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Abstract. Side-channel attacks aim to recover cryptographic secrets
by exploiting involuntary information channels coming from the com-
putational platform of the targeted cipher implementation, e.g., power
consumption or electromagnetic emissions. Among them deep learning
based attacks have recently obtained great attention from both indus-
try and academia, due to their greater efficiency and accuracy with re-
spect to other methodologies. We provide a systematic comparison of
the effectiveness of deep learning based attacks by considering different
data acquisition and training methods. We also tackle the problem of
the portability of the derived information leakage model, by analysing
multiple instances of the same device, an ARM Cortex-M4 32-bit pro-
cessor, running a software implementation of the AES-128 cipher. We
complement the exploration of the attack space by considering datasets
corresponding to cipher executions employing, for each run, either the
same fixed secret key or a randomly chosen one. Furthermore, we gener-
alize the set of inputs considered to build the model, by adding also the
plaintexts fed to each cipher run. Finally, from the perspective of effi-
ciency, we point out several unexpected and counterintuitive benchmark
points.

Keywords: Side-channel Analysis · Deep Learning · Applied Cryptog-
raphy

1 Introduction

Side-channel Attacks (SCAs) are a very relevant threat to the security of com-
puting devices that offer cryptographic functions. There are various examples
of attacks that target real-world devices, such as smartphones [21] or secure el-
ements [36]. These kinds of attack require a physical access to the device, for
measuring information leakage, which is a realistic scenario with the diffusion of
mobile and IoT devices. Deep learning (DL) based SCAs against cryptographic
implementations have become an active subject of research in recent years, re-
sulting in similar if not better performance with respect to other types of profiled
attacks, such as the template attacks [22].
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Attacks based on the analysis of the profile of both the dynamic power con-
sumption or the electromagnetic radiation observed during the execution of a
cryptographic algorithm (either in hardware or in software) define an important
category of side-channel attacks. For each input provided to the cryptographic
implementation at hand, assumed to be known in any possible detail (except
for the value of the secret key), the numerical time series, a.k.a. trace, resulting
from the measurement of one of the aforementioned parameters is recorded. The
divide-et-impera observation at the core of the attack assumes that the secret key
is composed as a long binary string that is processed, by the underlying compu-
tational platform, one (small) fragment at a time. Since the operation computed
by employing the key fragment is known, it is easy to derive the switching activ-
ity (toggle count) resulting from its computation, by guessing the value of the
key fragment and knowing the input fed into the algorithm. Repeating such a
guessing for each possible value of the key fragment allows the attacker to derive
a “model”, which in turn can be correlated with the actual switching activity
measured out from the execution of the target cryptographic implementation,
for different inputs to the algorithm.

Over the years, numerous techniques have been designed to successfully ex-
ecute a (secret-)key recovery attack. Many of these techniques, e.g., [13,9,20],
make use of statistical tools to infer the value of the secret key, starting from
both the model of a proper operation executed by the cryptographic algorithm
and a set of traces. Other techniques, e.g., [11], assume the availability of multi-
ple instances of the same computational platforms, therefore many analyses can
be performed on just one of them to the end of quickly derive the secret-key
employed in a device deployed on field. In recent years, the replacement of the
statistical tools applied to execute a power-based SCA with deep-learning tech-
niques has become more and more common, with interesting improvements in
terms of effectiveness, robustness and performance [28].

Contributions. In this work, we provide a systematic comparison of the ef-
fectiveness of DL SCAs by considering different data acquisition and training
methods. In particular, we explore the use of different datasets composed by
traces collected from three distinct instances of the device under test, which is
based on an ARM Cortex-M4 32-bit processor, running a software implemen-
tation of the AES-128 cipher. Traces are also distinguished (especially when
training DL models) by whether they were measured from runs of the target
cryptographic implementation in which the secret key was kept either fixed, or
chosen randomly each time. The use of different devices is important to deter-
mine the degree of portability of the conclusions that can be drawn about the
SCA vulnerability of a particular device instance, to the whole family of devices.
In fact, common DL operations such as tuning and training are performed on
device instances other than those that are being attacked. At the best of our
knowledge, this is the first assessment of the application of DL SCAs techniques
and their portability that addresses a (quite complex) 32-bit microcontroller
as target computational platform. From the perspective of efficiency, we also
point out several interesting (not expected and not intuitive) benchmark points
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during the exploration of the attack space generated by DL analyses. Finally,
the source code [35] developed to perform our analysis, as well as the employed
datasets [33,34], are made available for reproducibility.

