recap the procedure in Section 2.2.3, forgoing the
athematical details regarding the derivation.

.1. Spatial discretization

We will be working in a collocated finite volume solver, with
USCL reconstruction for second-order spatial convergence (See

ig. 1). We denote with 𝐶𝑗 a control volume neighboring control
olume 𝐶𝑖 and with 𝐴𝑖,𝑗 their shared area. We also denote with ∑

𝐶𝑗∈𝜕𝐶𝑖
he sum over all control volumes 𝐶𝑗 neighboring 𝐶𝑖.

As mentioned, we will be updating and storing, in each control
olume, a generic thermodynamic variable 𝜑(𝑥, 𝑡) instead of the total
nergy 𝐸𝑡(𝑥, 𝑡). Therefore, the only difference to a standard scheme
pdating the total energy will be in which variables are stored and
econstructed at each side of the face, namely 𝒒𝑖 =

[

𝜌𝑖, 𝜌𝒖𝑖, 𝜑𝑖
]

and
𝑗 =

[

𝜌𝑗 , 𝜌𝒖𝑗 , 𝜑𝑗
]

. This means that the numerical fluxes can be computed
sing any exact or approximate Riemann solver [34,35,60–62], or also
ny central difference based schemes [63]. In this work, we will use
n HLLC solver, with the Vinokur & Montagne [34] Roe average state
or arbitrary EoS. We made this choice because we want to be able
o use any equation of state, and also intend to apply the presented
cheme to non-ideal compressible fluid dynamics. We name 𝐹 𝑞(𝒒𝑖, 𝒒𝑗 )
he numerical flux associated with the conservation equation for an
rbitrary variable 𝑞 from Eq. (1), on the boundary between two control
olume 𝐶𝑖 and 𝐶𝑗 . Using this, we define the spatial residuals 𝛷𝑞

𝑖 arising
rom the discretization of the surface integral of the conservative fluxes
or an arbitrary variable 𝑞 of Eq. (1) on the boundary of a control
olume 𝐶𝑖 as:

𝛷𝜌
𝑖 =

∑

𝐶𝑗∈𝜕𝐶𝑖

𝐴𝑖,𝑗𝐹
𝜌 (𝒒𝑖, 𝒒𝑗

)

𝜱𝜌𝒖
𝑖 =

∑

𝐶𝑗∈𝜕𝐶𝑖

𝐴𝑖,𝑗𝑭 𝜌𝒖 (𝒒𝑖, 𝒒𝑗
)

𝐸𝑡
𝑖 =

∑

𝐶𝑗∈𝜕𝐶𝑖

𝐴𝑖,𝑗𝐹
𝐸𝑡 (𝒒𝑖, 𝒒𝑗

)

(2)

Note that we compute the residual 𝛷𝐸𝑡
𝑖 since we are still interested in

solving the total energy conservation equation, although we will update
and store the primitive variable 𝜑. Any high-order spatial reconstruc-
tion such as ENO [64] or WENO [65] could be used to reconstruct the
left and right states. We will use the MUSCL reconstruction to obtain up
to second-order spatial convergence and to avoid spurious oscillations,
and we employ the slope limiter by Barth and Jespersen [66].

2.2. Time discretization

In this section, we will describe the conservative time update pro-
cedure for 𝜑. First, we will derive an approximate update formula
3

for 𝜑 in Section 2.2.1, obtained through a linearization of the total
energy conservation. In Section 2.2.2 we will then describe a secant
root search strategy designed to find the linearization coefficients that
recover exact total energy conservation.

As explained in Section 2.2.1, density 𝜌𝑛+1 and momentum 𝜌𝒖𝑛+1 at
the next time step are needed in the approximate update formula for 𝜑.
Since the mass and momentum equations are already in conservative
form, we can update them using a forward Euler scheme, that is:

𝜌𝑛+1𝑖 = 𝜌𝑛𝑖 −
𝛥𝑡
𝐶𝑖

𝛷𝜌
𝑖

𝜌𝒖𝑛+1𝑖 = 𝜌𝒖𝑛𝑖 −
𝛥𝑡
𝐶𝑖

𝜱𝜌𝒖
𝑖 .

(3)

Note that in this work we are limited to a first order scheme in time,
with the same CFL limitation on the time step size as the corresponding
total energy explicit update scheme.

2.2.1. Approximate update formula for a generic thermodynamic variable
𝜑

In this section, we will build a formula, similar to what is done
in [54], which will be used to compute the value of the thermodynamic
variable 𝜑𝑖 at the next time step, 𝜑𝑛+1

𝑖 , from a given total energy
residual 𝛷𝐸𝑡

𝑖 . This formula does not conserve total energy because
it amounts to a linearization of the explicit update [54]. We will
correct this inconsistency through the iterative procedure described in
Section 2.2.2, while still using an explicit and relatively inexpensive
approach.

Denoting the internal energy per unit volume as 𝐸 and assuming
that the equation of state can be expressed in the form 𝐸 = 𝐸(𝜌, 𝜑), the
definition of the total energy reads:

𝐸𝑡 = 𝐸(𝜌, 𝜑) + 1
2
𝜌𝒖2 = 𝜌𝑒 + 1

2
𝜌𝒖2 (4)

where 𝑒 is the internal energy per unit mass. We can write the deriva-
tive of 𝐸𝑡 in time as:
𝜕𝐸𝑡

𝜕𝑡
= 𝐸𝜑,𝜌

𝜕𝜑
𝜕𝑡

+ 𝐸𝜌,𝜑
𝜕𝜌
𝜕𝑡

+ 1
2
𝜕𝜌𝒖2

𝜕𝑡
(5)

where 𝐸𝑥,𝑦 denotes the partial derivative
(

𝜕𝐸
𝜕𝑥

)

𝑦
. If we integrate Eq. (5)

in time, between two time steps 𝑡𝑛 and 𝑡𝑛+1 we have:

∫

𝑡𝑛+1

𝑡𝑛

𝜕𝐸𝑡

𝜕𝑡
𝑑𝑡 = ∫

𝑡𝑛+1

𝑡𝑛

[

𝐸𝜑,𝜌
𝜕𝜑
𝜕𝑡

+ 𝐸𝜌,𝜑
𝜕𝜌
𝜕𝑡

+ 1
2
𝜕𝜌𝒖2

𝜕𝑡

]

𝑑𝑡

∫

𝑡𝑛+1

𝑡𝑛

𝜕𝐸𝑡

𝜕𝑡
𝑑𝑡 ≃ 𝐸𝜑,𝜌 ∫

𝑡𝑛+1

𝑡𝑛

𝜕𝜑
𝜕𝑡

𝑑𝑡 + 𝐸𝜌,𝜑 ∫

𝑡𝑛+1

𝑡𝑛

𝜕𝜌
𝜕𝑡

𝑑𝑡 + 1
2 ∫

𝑡𝑛+1

𝑡𝑛

𝜕𝜌𝒖2

𝜕𝑡
𝑑𝑡 .

(6)

In doing this, we made a non-trivial approximation because in principle
𝐸𝜑,𝜌 = 𝐸𝜑,𝜌(𝜌(𝑡), 𝜑(𝑡)) and 𝐸𝜌,𝜑 = 𝐸𝜌,𝜑(𝜌(𝑡), 𝜑(𝑡)) are functions of time,

hereas we considered them constant and equal to 𝐸𝜑,𝜌 and 𝐸𝜌,𝜑,
respectively. This linearization is why the update formula described in
this section is not exactly conservative. In Section 2.2.2 we will outline
a way of selecting their values to reconcile the approximate and exact
jumps of internal energy.
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Introducing the notation 𝛥𝑥 = 𝑥𝑛+1 − 𝑥𝑛 for the jump of a variable
during a time step, we can write Eq. (6) in a compact way as:

𝐸𝑡 ≃ 𝐸𝜑,𝜌𝛥𝜑 + 𝐸𝜌,𝜑𝛥𝜌 +
1
2
𝛥𝜌𝒖2. (7)

Let us notice that in Eq. (7) there are two distinct contributions
o the jump of total energy, namely the approximation of the internal
nergy jump 𝛥𝐸approx and the exact kinetic energy jump 𝛥𝜌𝒖2∕2 that

we already know because we have already updated the density and
momentum through Eq. (3):

𝛥𝐸𝑡 ≃ 𝐸𝜑,𝜌𝛥𝜑 + 𝐸𝜌,𝜑𝛥𝜌
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝛥𝐸approx

+ 1
2
𝛥𝜌𝒖2

⏟⏟⏟
exact and known

.
(8)

We can now use the approximate jump of total energy from Eq. (7)
to write an approximation of the conservation of discrete total energy
for control volume 𝐶𝑖:

∫𝐶𝑖

𝛥𝐸𝑡
𝑖𝑑𝑉 + 𝛥𝑡𝛷𝐸𝑡

𝑖 = 0

∫𝐶𝑖

(

𝐸𝜑,𝜌𝑖𝛥𝜑𝑖 + 𝐸𝜌,𝜑𝑖𝛥𝜌𝑖 +
1
2
𝛥𝜌𝒖2𝑖

)

𝑑𝑉 + 𝛥𝑡𝛷𝐸𝑡
𝑖 = 0 .

(9)

For the sake of readability, we will drop subscript (⋅)𝑖 denoting the
control volume because we are only looking at a single control volume
𝐶𝑖. Let us split the approximate total energy conservation from Eq. (9)
into two parts, and rename 𝐵 the one containing 𝛥𝜑:

∫𝐶
𝐸𝜑,𝜌𝛥𝜑𝑑𝑉

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
𝐵

+∫𝐶

(

𝐸𝜌,𝜑𝛥𝜌 +
1
2
𝛥𝜌𝒖2

)

𝑑𝑉 + 𝛥𝑡𝛷𝐸𝑡
𝑖 = 0 . (10)

We will use the same forward Euler time update scheme for the
generic thermodynamic variable 𝜑 as the one used for density and
momentum in Eq. (3). We therefore define a pseudo-spatial residual 𝛷𝜑

in control volume 𝐶 that satisfies exactly the approximate total energy
conservation, Eq. (10)

𝜑𝑛+1 = 𝜑𝑛 − 𝛥𝑡
𝐶
𝛷𝜑 , (11)

hich we can easily invert to obtain:

𝜑 = −𝛥𝑡
𝐶
𝛷𝜑 . (12)

Substituting Eq. (12) into 𝐵 from Eq. (10), and introducing 𝜔, we
obtain

𝐵 = −𝛥𝑡𝛷𝜑 1
𝐶 ∫𝐶

𝐸𝜑,𝜌𝑑𝑉

= −𝛥𝑡𝛷𝜑𝜔 .
(13)

et us now substitute this expression for 𝐵 back into the approximate
otal energy conservation Eq. (10):

𝛥𝑡𝛷𝜑𝜔 + ∫𝐶

(

𝐸𝜌,𝜑𝛥𝜌 +
1
2
𝛥𝜌𝒖2

)

𝑑𝑉 + 𝛥𝑡𝛷𝐸𝑡
= 0 . (14)

rom which we can explicitly express the pseudo-spatial residual 𝛷𝜑 for
he generic thermodynamic variable 𝜑:

𝜑 = 1
𝜔𝛥𝑡

[

∫𝐶

(

𝐸𝜌,𝜑𝛥𝜌 +
1
2
𝛥𝜌𝒖2

)

𝑑𝑉 + 𝛥𝑡𝛷𝐸𝑡
]

. (15)

Therefore the final form of the explicit update formula for a generic
thermodynamic variable 𝜑 reads

⎧

⎪

⎨

⎪

⎩

𝛷𝜑 = 1
𝜔𝛥𝑡

[

∫𝐶

(

𝐸𝜌,𝜑𝛥𝜌 +
1
2
𝛥𝜌𝒖2

)

𝑑𝑉 + 𝛥𝑡𝛷𝐸𝑡
]

𝜑𝑛+1 = 𝜑𝑛 − 𝛥𝑡
𝐶
𝛷𝜑 .

(16)

The presence of 𝛥𝜌 = 𝜌𝑛+1 − 𝜌𝑛 and 𝛥𝜌𝒖2 =
(

𝜌𝒖2
)𝑛+1 −

(

𝜌𝒖2
)𝑛 in

Eq. (16) highlights the need to perform the update of 𝜌 and 𝜌𝒖 before
updating 𝜑. Notice that in Eq. (16) the pseudo-spatial residual 𝛷𝜑 is a

𝐸 and 𝐸 . As a consequence, also the updated
4

function of unknowns 𝜑,𝜌 𝜌,𝜑 |
value of the thermodynamic variable 𝜑𝑛+1 will be a function of these
unknowns:
⎧

⎪

⎨

⎪

⎩

𝛷𝜑 = 𝛷𝜑(𝐸𝜑,𝜌, 𝐸𝜌,𝜑)

𝜑𝑛+1(𝐸𝜑,𝜌, 𝐸𝜌,𝜑) = 𝜑𝑛 − 𝛥𝑡
𝐶
𝛷𝜑(𝐸𝜑,𝜌, 𝐸𝜌,𝜑).

(17)

Furthermore, also 𝛥𝐸approx, as defined in Eq. (8), depends on 𝐸𝜑,𝜌 and
𝐸𝜌,𝜑.

Note that the definition of local conservation remains the same
regardless of the time discretization employed, since the time jumps
𝛥𝑦 ≡ ∫ 𝑡𝑛+1

𝑡𝑛 𝑦𝑑𝑡 that appear in Eq. (6) are exact. One could apply this
notion to extend the presented time scheme to higher orders.

2.2.2. How to retrieve total energy conservation – 𝜑 search
In Section 2.2.1 we derived a formula that allows us to update

a generic thermodynamic variable 𝜑 instead of the total energy. The
derived formula in Eq. (16) is not exactly conservative due to the
approximation made in Eq. (7), where we introduced the constant
approximate values 𝐸𝜑,𝜌 and 𝐸𝜌,𝜑. The goal of this section is to show
a simple procedure that can be used to select the values of 𝐸𝜑,𝜌 and
𝐸𝜌,𝜑, such that they enforce exact total energy conservation. Let us first
recall the formula for the approximate internal energy jump 𝛥𝐸approx

from Eq. (8) that has been used to derive the 𝜑 update formula Eq. (16).
We can notice that it is a function of the constant approximate values
𝐸𝜑,𝜌 and 𝐸𝜌,𝜑, which are unknown:

𝛥𝐸approx(𝐸𝜑,𝜌, 𝐸𝜌,𝜑) = 𝐸𝜑,𝜌𝛥𝜑 + 𝐸𝜌,𝜑𝛥𝜌 . (18)

We begin by imposing thermodynamic consistency at an unknown
approximate thermodynamic state

(

𝜌, 𝜑
)

:
{

𝐸𝜑,𝜌 = 𝐸𝜑,𝜌(𝜌, 𝜑)
𝐸𝜌,𝜑 = 𝐸𝜌,𝜑(𝜌, 𝜑) .