Paper Organization. The rest of the paper is organized as follows. In Sect. 2 we
present some background notions regarding deep learning techniques and side-
channel analysis. In Sect. 3 and its subsections we describe the methodology
defined for the exploration of the attack space, i.e., data collection, model selec-
tion and training. The results are described in Sect. 4, followed by a discussion
of related work in Sect. 5. Finally, Sect. 6 reports our conclusions.

2 Background

In the following, we briefly recall the relevant notions about neural networks
(NNs), which underlie every DL technique, and the main concepts regarding
power-based SCAs, detailing how NNs are used in profiled side-channel attacks.

Deep Learning. It is a subset of machine learning that uses multi-layered NNs,
to simulate a complex decision-making power. While there are several ways of
building a neural network, in this work we consider the Multi-Layer Perceptron
(MLP) [23,15] for its ability to learn nonlinear relationships among data and
well modeled tasks such as classification, regression, and pattern recognition. An
MLP is the extension of a single perceptron, i.e., the unit able to linearly combine
its inputs and fed an evaluation function, by introducing multiple layers of fully
connected neurons (each with a nonlinear kind of activation function [37]), and
is organized in a feed-forward manner. As shown in Fig. 1, the structure of an
MLP includes:
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Fig. 1. Structure of an MLP
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– An input layer x “ rI1, I2, . . . , IN s, where each perceptron takes as input an
input data feature Ij .

– ℓ ě 1 hidden layers. In each of these layers, each perceptron out of ℓk, 1 ă

k ď ℓ, takes an input from each perceptron in layer k ´ 1 and forwards
its output to each perceptron in layer k. Any value moved from the i-th
perceptron at layer k ´ 1 to the j-th perceptron at layer k ´ 1, is multiplied
by a weight coefficient wj,i, prior to be part of a summation computed by
perception k, which is in turn fed into its activation function [37] to provide
its output.

W1 “

ˆ w1,1 w1,2 ¨¨¨ w1,ℓ1
w2,1 w2,2 ¨¨¨ w2,ℓ1

¨¨¨ ¨¨¨ ¨¨¨ ¨¨¨
wN,1 wN,2 ¨¨¨ wN,ℓ1

˙

, W2, . . . , Wℓ

– An output layer y “ ry1, y2, . . . , yns, where each perceptron yields a compo-
nent of the final output. The number of nodes in the output layer depends
on the nature of the task.

The weights in an MLP are updated during the training process, by using an
optimization algorithm called backpropagation algorithm, often combined with
the Gradient Descent (GD) procedure [2]: after feeding an input to the network,
the output is compared against the desired result syi and an error is computed
by means of a loss function. For multi-class classification tasks, a typical loss
function is the categorical cross-entropy L, which is defined as follows:

L “ ´

n
ÿ

i“1

p syi ´ yiq ¨ logpyiq

This process is repeated for each piece of data in the dataset used as training
set, concluding an epoch of the training process. Multiple epochs are performed
to minimize the loss function, thus finding the set of weight values that best
models (fits) the training data, with the given structure of the MLP.
Side-channel Attacks. They are a class of non-invasive security threats that
exploit the observation of time series (a.k.a. traces) related to environmental
parameters, e.g., execution time, dynamic power consumption [19] and electro-
magnetic radiation [30] (a.k.a. side-channel information), during the execution
of a cryptographic primitive on a target computational platform, to derive the
value of the secret parameters employed by the algorithm. The main idea con-
sists of targeting an operation of the executed algorithm that involves the use
of a portion of the secret key, guesses the value of such a key portion out of
all possible values, and assesses the value of a leakage function fed with the
said key hypothesis and the other possible inputs to the considered operation.
The evaluation of such a leakage function is meant to mimic (or, better, to be
directly proportional) to the actual side-channel measured from the executing
device. In case of a power-based side-channel, the CMOS technology employed
for most electronic devices suggests to use as leakage function related to the
dynamic power consumption triggered by the switching activity induced by the
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data processing of the targeted operation [25], either the Hamming weight of
the computed value or the computed value itself. The values of the leakage func-
tion for each possible guess of the considered key can be used in statistical and
computational tools that are employed to correlate them with the values derived
from the actual side-channel measurement taken from the device.