(19)

n doing this, we have changed the unknowns of our problem from 𝐸𝜑,𝜌
and 𝐸𝜌,𝜑 to 𝜌 and 𝜑. Given the fact that we already know the exact
updated density and that its change between two time steps is linear in
𝛥𝑡, we assume that we can choose the value of 𝜌 as

𝜌 = 1
2
(

𝜌𝑛+1 + 𝜌𝑛
)

. (20)

Since now 𝜌 is fixed, the problem is reduced to a single unknown 𝜑.
Recalling Eq. (17), we can see that by using the 𝜑 update formula
Eq. (16), the updated thermodynamic variable 𝜑𝑛+1 at the next time
step is now also a function of the unknown 𝜑:

𝜑𝑛+1(𝜑) → 𝛥𝜑(𝜑) = 𝜑𝑛+1(𝜑) − 𝜑𝑛 . (21)

If we now use 𝜑𝑛+1(𝜑) to write both the approximate internal
energy jump 𝛥𝐸approx from Eq. (8) and its thermodynamically exact
counterpart 𝛥𝐸tmd through the EoS we obtain
{

𝛥𝐸approx(𝜑) = 𝐸𝜑,𝜌(𝜌, 𝜑)𝛥𝜑(𝜑) + 𝐸𝜌,𝜑(𝜌, 𝜑)𝛥𝜌
𝛥𝐸tmd(𝜑) = 𝐸(𝜌𝑛+1, 𝜑𝑛+1(𝜑)) − 𝐸(𝜌𝑛, 𝜑𝑛) .

(22)

deally, we would want these two internal energy jumps to coincide. We
herefore want to find 𝜑 such that 𝛥𝐸tmd(𝜑) = 𝛥𝐸approx(𝜑). This would

entail exact total energy conservation, since the jump in kinetic energy
𝛥𝜌𝒖2∕2 is already known exactly. We can construct a scalar function
𝐹 (𝜑) such that its root corresponds to the value of 𝜑 we are looking
for:

𝐹 (𝜑) =
𝛥𝐸tmd(𝜑) − 𝛥𝐸approx(𝜑)

𝐸(𝜌𝑛, 𝜑𝑛)
(23)

where the division by 𝐸(𝜌𝑛, 𝜑𝑛) > 0 is performed to scale 𝐹 (𝜑). The
problem is now to find a root of 𝐹 (𝜑) for which we will use the secant
oot search method, where we iterate on 𝜑(𝑘) until:

𝐹 (𝜑 )| < 𝑡𝑜𝑙 = 10−14 . (24)
(𝑘)
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Fig. 2. Example plots of 𝐹 (𝜑) for various 𝜑 choices at the initial time step discontinuity of a Nitrogen shock tube using the Span–Wagner EoS [67].
i
e chose 10−14 as it is close enough to machine precision without
eing too restrictive. Looser tolerances will yield slightly lower iteration
ounts and cause a loss in conservation, since 𝐹 is an error metric
irectly related to the total energy conservation error. There is no clear
hoice for the bounds of the secant search. Given the fact that the size
f the time-step is already bound by the CFL condition, in this work we
se

[

𝜑𝑛, 𝜑𝑛+1]. Since, of course, 𝜑𝑛+1 is unknown, we use a first guess for
he updated generic thermodynamic variable 𝜑̃𝑛+1 computed evaluating
q. (16) with 𝜌 = (𝜌𝑛+1 + 𝜌𝑛)∕2 and 𝜑 = 𝜑𝑛.

We have to point out some possible theoretical shortcomings in the
roposed approach. To the best of our knowledge, there is no clear way
o prove that such a root exists for a generic EoS and that if it does,
5

t is the only root. In our practical experience, 𝐹 (𝜑) is always linear
with respect to 𝜑 for any choice of 𝜑 = [𝑇 , 𝑃 , 𝑒, ℎ, 𝑠,…], see Fig. 2,
therefore the secant search algorithm always converges in at most seven
iterations, but usually one or the initial guess are enough. When the
change in the internal energy is close to zero, there can be a situation
where there is no root but with

|𝐹 (𝜑)| ∼ 𝜖𝑚𝑎𝑐ℎ𝑖𝑛𝑒 ∀𝜑 ∈
[

𝜑𝑛, 𝜑̃𝑛+1] . (25)

In this situation, we can consider conservation as satisfactorily met by
the initial guess, since it is close to machine precision. We were unable
to find test cases where this causes any appreciable loss in total energy

conservation.
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Fig. 3. Carbon-dioxide shock tube test with 𝛥𝑥 = 0.025 m using the Span–Wagner EoS [19] through the CoolProp thermodynamic library [20]. Compressibility factor profile and
numerical solution on the pressure–density thermodynamic plane at 𝑡 = 0.001 s, with isentropes in yellow and the vapor saturation curve in black.
.2.3. Operational recap of the method
In this section, we quickly recap the conservative update procedure

or 𝜑, to simplify its implementation. First, for the sake of clarity, let us
ewrite Eq. (16) by explicitly stating the thermodynamic dependencies
n 𝜌 and 𝜑:

⎧

⎪

⎨

⎪

⎩

𝛷𝜑 = 1
𝜔(𝐸𝜑,𝜌(𝜌, 𝜑))𝛥𝑡

[

∫𝐶

(

𝐸𝜌,𝜑(𝜌, 𝜑)𝛥𝜌 +
1
2
𝛥𝜌𝒖2

)

𝑑𝑉 + 𝛥𝑡𝛷𝐸𝑡
]

𝜑𝑛+1 = 𝜑𝑛 − 𝛥𝑡
𝐶
𝛷𝜑

(26)

We also recall the secant formula:

𝜑(𝑘+1) = 𝜑−
(𝑘) − 𝐹−

(𝑘)

𝜑+
(𝑘) − 𝜑−

(𝑘)

𝐹+
(𝑘) − 𝐹−

(𝑘)
(27)

The main steps of the conservative update procedure for 𝜑 are the
following.

1. Using the solution [𝜌𝑛, 𝜌𝒖𝑛, 𝜑𝑛] at the previous time step 𝑡𝑛,
compute the spatial residuals of the conservative Euler equa-
tions Eq. (1), namely

[

𝛷𝜌,𝜱𝜌𝒖, 𝛷𝐸𝑡
]

as defined in Eq. (2), using
the preferred choice of numerical fluxes or central difference
scheme.

2. Update the density and momentum to compute 𝜌𝑛+1 and 𝜌𝒖𝑛+1
at the next time step using Eq. (3), as the mass and momentum
equations are already in conservative form.

3. Compute an initial guess 𝜑̃𝑛+1 for 𝜑𝑛+1 at the next time step 𝑡𝑛+1.
In this work we use Eq. (26), with 𝜌 = (𝜌𝑛+1 + 𝜌𝑛)∕2 and 𝜑 = 𝜑𝑛.

4. According to the definition of 𝐹 (𝜑) from Eq. (23), compute the
initial bounds for the secant search 𝐹+

(0) = max
[

𝐹 (𝜑𝑛), 𝐹 (𝜑̃𝑛+1)
]

and 𝐹−
(0) = min

[

𝐹 (𝜑𝑛), 𝐹 (𝜑̃𝑛+1)
]

, and also save the maximum and
minimum bounds 𝜑+

(0) and 𝜑−
(0) accordingly. Other choices for the

initial guess 𝜑̃𝑛+1 are possible.
5. Begin an iterative loop, with a user-defined tolerance and max-

imum number of iterations.

(a) Compute 𝜑(𝑘+1) at iteration 𝑘+1 using the secant formula,
see Eq. (27).

(b) Using 𝜑(𝑘+1) and Eq. (26) compute the next guess value
for 𝜑𝑛+1

(𝑘+1).
(c) Using 𝜑(𝑘+1) and 𝜑𝑛+1

(𝑘+1), compute 𝐹 (𝜑(𝑘+1)) and check for
convergence, namely |𝐹 (𝜑 )| < 𝑡𝑜𝑙.
6

(𝑘+1)
(d) If convergence has not been reached, save the new values
for the secant search 𝐹+

(𝑘+1), 𝐹
−
(𝑘+1), 𝜑

+
(𝑘+1) and 𝜑−

(𝑘+1) and
perform another iteration.

6. Save 𝜑𝑛+1
(𝑘+1) as the next time step value of 𝜑.

The scheme described here has been derived without assuming a
1D setting. Hence, its extension to 2D or 3D schemes does not pose
significant difficulties. In particular, we only need to compute the jump
in kinetic energy, 𝛥(𝜌𝒖⋅𝒖)∕2, and the spatial residual of the total energy
equation, 𝛷𝐸𝑡 , using the multi-dimensional discretization of choice.
Then, the proposed time update scheme can be applied as is.

3. Results

In this section, we will showcase a variety of test cases. First, we
use the Span–Wagner EoS [19] through the thermodynamic library
CoolProp [20] in a carbon-dioxide shock tube test close to saturation in
Section 3.1. Here, we compare solution quality (Section 3.1.1) and EoS
computational costs (Section 3.1.2) for various choices of the generic
thermodynamic variable 𝜑 = [𝑇 , 𝑃 , 𝑒, ℎ, 𝑠]. We then use the VdW EoS in
a dilute nitrogen shock tube in Section 3.2 to show how the proposed
procedure is necessary to retrieve exact total energy conservation, and
how failing to do so affects captured shock speeds and the fulfillment of
jump conditions. In Section 3.3 we perform order testing using the VdW
EoS and the method of manufactured solutions (MMS) [68]. Following
this, we show a series of tests using the VdW EoS in the ideal regime
in Section 3.4 and finally in the NICFD regime in Section 3.5.

The VdW EoS has been chosen because it is capable of describing
non-ideal behavior. See Appendix A for more details on the VdW
EoS. We compare results to exact solutions of the Riemann problems
computed following the approach described in Quartapelle et al. [69].
For reproducibility reasons, we need to define here the constants 𝛿 =
𝛾 − 1 where 𝛾 is the ratio of specific heats, 𝑎 which describes the
magnitude of the attractive forces between molecules, 𝑏 which is the
co-volume and 𝑅 which is the gas constant.

Since one of the main goals of this work is assessing conservativity,
we will often show plots of the dimensionless imbalance of total energy,
named 𝐼𝐸𝑡 , which we define as

𝐼𝐸
𝑡
(𝑡) = 1

𝐶𝛺
[

∫𝛺 𝐸𝑡(𝜏)𝑑𝑉
]

𝜏=0

{[

∫𝛺
𝐸𝑡(𝜏)𝑑𝑉

]

𝜏=𝑡
−
[

∫𝛺
𝐸𝑡(𝜏)𝑑𝑉

]

𝜏=0

+
𝜏=𝑡 [

𝑭𝐸𝑡
(𝜏) ⋅ 𝒏̂𝑑𝐴

]

𝑑𝜏
}

(28)
∫𝜏=0 ∮𝜕𝛺
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Fig. 4. Carbon-dioxide shock tube test results using MUSCL with 𝛥𝑥 = 0.025 m using the Span–Wagner EoS [19] through the CoolProp thermodynamic library [20]. Density,
ressure, and velocity profiles at 𝑡 = 0.001 s and absolute value of the total energy imbalance in time. Comparison between the 𝜑 update scheme for temperature, pressure, specific
nergy, specific enthalpy, specific entropy, and the standard total energy update (both using the analytical EoS and a look-up table).
he (⋅)𝑡 superscript in 𝐸𝑡 does not refer to time 𝑡. 𝐼𝐸𝑡 is both normalized
n terms of the domain’s volume 𝐶𝛺 and of the integral of the initial
otal energy ∫𝛺 𝐸𝑡(0)𝑑𝑉 , and is therefore dimensionless. Also, it is

time-varying quantity as it measures the amount of total energy
enerated or destroyed by the method in the domain since 𝑡 = 0.

We also compare the results of the proposed scheme against nu-
erical simulations from a standard finite volume solver for the Euler

quations that is identical to the previous one (same numerical fluxes,
imiting, compiler) except that, instead of updating the thermodynamic
ariable 𝜑 using the method presented in this paper, we update the total
nergy 𝐸𝑡 explicitly as
𝑡𝑛+1
𝑖 = 𝐸𝑡𝑛

𝑖 −
𝛥𝑡
𝐶𝑖

𝛷𝐸𝑡
𝑖 . (29)

We use ‘‘𝜑 Update’’ to denote the results obtained with the update of
the thermodynamic variable 𝜑 presented in this work. In contrast, we
use ‘‘𝐸𝑡 Update’’ to denote the standard finite volume solver. For the
atter, we also compare results obtained using both the analytical EoS
‘‘𝐸𝑡 Update’’) or the computationally efficient look-up tables (LUT) as
mplemented in CoolProp (‘‘𝐸𝑡,(LUT) Update’’).
7

Presenting the thermodynamic results, we will also refer to the
fundamental derivative of gas-dynamics 𝛤 [12] and the compressibility
factor 𝑍, which are defined as:

𝛤 (𝑠, 𝑣) = 𝑣3

2𝑐2
𝜕2𝑃 (𝑠, 𝑣)

𝜕𝑣2
, 𝑍 = 𝑃

𝜌𝑅𝑇
. (30)

3.1. Carbon-dioxide shock tube (Span–Wagner)

In this section we show the results for a carbon-dioxide shock tube,
see Table 1 for the data and Fig. 3(b) for the thermodynamic path on
the (𝑃 , 𝜌) plane. We use this test to assess the behavior and perfor-
mance of the method in a worst case scenario, with thermodynamic
states spanning from supercritical to subcritical conditions, while also
approaching the saturation line. The solution is composed of a left-
running rarefaction fan that expands from a supercritical state up to
the vapor saturation curve, and a right running compression shock. In
particular, we show the difference between different possible choices
for 𝜑 using the Span–Wagner EoS [19] through the thermodynamic
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Fig. 5. Carbon-dioxide shock tube test 1st order results without using MUSCL with 𝛥𝑥 = 0.025 m using the Span–Wagner EoS [19] through the CoolProp thermodynamic library [20].
Density and pressure profiles (first row) and their dimensionless variations with respect to the standard total energy update (second row) at 𝑡 = 0.001 s. Comparison between the
𝜑 update scheme for temperature, pressure, specific energy, specific enthalpy, specific entropy, and the standard total energy update (both using the analytical EoS and a look-up

table).

o
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Table 1
Carbon-dioxide shock tube test initial conditions, thermodynamic, domain and
numerical data.