In Non-profiled Side-channel Attacks, the attacker targets directly the de-
vice she/he wants to break and collects traces from it. Examples of such tech-
niques are Differential Power Analysis (DPA) [20] and Correlation Power Anal-
ysis (CPA) [8]. Our interest is towards another class of attacks called Profiled
Side-channel Attacks, where the attacker is assumed to have access to another
instance of the same device. In such a scenario, she/he performs her/his analysis
on such an additional instance and computes a leakage model by taking as many
measurement as necessary from the additional device (profiling phase). In a sub-
sequent step, the attacker measures the side-channel from the attacked device
only a few times (ideally, one time) to combine such data with the pre-computed
model and so derive the secret key of the targeted device (attack phase). This is
the base upon which Template Attacks (TA) [11] and Deep Learning SCAs are
performed. The main difference between the two approaches is in the construc-
tion of the leakage model, which is performed applying a statistical approach for
TAs, while a data-driven approach is followed when a DL technique is applied.

Deep learning Side-channel Attacks. These are a particular class of Profiled
SCAs that leverage DL to retrieve the secret key, which has been shown to out-
perform traditional machine learning techniques [22]. Their advantage over other
profiled methods is that there is no need to use data preprocessing, although
sometimes it can improve performance [26], or to make assumptions about the
noise distribution. The ability of NN to perform automatic feature extraction
allows the profiling phase, also called training phase (we will use the two terms
interchangeably), to be completely automated. In many cases only a few traces
from the target device are required during the attack phase to fully retrieve
the secret key [28]. While many approaches are possible, the two main types of
model used are the Convolutional Neural Network (CNN), which has also shown
resilience against temporal misalignment in the trace measurements [10], and the
Multilayer Perceptron. In general one cannot a priori prefer one type of network
architecture over another, as seen in other works [26].

To have a realistic attack scenario, the profiling and attack devices must be
different, thus making sure that the resulting model is more general and that it
does not overfit on the specific peculiarities of the device. This topic has been
explored in detail in [6], concluding that the performance of an attack can be
vastly overestimated if only a single device is considered during the training and
testing phases. This is due to the portability problem. The authors propose the
Multiple Device Model (MDM) as a solution to the problem, where the NN is
trained using traces from different devices.
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3 Methodology

The objective of this work is to evaluate different approaches to the dataset
collection and training method in the context of DL-SCA.

For this purpose, we have collected datasets that use a fixed or random key
from multiple devices of the same type, as detailed in Sect. 3.1, by covering
the first round SBox operation of the AES cipher. To select the best model,
multiple models are trained and evaluated by using a genetic algorithm to select
the best set of hyperparameters from the best performing ones; this procedure is
described in Sect. 3.2. After this selection, the best performing model is trained
on the whole dataset available. Different options are explored. Details on the
training process are in Sect. 3.3:

– target: observe the effect of using different target intermediates on the net-
work performance. In particular we use the identity leakage model, by taking
directly the output of the SBox as label for the network (SBOX_OUT scenario)
or its Hamming weight (HW_SO scenario)

– multi-device: validate the work in [6], by checking whether our device is
also affected by the portability problem, and see if the performance improves
when using traces from multiple devices in the training set and attacking the
same or different devices.

– plaintext: find out what happens when giving more information to the NN
besides the raw trace data. Giving the plaintext used during the encryption
as additional input to the NN is possible, since during the profiling phase
the attacker has a full control on the device, and also during testing it is
necessary to have this information when retrieving the key. This is also easy
to implement and does not require additional preprocessing of data. To our
knowledge, such an approach has not been tested yet in the literature. We
indicate the two scenarios with “ptx” when the plaintext is used, and “no
ptx” when it is not used.

All the evaluation work was carried out on a virtual machine running Debian
12, with 20 CPU cores, 128 GB of RAM and two Nvidia A100 40GB GPUs. The
computational times reported below refer to this system. The GPUs are used to
train two models in parallel to speed up the results.