Equation of state Numerical 𝑥 < 0.5 m 𝑥 > 0.5 m

Span–Wagner [19] 𝑥 ∈ [0, 1] m 𝜌 = 350 kg∕m3 𝜌 = 100 kg∕m3

Carbon-Dioxide 𝑡final = 0.001 s 𝑢 = 0 m∕s 𝑢 = 0 m∕s
CFL = 0.1 𝑃 = 12 MPa 𝑃 = 4 MPa

library CoolProp [20]. We devised this test to stay close to the satu-
ration curve (see Fig. 3(b)) to show that the proposed method works
for any variable, even when far from the dilute gas regime (see the
compressibility factor in Fig. 3(a)). See Appendix B for an analogous
analysis for a dilute nitrogen shock tube test also using CoolProp.

3.1.1. Comparison of 𝜑 choices
In Fig. 4 we show profiles of density, pressure, and velocity com-

ared to the exact solution. There are negligible variations in the results
etween all choices of 𝜑, with the only exception being the specific
8

ntropy 𝑠 in yellow, showing a small kink on the rightmost part of the
rarefaction wave. This is probably due to the MUSCL reconstruction of 𝑠
near the saturation vapor curve: if we look at first-order results without
MUSCL reconstruction in Fig. 5, we can qualitatively see that all 𝜑
choices perfectly overlap. To confirm this quantitatively, we report the
dimensionless difference of density and pressure profiles with respect
to the results of the standard 𝐸𝑡 update in Fig. 5(d) and 5(c). Here we
can also appreciate how the proposed approach yields results that are
much closer to the standard 𝐸𝑡 update than using look-up tables. All
ther results with MUSCL in Fig. 4 are in great agreement with the
olution obtained using the standard 𝐸𝑡 update. More importantly, if

we focus on the total energy imbalance 𝐼𝐸𝑡 in Fig. 4(d) we see how
all conserve total energy close to machine precision. A closer look
reveals slight differences in the total energy imbalances of different
choices of 𝜑. Namely, the specific internal energy 𝑒 behaves identically
to the standard 𝐸𝑡 update (both using the EoS directly and using look-
up-tables). Temperature 𝑇 , specific enthalpy ℎ, and specific entropy
𝑠 show some similarities, while pressure 𝑃 showcases some sporadic
steps that may at first glance appear large. If we assume a loss of
conservation per element close to machine precision (for our setup
𝑚𝑎𝑐ℎ𝑖𝑛𝑒 −16
𝜖 ≃ 2 ⋅ 10 ), on a 400 element mesh the total loss per time step
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Fig. 6. Carbon-dioxide shock tube test using MUSCL. EoS computational cost breakdown and comparison using the Span–Wagner EoS [19] through the CoolProp thermodynamic
ibrary [20]. All values are scaled with respect to the standard total energy update scheme, which is always 100%. The 𝑦 axis is in logarithmic scale. Comparison between the 𝜑

update scheme for temperature, pressure, specific energy, specific enthalpy, specific entropy. We also show the computational costs obtained using CoolProp’s tabular interpolation

and the standard total energy update (both using the analytical EoS and a look-up table).
would be approximately 400 ⋅
(

2 ⋅ 10−16
)

≃ 8 ⋅ 10−14. The simulation
ran for 2920 iterations, therefore we can estimate an approximate loss
of conservation due to truncation errors accumulating for the total
simulation as 2920 ⋅ 8 ⋅ 10−14 ≃ 2.4 ⋅ 10−10, which is very comparable
to the final total energy imbalance for the 𝑃 update of ∼ 2 ⋅ 10−11.
This estimate is a worst-case scenario, as errors could cancel out in the
domain instead of accumulating.

In Table 2 we report how many secant iterations per mesh element
were needed to reach convergence in the 𝜑 search described in Sec-
ion 2.2.2. On average, the initial guess is already good enough to
et close to machine precision, particularly in homogeneous portions
f the domain like the post-shock plateau. Even in more demanding
ases, such as the initial discontinuity, no more than eight iterations are
eeded for the 𝑃 update. Note that in this test we span thermodynamic
tates that are highly non-linear and therefore the maximum iteration
ounts shown here are most likely a worst case scenario.

.1.2. Computational costs
We now focus on analyzing the computational costs associated with

he EoS evaluation. To do so we will categorize each EoS call performed
uring the simulation into three distinct types:

1. Riemann solver - HLLC: computation of the pressure 𝑃 , internal
energy per unit mass 𝑒, speed of sound 𝑐 and the thermodynamic
derivatives 𝜅 =

(

𝜕𝑃
𝜕𝑒

)

𝜌
, 𝜒 =

(

𝜕𝑃
𝜕𝜌

)

𝑒
at left and right of each face

after MUSCL reconstruction.
2. Auxiliary: computation of 𝑃 at left and right of each face after

MUSCL reconstruction to check for unphysical reconstruction.
9

Table 2
Average and max (across all elements and time steps) number of secant
iterations per element required to reach |𝐹 (𝜑)| ≤ 10−14.

Average Max

𝑇 1.00473 5
𝑃 1.00451 8
𝑒 1.00376 4
ℎ 1.00263 2
𝑠 1.00279 5

Computation of 𝑐 on each element to compute the CFL compli-
ant time-step. Computation of 𝑃 on each element to check for
unphysical solution updates.

3. Secant: Computation of all thermodynamic quantities (𝐸𝜑,𝜌,
𝐸𝜌,𝜑, 𝐸) per element when performing the secant 𝜑 search. This
cost does not exist by definition in the standard 𝐸𝑡 update.

We then measure the computational time spent evaluating the EoS,
and lump them in the aforementioned categories. To maintain the vari-
ability as low as possible we run these simulations serially on a single
core at a locked frequency. Since some variability will inevitably ap-
pear, in Fig. 6 we present the average over 30 runs and their respective
ranges. All of the plots are scaled with respect to the standard 𝐸𝑡 results.
In Fig. 6(a) we see the breakdown of the EoS evaluation times. The 𝑇
and 𝑃 update show significantly lower EoS evaluation times with speed-
ups of up to ∼ 650% for the 𝑇 update (see Fig. 6(d)), despite the addi-
tional ∼ 100% EoS calls introduced by the secant search (see red bars in
Fig. 6(c)). This is because, as visible in blue in Fig. 6(c), each EoS call
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Fig. 7. Nitrogen shock tube test results using MUSCL with 𝛥𝑥 = 0.0002 m using the VdW EoS and the 𝜑 = 𝑇 update for temperature. Density, pressure, and velocity profiles
at 𝑡 = 0.01 s and absolute value of the total energy imbalance in time. Comparison between using 𝜌 =

(

𝜌𝑛 + 𝜌𝑛+1
)

∕2 with the secant search for 𝜑 = 𝑇 and using a simplified

approximation 𝜌 = 𝜌𝑛 and 𝜑 = 𝜑𝑛 = 𝑇 𝑛 in the approximate 𝜑 update formula.
Table 3
Nitrogen shock tube test initial conditions, thermodynamic, domain and numerical data.

Equation of state Numerical 𝑥 < 0 m 𝑥 > 0 m

Van der Waals 𝑥 ∈ [−5, 5] m 𝜌 = 23.46 kg∕m3 𝜌 = 11.73 kg∕m3

𝑎 = 173.943088 m5∕kg ⋅ s2 𝛿 = 0.4 𝑡final = 0.01 s 𝑢 = 0 m∕s 𝑢 = 0 m∕s
𝑏 = 1.37851912 ⋅ 10−3 m3∕kg 𝑅 = 296.8 J∕kg ⋅ K CFL = 0.1 𝑃 = 2 MPa 𝑃 = 1 MPa
when using pressure or temperature is significantly faster than using
the internal energy as done by the standard 𝐸𝑡 update. See Appendix B
for the same analysis in the dilute regime, where the speed-up for the
𝑇 update of around 700% is comparable to the one measured here.