3.1 Dataset Collection

Fig. 2 shows the Riscure Pinata [32] board employed in our experiments, which
is based on an STM32F4 microcontroller with an ARM Cortex-M4, a widely
used low-power processor that features a 32-bit architecture and is clocked at
168 MHz. The power consumption is measured with a current probe connected
in series with the board, which asserts a trigger signal on one of its GPIO pins at
the beginning of the SBox computation of the first AES round, and deasserts it
when the operation concludes, just before the MixColumns operation. The cipher
is implemented in software without the use of countermeasures or optimizations,
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Fig. 2. Capturing setup. Blue, white and grey wires in the upper left are connected
to the current probe to measure power consumption. In the bottom left there is the
serial connection to the capturing machine. The probe to the right on the PC2 pin is
the trigger connected to the scope

and the SBox operation specifically is realized as a lookup in a precomputed table
stored in memory. This signal is used by an oscilloscope, a Tektronik MSO58,
to start the capture of the power trace from the current probe, and ensures that
all the traces are temporally well aligned. The sampling rate is set to 625 MHz,
with a vertical resolution of 8 bits. A single capture consists of 4, 402 samples.
The traces are then resampled at 168 MHz in order to reduce the number of
input neurons to the NN, thus obtaining traces with 1, 183 samples.

To be able to test the portability scenario, the traces were captured from
three different boards, denoted as D1, D2 and D3. For each board the data
collected consists of:

– 200, 000 traces collected with a fixed 128-bit key, key 0, see Tab. 1. This is
used in the fixed key scenario. Collection time is about 4 hours.

– 200, 000 traces collected using a randomly generated key for each capture, so
that each trace uses a different key. This is used in the random key scenario.
This is similar to the ASCAD [5] variable key dataset, however in ASCAD
one third of the measured traces uses a single fixed key, while in our dataset
all traces use random keys. Collection time is about 5 hours, longer than the
fixed key scenario because an additional command is needed to set the key
at every capture.

– 30, 000 traces collected with a fixed 128-bit key, namely key 1, see Tab. 1,
different from key 0. This is used during the testing phase to evaluate the
performance of the network. Collection time is about 40 minutes.

The plaintext is selected randomly at each capture, and is stored in the trace
metadata together with the key used and the resulting ciphertext. The software
used to perform the capture is Riscure Inspector [31], so the traces are saved
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Table 1. Fixed keys used

key purpose value (bytes)

key 0 training 98 84 37 ED BA 40 4D DF 83 27 59 57 43 DF D4 FF
key 1 testing 36 A0 0A BD F4 01 B9 4E 15 78 E1 B7 02 5E 58 F7

Table 2. Hyperparameter space

parameter possible values

hidden layers [1, 2, 3, 4, 5]
hidden neurons [100, 200, 300, 400, 500]
dropout rate [0.0, 0.1, 0.2, 0.3]

l2 [0.0, 5 ¨ 10´2, 1 ¨ 10´2, 5 ¨ 10´3, 1 ¨ 10´3, 5 ¨ 10´4, 1 ¨ 10´4]
optimizer [’adam’, ’rmsprop’, ’sgd’]

learning rate [5 ¨ 10´3, 1 ¨ 10´3, 5 ¨ 10´4, 1 ¨ 10´4, 5 ¨ 10´5, 1 ¨ 10´5]
batch size [128, 256, 512, 1024]

Table 3. Parameters for the genetic algorithm

nGen popSize selPerc scProb mProb

20 15 30% 20% 20%

in the .trs format. The fixed key dataset is available at [33] and the random
key one at [34].

3.2 Hyperparameter Tuning

The MLP input layer has as many neurons as the samples in the trace, plus
one extra neuron for the models trained with plaintext information, while the
output layer can have either 256 neurons in the SBOX_OUT scenario or 9 neurons
when targeting HW_SO. The softmax activation function gives a probability
distribution over all the possible values of the selected target intermediate.