3.2. Nitrogen shock tube (VdW) — Shock speed and jump conditions

In this section, we show the results for a nitrogen shock tube
using the VdW EoS, see Table 3 for the data. This a standard Sod-
type shock tube with a left-running rarefaction fan and right-running
compression shock in dilute conditions. In Appendix B we report the
difference for different possible choices of 𝜑 using the state-of-the-
art thermodynamic library CoolProp [20], which for nitrogen uses the
Span–Wagner EoS [67]. Here we use the VdW EoS and the temperature
𝜑 = 𝑇 update to evaluate the shock speed and jump conditions in
an over-refined simulation (20000 cells) and compare it to a simplified
approximation and the exact analytical solution.

We compare the 𝜑 search procedure presented in Section 2.2.2 to
the approximate 𝜑 update formula Eq. (16) with 𝜌 = 𝜌𝑛 and 𝜑 = 𝜑𝑛.
10
In Fig. 7 we see density, pressure, and velocity profiles compared to
the exact solution, which at first glance appear identical. If we zoom
on the right shock and on the velocity–pressure plateau in Fig. 8
we understand why conservation is important. The results obtained
using the approximate formula give wrong post-shock results (see
Fig. 8(c) 8(d)) therefore jump conditions are not satisfied. Furthermore,
the shock position is slightly to the right of the analytical solution (see
Fig. 8(a) 8(b)). The spike we see in Fig. 8(c) 8(d) corresponds to the
contact discontinuity, and is a feature of all Riemann solvers and is not
caused by the time discretization. It is exaggerated by the tight zoom
of Fig. 8(c) 8(d). Looking at the absolute values of the total energy
imbalance in time in Fig. 7(d) it is clear how the approximate formula
alone is not enough to conserve total energy, with a final value of
roughly 109 times greater than using the method proposed in this work.

3.3. Order testing (VdW) — Method of manufactured solutions

We employ the method of manufactured solutions (MMS) to assess
the spatial order of convergence. See Roache [68] for an in-depth
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Fig. 8. Nitrogen shock tube test results using MUSCL with 𝛥𝑥 = 0.0002 m using the VdW EoS and the 𝜑 = 𝑇 update for temperature. Pressure and velocity profiles at 𝑡 = 0.01 s.
Zoom on the right shock and on the plateaus for velocity and pressure. Comparison between using 𝜌 =

(

𝜌𝑛 + 𝜌𝑛+1
)

∕2 with the secant search for 𝜑 = 𝑇 and using a simplified

approximation 𝜌 = 𝜌𝑛 and 𝜑 = 𝜑𝑛 = 𝑇 𝑛 in the approximate 𝜑 update formula.
discussion on MMS. Using periodic boundary conditions in the 𝛺 =
[0, 1] domain, we assume an exact periodic solution defined as

⎧

⎪

⎨

⎪

⎩

𝜌MMS(𝑥, 𝑡) = 𝜌0 + 𝐴𝜌 cos
(

𝜔𝜌,𝑥𝑥 + 𝜔𝜌,𝑡𝑡
)

𝑢MMS(𝑥, 𝑡) = 𝑢0 + 𝐴𝑢 sin
(

𝜔𝑢,𝑥𝑥 + 𝜔𝑢,𝑡𝑡
)

𝑇MMS(𝑥, 𝑡) = 𝑇0 + 𝐴𝑇 sin
(

𝜔𝑇 ,𝑥𝑥 + 𝜔𝑇 ,𝑡𝑡
)

.

(31)

We substitute the manufactured solution Eq. (31) into the Euler
conservation equations Eq. (1) to compute the source terms 𝛩:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜕𝜌MMS(𝑥, 𝑡)
𝜕𝑡

+∇ ⋅
[

𝜌𝒖MMS(𝑥, 𝑡)
]

= 𝛩𝜌(𝑥, 𝑡)

𝜕𝜌𝒖MMS(𝑥, 𝑡)
𝜕𝑡

+∇ ⋅
[

𝜌𝒖MMS(𝑥, 𝑡)⊗ 𝒖MMS(𝑥, 𝑡) + 𝑃MMS(𝑥, 𝑡)
]

= 𝜣𝜌𝒖(𝑥, 𝑡)

𝜕𝐸𝑡
MMS(𝑥, 𝑡)
𝜕𝑡

+∇ ⋅
[

(

𝐸𝑡
MMS(𝑥, 𝑡) + 𝑃MMS(𝑥, 𝑡)

)

𝒖MMS(𝑥, 𝑡)
]

= 𝛩𝐸𝑡 (𝑥, 𝑡)

(32)

using the following constants:

𝜌0 = 2 kg∕m3 𝐴𝜌 = 0.025 kg∕m3 𝜔𝜌,𝑥 = 2𝜋 m−1 𝜔𝜌,𝑡 = 256𝜋 s−1

𝑢0 = 2 m∕s 𝐴𝑢 = 0.025 m∕s 𝜔𝑢,𝑥 = 2𝜋 m−1 𝜔𝑢,𝑡 = 256𝜋 s−1

𝑇0 = 300 K 𝐴𝑇 = 0.1 K 𝜔𝑇 ,𝑥 = 2𝜋 m−1 𝜔𝑇 ,𝑡 = 256𝜋 s−1 .

(33)
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We plot the dimensionless 𝐿2 errors and the measured convergence
rates of density, velocity, and temperature in Fig. 9, both with and
without using MUSCL. We also measure the error on the pressure. To
adimensionalize we use the error of the coarsest mesh. As expected,
first- and second-order convergence rates are measured, therefore the
method proposed in this work preserves the expected characteristics of
the underlying spatial discretization.

3.4. Dilute gas regime tests (VdW)

In this section we show three tests in the dilute gas-dynamic regime
using the VdW EoS. The first test is a 123 test (see Table 4), whose
solution is composed of two outgoing rarefaction waves. This test is
useful to assess the behavior of the scheme in the near vacuum region
that forms as the rarefaction fans travel outwards. The second test
is composed of two colliding shocks and is taken from Dumbser and
Casulli [55] (see Table 5). Here we can appreciate the behavior of
the scheme in the presence of strong discontinuities and compressions.
The third test is the so-called Lax shock which is also taken from [55]
(see Table 6). The solution presents a large density jump in the central
contact discontinuity with a strong right-running compression shock.
For all tests we will use the 𝑇 update and compare it to the standard
𝐸𝑡 update and the exact VdW solution.

We report the density, pressure, and velocity profiles for the 123
test (see Fig. 10), colliding shocks (see Fig. 11) and Lax shock (see
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Fig. 9. MMS spatial convergence order test. Dimensionless 𝐿2 norm of the errors and measured convergence rates at 𝑡 = 0.0001 s.
Table 4
123 test initial conditions, thermodynamic, domain and numerical data.

Equation of state Numerical 𝑥 < 0.5 m 𝑥 > 0.5 m

Van der Waals 𝑥 ∈ [0, 1] m 𝜌 = 1 kg∕m3 𝜌 = 1 kg∕m3

𝑎 = 0.5 m5∕kg ⋅ s2 𝛿 = 0.4 𝑡final = 0.2 s 𝑢 = −1 m∕s 𝑢 = 1 m∕s
𝑏 = 0.5 m3∕kg 𝑅 = 0.4 J∕kg ⋅ K CFL = 0.1 𝑃 = 0.4 Pa 𝑃 = 0.4 Pa

Table 5
Colliding shocks test [55] initial conditions, thermodynamic, domain and numerical
data.