To build the network a hyperparameter tuning is performed, by searching for
the optimal parameters in the space defined in Tab. 2. To perform the tuning a
genetic algorithm [24] is employed. The specific genetic algorithm chosen here is
the one used by Matt Harvey et al. [17]. Settings for the algorithm are reported
in Tab. 3. The algorithm starts by generating popSize different networks by se-
lecting a random combination of hyperparameters from the hpSpace, reported in
Tab. 2. Then, each element of the initial population is used to build an MLP,
which is successively trained on the training set and evaluated on the validation
set. The validation loss of each network is stored and used to compare the per-
formances of all the networks in order to select the top selProb best performing
ones, and also some bad performing ones with scProb probability, to add diver-
sity to the population. The selected combinations are used to generate offsprings
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Table 4. Selected hyperparameters for all the possible cases

dataset target variant n. devices layers neurons dropout l2

fixed key

SBOX OUT
no ptx 1 4 200 0.1 1 ¨ 10´2

2 4 300 0.2 1 ¨ 10´2

ptx 1 4 500 0.0 0.0
2 5 200 0.0 0.0

HW SO
no ptx 1 4 100 0.1 1 ¨ 10´3

2 5 500 0.3 5 ¨ 10´4

ptx 1 3 200 0.1 0.0
2 5 300 0.0 1 ¨ 10´4

random key

SBOX OUT
no ptx 1 4 200 0.1 1 ¨ 10´4

2 4 300 0.2 0.0

ptx 1 5 400 0.2 0.0
2 5 400 0.3 0.0

HW SO
no ptx 1 5 400 0.2 0.0

2 5 500 0.3 0.0

ptx 1 4 400 0.3 5 ¨ 10´3

2 4 100 0.0 5 ¨ 10´3

that will compose the new population. Offspring combinations are composed by
randomly choosing from the selected parents, but sometimes a random muta-
tion can happen to some hyperparameters with probability mProb. In this case
a random value from Tab. 2 is selected. This process is repeated nGen times,
and at the end the best performing configuration is selected, according to the
validation loss. The results of the selection are reported in Tab. 4. Optimizer,
learning rate and batch size are not included due to lack of space. The optimizer
selected was always adam. The time required to complete the tuning varies con-
siderably, depending on the complexity of the models that are selected during
the process, ranging from a few hours to almost a full day per case. Considering
all the different cases that have been tested, this is the most time consuming
part of the process.

3.3 Training

After choosing the optimal model, a neural network with the selected hyperpa-
rameters is built and trained on the dataset. The dataset composed of 200, 000
traces (fixed key or random key, depending on the specific model) is loaded and
labeled according to the selected target (SBOX_OUT or HW_SO), then the traces
are randomly shuffled. If multiple devices are used in training, the total num-
ber of traces is always 200, 000, coming in equal amount from every device, and
selecting a random subset of all the available traces from each one.
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The loaded data is then divided into a training set and a validation set, using
a 90{10 training / validation split, and scaled to fit in the r0´1s range as follows.

Xscaled “
`

X ´ minpXq
˘

{
`

maxpXq ´ minpXq
˘

If the plaintext is used, the corresponding byte is appended at the end of the
trace. We tried both scaling it to the same range and not doing that. The net-
works trained without scaling the plaintext consistently perform slightly better
than the ones with the scaled plaintext. Therefore, we avoided scaling the ap-
pended byte in all the experiments. At this point the neural network is built
according to the selected hyperparameters, which specify the number of layers,
the number of neurons and all the other network parameters. All the code re-
lated to the NN was implemented by using tensorflow 2.14.0 [1] and keras
2.14.0 [12], and it is available at [35]. Some regularization options are also en-
abled, which help in preventing overfitting and render the network more robust:

– Dropout: which percentage of neurons to turn off in a layer during training.
This value is tuned during the hyperparameter search.

– L2 regularization: limits the value of the weights by adding a penalty to
larger values. This value is also tuned.

– Batch normalization [18]: normalizes the input to each layer, thus helping
in stabilizing the training process.

– Early stopping [29]: monitors training and validation accuracy, and stops
the training process if overfitting is detected, i.e., when the training accuracy
keeps increasing but the validation accuracy starts decreasing.

The resulting network is trained on the training set for 200 epochs or until the
early stopping monitor blocks the process, targeting the fifth byte of the AES key.
Learning rate scheduling is used to reduce the learning rate when the validation
loss becomes stable.