Equation of state Numerical 𝑥 < 0.5 m 𝑥 > 0.5 m

Van der Waals 𝑥 ∈ [0, 1] m 𝜌 = 1 kg∕m3 𝜌 = 1 kg∕m3

𝑎 = 0.5 m5∕kg ⋅ s2 𝛿 = 0.4 𝑡final = 0.1 s 𝑢 = 1 m∕s 𝑢 = −1 m∕s
𝑏 = 0.5 m3∕kg 𝑅 = 0.4 J∕kg ⋅ K CFL = 0.1 𝑃 = 2 Pa 𝑃 = 1 Pa

Fig. 12). Results compare well with the exact VdW solution everywhere,
except for a kink in the density visible in Fig. 10(a), corresponding
to the initial discontinuity in the 123 test. The 𝑇 update and the
standard 𝐸𝑡 update show different behaviors here due to the fact that
MUSCL is reconstructing and limiting two different variables. A similar
behavior can be seen in the Lax shock on the pressure and velocity in
Figs. 12(b) 12(c) across the contact discontinuity at 𝑥 ≃ 0.65𝑚. The total
energy imbalances in Figs. 10(d) 11(d) 12(d) are almost overimposed
for both the 𝑇 update and the standard 𝐸𝑡 update in all three test cases.

3.5. Dense gas regime tests (VdW)

Here we show two dense gas tests named DG1 (see Table 7) and
DG2 (see Table 8) from Guardone & Vigevano [35]. These tests have
been chosen to showcase the scheme in one of the most challenging gas-
dynamic conditions, namely the non-classical regime [10–12] where
rarefaction shock waves and compression fans are admissible solutions.
12
These waves appear when the flow crosses a region of the thermo-
dynamic plane where the fundamental derivative of gas-dynamics 𝛤 ,
see Eq. (30), is less than 0. This only happens for vapors of sufficient
molecular complexity such as Siloxanes, see Colonna et al. [70]. When
the flow crosses this region, the admissible solution switches from
the classical rarefaction fan-compression shock pair to the non-classical
rarefaction shock-compression fan pair. Furthermore, multiple crossing
the 𝛤 = 0 line can lead to the rise of composite waves, see [71,72].
The first test DG1 is characterized by a wave structure sketched in
Fig. 13, composed of a composite wave (rarefaction fan and non-
classical rarefaction shock), a contact discontinuity, and a classical
compression shock. The left and right states are in the convex region
of the VdW EoS (𝛤 > 0) but the fluid crosses the 𝛤 = 0 boundary
during the evolution of the Riemann problem. The second test DG2 is
characterized by a wave structure sketched in Fig. 15, composed by
a non-classical rarefaction shock, a contact discontinuity, and a non-
classical compression fan. For this test, the fluid always resides in the
non-convex region of the VdW EoS (𝛤 < 0)

For both tests, we use the same 400 element mesh as Guardone
and Vigevano [35] and report the density, pressure, and fundamental
derivative of gas-dynamics profiles for DG1 in Fig. 14 and DG2 in
Fig. 16. For the first test DG1, in Fig. 14 we see that results are
almost identical between the 𝑇 update, the standard 𝐸𝑡 update, and
the results taken from Guardone and Vigevano [35] obtained using the
method of Davis [73]. The rarefaction shock at 𝑥 ≃ 0.53 m is well
caught with no spurious oscillations. For the second test DG2 in Fig. 16,
both the rarefaction shock at 𝑥 ≃ 0.25 m and the compression fan at
𝑥 ≃ 0.85 m are well caught with no spurious oscillations. The results
are in good agreement between the 𝑇 update, the standard 𝐸𝑡 update
and the results taken from Guardone & Vigevano [35] obtained using
the method of Davis [73], except for a slight difference in the Davis
results in the rightmost part of the compression fan at 𝑥 ≃ 0.88𝑚.
The total energy imbalance for both DG1 and DG2 tests are almost
overimposed between the 𝑇 update and the standard 𝐸𝑡 update as seen

in Figs. 14(d) 16(d). The fundamental derivative of gas-dynamics for
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Fig. 10. 123 test results using MUSCL with 𝛥𝑥 = 0.002 m using the VdW EoS. Density, pressure, and velocity profiles at 𝑡 = 0.2 s and total energy imbalance in time. Comparison
etween the 𝜑 update scheme for temperature and the standard total energy update.
Table 6
Lax shock test initial conditions, thermodynamic, domain and numerical data.

Equation of state Numerical 𝑥 < 0.5 m 𝑥 > 0.5 m

Van der Waals 𝑥 ∈ [0, 1] m 𝜌 = 0.445 kg∕m3 𝜌 = 0.5 kg∕m3

𝑎 = 0.5 m5∕kg ⋅ s2 𝛿 = 0.4 𝑡final = 0.1 s 𝑢 = 0.698 m∕s 𝑢 = 0 m∕s
𝑏 = 0.5 m3∕kg 𝑅 = 0.4 J∕kg ⋅ K CFL = 0.1 𝑃 = 3.528 Pa 𝑃 = 0.571 Pa
Table 7
DG1 dense gas test from [35] initial conditions, thermodynamic, domain and numerical data.

Equation of state Numerical 𝑥 < 0.5 m 𝑥 > 0.5 m

Van der Waals 𝛿 = 0.0125 𝑥 ∈ [0, 1] m 𝜌 = 1.818 kg∕m3 𝜌 = 0.275 kg∕m3

𝜌𝑐 = 1 kg∕m3 𝑃𝑐 = 1 Pa 𝑡final = 0.15 s 𝑢 = 0 m∕s 𝑢 = 0 m∕s
𝑇𝑐 = 1 K 𝑅 = 2.6 J∕kg ⋅ K CFL = 0.1 𝑃 = 3 Pa 𝑃 = 0.575 Pa
Table 8
DG2 dense gas test from [35] initial conditions, thermodynamic, domain and numerical data.

Equation of state Numerical 𝑥 < 0.5 m 𝑥 > 0.5 m

Van der Waals 𝛿 = 0.0125 𝑥 ∈ [0, 1] m 𝜌 = 0.879 kg∕m3 𝜌 = 0.562 kg∕m3

𝜌𝑐 = 1 kg∕m3 𝑃𝑐 = 1 Pa 𝑡final = 0.45 s 𝑢 = 0 m∕s 𝑢 = 0 m∕s
𝑇𝑐 = 1 K 𝑅 = 2.6 J∕kg ⋅ K CFL = 0.1 𝑃 = 1.09 Pa 𝑃 = 0.885 Pa
13
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Fig. 11. Colliding shocks test [55] results using MUSCL with 𝛥𝑥 = 0.005 m using the VdW EoS. Density, pressure, and velocity profiles at 𝑡 = 0.1 s and total energy imbalance in
time. Comparison between the 𝜑 update scheme for temperature and the standard total energy update.
test DG2 in Fig. 16(c) is negative everywhere, while for test DG1 in
Fig. 14(c) it only crosses the 𝛤 = 0 boundary during the simulation,
remaining positive everywhere else.