3.4 Evaluation Metric

The Guessing Entropy (GE) is often used during the evaluation of the attack [38].
It is defined as the average rank of the correct key byte when sorting the key
predictions by their probability value in ascending order. The probabilities from
different predictions are multiplied together [39]. Ideally, the more traces are
added, the more the compound probability of the correct key among all predic-
tions should increase, thus leading to a GE of 0 (first place in the ranking is at
index 0). The graphs reported in Sect. 4 report the evolution of the correct key
position from 1 to 300 traces used in the prediction, thus highlighting when it
reaches 0. Since we have 30, 000 test traces, it is possible to divide them in 100
disjoint sets of 300 traces and average the results. The number of traces required
for the GE to converge is an indicator of the performance of the network. A
better model will need fewer traces to correctly guess the key byte.
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4 Performance Results

In this section, the attack performance results are presented, classified by the
dataset and training method used. Both attack targets SBOX_OUT and HW_SO are
considered, in each section, highlighting similarities and differences. Finally, the
results are summarized in Tab. 5 and Tab. 6. All the graphs are structured in
the same way so that they can be compared easily, by reporting the average GE
value w.r.t. the number of traces used to perform the attack. All the figures are
also available in svg format on the code repository [35], so that one can easily
download and inspect them at a higher resolution.

In each graph there are three color-coded lines, which represent three differ-
ent scenarios, with a slightly different interpretation depending on whether the
model was trained with a fixed or random key. In the fixed key case we consider
the same scenario as in [6], excluding the “same device and same key” one since
it is trivially unrealistic:

– The green line, labeled same_devs_diff_key, represents the scenario that
does not consider portability, as the targeted device is the same as the pro-
filing one, while the test traces are collected using a different fixed key.

– The blue line, labeled diff_devs_same_key, identifies the case in which the
device under attack is different from the one used in training, but the attack
traces used are collected using the same key. This is only used to compare
against the full portability scenario, detailed below.

– The red line, labeled diff_devs_diff_key, represents the full portability
scenario, where during the attack both the device and the key used are
different from the ones in the training set. This is the realistic attack scenario
and the one that should be used to evaluate the attack performance.

In the random key case we also have the three graphs, but the concept of
same/different key no longer applies. Instead, the three scenarios become:

– The green line, labeled same_devs_key_1, targets the same device used dur-
ing training, by means of traces captured with key 1.

– The blue line, labeled diff_devs_key_0, targets different devices from the
ones used during training, by means of traces captured with key 0.

– The red line, labeled diff_devs_key_1, targets different devices from the
ones used during training, by means of traces captured with key 1. These
last two scenarios are useful to check whether performance changes signifi-
cantly depending on the specific target key.

In every case the vertical dashed line represents the number of traces needed to
achieve GE ă 0.5, and that is the value reported in the legend.

4.1 Training with fixed-key dataset

In Fig. 3 we can see the evolution of the GE with an increasing number of traces.
This is the most common case that matches the expectations and results in the
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(a) SBOX_OUT (b) HW_SO

Fig. 3. Fixed key, training with 1 device

(a) SBOX_OUT (b) HW_SO

Fig. 4. Fixed key, training with 2 devices

related literature, employing also similar or different computational platforms,
e.g., 8-bit microcontrollers. Indeed, we can see that both methods can success-
fully recover the correct key byte, with the SBOX_OUT performing slightly better
than the HW_SO. The portability concern is also evident here, as the performance
decreases when attacking a different device from the one used during the profiling
phase.

When using the multi-device model, taking traces from two different devices
to train the network, we can see in Fig. 4 that the performance increases, re-
quiring fewer traces to recover the key. This shows that, at least for a fixed
training key dataset, using multiple devices for profiling is to be preferred, thus
confirming the results found in [6]. Also when considering the SBOX_OUT, we can
see that the portability becomes much less prominent, with all three graphs be-
coming almost identical, showing that the obtained model is more general and
can be applied to different devices without a significant performance hit.

When adding the plaintext information during the training, the performance
of the network gets worse, as reported in Fig. 5. This was not expected, as in
principle more information should be beneficial to the network. In particular
we see a confirmation of this in two different cases. On one hand, training on
the SBOX_OUT target appears to be overfitting on the specific key value, since
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(a) SBOX_OUT (b) HW_SO

Fig. 5. Fixed key, training with 1 device and plaintext

(a) SBOX_OUT (b) HW_SO

Fig. 6. Fixed key, training with 2 devices and plaintext

when guessing against traces taken from another device but using the same
key, the line in blue, the network only needs one trace to correctly recover it.
Further investigating the motivation underlying this behaviour, we found that
the weights of the network are heavily biased in correspondence of the plaintext
information. This may lead to an underestimation of the leakage due to the
key. On the other hand, the cases against a different key show a decrease in
performance of more than one order of magnitude. For the HW_SO we also see a
decrease in performance, but not so severe, and the network is still able to learn
how to extract the key in all three cases, and the portability scenario in red still
proves to be more difficult than the other two.