4. Conclusions

We presented a procedure to solve the Euler equations by updating
any thermodynamic variable instead of the total energy in a conser-
vative manner. The procedure is agnostic to the chosen equation of
state and spatial discretization. We measured an increase in the number
of total thermodynamic evaluations of 70–100% when compared to the
tandard total energy update. The computational cost of this increase
an be completely offset if using the temperature as the new thermody-
amic variable because each thermodynamic evaluation is significantly
aster when using the analytical Span–Wagner EoS. We measured an
verage speed-up of 650–700% if compared to the standard total energy
pdate. Results obtained by updating temperature, pressure, specific
nergy, specific enthalpy, or specific entropy instead of the total energy
re all within the margin of error, with all of them conserving total
nergy close to machine precision and to the standard total energy
pdate. We showed that using a limited MUSCL slope reconstruction
he measured order of spatial convergence remains 𝛥𝑥2 as expected.
14
Although we only presented 1D results, the procedure is applicable
to 2D or 3D since the increase in dimensions would not affect the
time update in any way as it only looks at one element. The ther-
modynamic evaluation speed-up should be even larger in 3D as the
main number of thermodynamic evaluations happens at the faces, the
number of which scales faster than the number of control volumes.
Adding viscous or turbulent diffusion effects to the spatial residuals
does not change the derivation and application of the method. The
scheme in its current form is limited to first order in time and is still CFL
bound as the standard forward Euler approach. Higher order spatial
discretizations such as WENO reconstruction would not affect the time
update scheme presented, while approaches such as discontinuous-
Galerkin could require some additional attention, in particular to the
spatial integrals appearing in the approximate update formula. On
the other hand, higher order time discretizations would require non-
trivial modifications depending on the chosen scheme. The iterative
procedure that retrieves conservation is limited to using a secant root
search algorithm as the derivatives of the function 𝐹 (𝜑) are not easily
computable. Studying the application of more efficient root search
algorithms could improve the performance of the scheme. Future work
will also focus on the extension to multi-phase simulations.
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Fig. 12. Lax shock test results using MUSCL with 𝛥𝑥 = 0.005 m using the VdW EoS. Density, pressure and velocity profiles at 𝑡 = 0.1 s and total energy imbalance in time.
Comparison between the 𝜑 update scheme for temperature and the standard total energy update.

Fig. 13. DG1 dense gas test from [35] solution wave structure sketch.
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Fig. 14. DG1 dense gas [35] results using MUSCL with 𝛥𝑥 = 0.0025 m using the VdW EoS. Density, pressure and fundamental derivative of gas-dynamics profiles at 𝑡 = 0.15 s
and total energy imbalance in time. Comparison between the 𝜑 update scheme for temperature and the standard total energy update. Results with Davis [73] method taken from
Guardone & Vigevano [35].

Fig. 15. DG2 dense gas test from [35] solution wave structure.
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Fig. 16. DG2 non-ideal [35] results using MUSCL with 𝛥𝑥 = 0.0025 m using the VdW EoS. Density, pressure and fundamental derivative of gas-dynamics profiles at 𝑡 = 0.45 s
nd total energy imbalance in time. Comparison between the 𝜑 update scheme for temperature and the standard total energy update. Results with Davis [73] method taken from
uardone & Vigevano [35].
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ppendix A. Polytropic Van der Waals equation of state

We report here useful formulas and thermodynamic derivatives of
he polytropic VdW EoS for the 𝑇 update. Pressure, internal energy,
nd the fundamental derivative of gas dynamics are:

𝑃 (𝜌, 𝑇 ) =
𝜌𝑅𝑇
1 − 𝑏𝜌

− 𝑎𝜌2

𝐸(𝜌, 𝑇 ) =
𝜌𝑅𝑇
𝛿

− 𝑎𝜌2

𝛤 (𝜌, 𝑃 ) =
(𝛿 + 1)(𝛿 + 2)

𝑃 + 𝑎𝜌2

(1 − 𝜌𝑏)2
𝜌2 − 6𝑎𝜌4

2(𝛿 + 1)
𝑃 + 𝑎𝜌2

𝜌2 − 4𝑎𝜌4

(34)
(1 − 𝜌𝑏)
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Fig. 17. Nitrogen shock tube test results with 𝛥𝑥 = 0.05 m using the Span–Wagner EoS [67] through the CoolProp thermodynamic library [20]. Density, pressure and velocity
rofiles at 𝑡 = 0.01 s and absolute value of the total energy imbalance in time. Comparison between the 𝜑 update scheme for temperature, pressure, specific energy, specific
nthalpy, specific entropy and the standard total energy update.
c
r
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Other miscellaneous quantities are:

= 27
64

(

𝑅𝑇𝑐
)2

𝑃𝑐
𝑏 = 1

8
𝑅𝑇𝑐
𝑃𝑐

𝜅 = 𝛿
1 − 𝑏𝜌

𝜒 = 𝛿
𝑏
(

𝐸 − 𝑎𝜌2
)

+ 2𝑎𝜌

(1 − 𝑏𝜌)2
− 2𝑎𝜌

(35)

The internal energy derivatives needed for the 𝜑 update scheme for
temperature 𝑇 :

𝐸𝜑,𝜌 =
( 𝜕𝐸
𝜕𝑇

)

𝜌
=

𝜌𝑅
𝛿

𝜌,𝜑 =
(

𝜕𝐸
𝜕𝜌

)

𝑇
= 𝑅𝑇

𝛿
− 2𝑎𝜌

(36)

ppendix B. Nitrogen shock tube with Span–Wagner EoS

Results obtained using the CoolProp thermodynamic library, lever-
ging the Span–Wagner EoS [67]. In Fig. 17 we show profiles of density,
ressure, and velocity, compared to the exact solution for nitrogen
18

r

omputed using the VdW EoS. There is virtually no difference in the
esults between all 𝜑 choices, and they all overlap perfectly with the
olution obtained using the standard 𝐸𝑡 update. If we focus on the

total energy imbalance in Fig. 17(d) we see how some choices of 𝜑
behave slightly differently from others. Namely, the specific internal
energy 𝑒 behaves exactly identically to the standard 𝐸𝑡 update, while
temperature 𝑇 and specific enthalpy ℎ show some similarity. Pressure
𝑃 and specific entropy 𝑠 showcase some sporadic steps that may at first
glance appear large, but are still of the order of 10−13.

Appendix C. Nitrogen shock tube (VdW) — Choice of linearization
density

We show here how the choice of linearization density does not affect
the accuracy of the solution. Results for the nitrogen shock tube with
the VdW EoS from Section 3.2 are reported here using the 𝜑 search, but
with three different choices for 𝜌, namely 𝜌𝑛, 𝜌𝑛+1 and (𝜌𝑛+𝜌𝑛+1)∕2. The
esults are reported in Fig. 19 and computational costs in Fig. 18).
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Fig. 18. Nitrogen shock tube test. EoS computational cost breakdown and comparison using the Span–Wagner EoS [67] through the CoolProp thermodynamic library [20]. All
values are scaled with respect to the standard total energy update scheme, which is always 100%. The 𝑦 axis is in logarithmic scale. Comparison between the 𝜑 update scheme
for temperature, pressure, specific energy, specific enthalpy, and specific entropy. We also show the computational costs obtained using CoolProp’s tabular interpolation and the
standard total energy update.
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Fig. 19. Nitrogen shock tube test results using MUSCL with 𝛥𝑥 = 0.0002 m using the VdW EoS and the 𝜑 = 𝑇 update for temperature. Pressure and velocity profiles at 𝑡 = 0.01 s.
Zoom on the right shock and on the plateaus for velocity and pressure. Comparison between using 𝜌 =

(

𝜌𝑛 + 𝜌𝑛+1
)

∕2, 𝜌 = 𝜌𝑛, and 𝜌 = 𝜌𝑛+1 with the secant search for 𝜑 = 𝑇 .
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