When considering multiple devices, SBOX_OUT behaves the same, while HW_SO
gets worse, as it can be seen in Fig. 6, with two out of three scenarios not converg-
ing to GE “ 0 but flattening out at GE “ 5. Counterintuitively, we repeatedly
confirmed that when using a dataset with a fixed key and providing the plaintext
information to the network, this yields to worse performance overall.

4.2 Training with random-key dataset

In the case of random key, it is evident that the performance is worse both for
SBOX_OUT and HW_SO. The trend of the former performing better than the latter
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(a) SBOX_OUT (b) HW_SO

Fig. 7. Random key, training with 1 device

(a) SBOX_OUT (b) HW_SO

Fig. 8. Random key, training with 2 devices

is still present here. The interesting behaviour that appears from the graphs, is
that in this case the performance of the model also depends on the key used
during testing. For instance, in Fig. 7 using key 0 performs better than using
key 1.

However, we also maintain the problem of the portability when training with
a single device. In fact, the GE converges to 0 faster when attacking traces
captured with key 1 on the same device used during training, while it needs
more traces when attacking the same key 1 but with traces from a different
device. Similarly to the fixed key scenario, also when using a random key the
performance increases when using the Multi-Device Model, but in this case the
increase is more significant, although w.r.t. fixed key the overall performance is
still lower. We see a difference from the fixed key scenario when considering
what happens with the plaintext. When considering only one training device,
the performance increases in both SBOX_OUT and HW_SO w.r.t. not using the
plaintext. This contrasts what was seen with the fixed key, where performance
became significantly worse. When considering two training devices (see Fig. 10),
in the HW_SO the network seems to learn with greater difficulty, requiring a great
number of traces to lower the guessing entropy. Instead, when considering the
SBOX_OUT case the performance is better than without plaintext, and approaches



A Comparison of Deep Learning Approaches for SCAs 15

(a) SBOX_OUT (b) HW_SO

Fig. 9. Random key, training with 1 device and plaintext

(a) SBOX_OUT (b) HW_SO

Fig. 10. Random key, training with 2 devices and plaintext

the performance of the fixed key case, also closing the gap in the portability
scenario, as the network requires just five more traces to correctly guess the key
when considering a different target device.

4.3 Comparisons

Here we summarize all the guessing entropy behaviours discussed in Sect. 4 in
Tab. 5 and Tab. 6. We note that having a dataset of traces collected using a
single fixed key is the best option, both for a single or multiple training devices.
Unexpectedly, the use of the plaintext information should be avoided in this
case. It can instead be a great advantage when using a dataset collected using
random keys, depending on the target leakage function that is selected to train
the network and on the number of devices used.

5 Related Work

There is a number of publicly available datasets that target AES-128, both with
and without countermeasures in place [4,5,7,14,16], but all of them only capture
traces from a single device for both the training and testing phases, making them



16 R. Capoferri, A. Barenghi, L. Breveglieri, N. Izzo, G. Pelosi

Table 5. Results for the ’fixed key’ dataset. No. of traces to get GE ă 0.5

target variant n. devices same_devs_diff_key diff_devs_same_key diff_devs_diff_key

SBOX OUT
no ptx 1 12 24 31

2 13 12 14

ptx 1 ą 300 1 ą 300
2 ą 300 1 ą 300

HW SO
no ptx 1 20 29 35

2 18 13 28

ptx 1 34 18 68
2 ą 300 8 ą 300

Table 6. Results for the ’random key’ dataset. No. of traces to get GE ă 0.5

target variant n. devices same_devs_key_1 diff_devs_key_0 diff_devs_key_1

SBOX OUT
no ptx 1 249 143 ą 300

2 45 51 70

ptx 1 39 42 84
2 20 25 25

HW SO
no ptx 1 165 ą 300 ą 300

2 117 70 117

ptx 1 75 192 188
2 ą 300 ą 300 ą 300

unfit for testing the portability scenario. The dataset that we sampled and used
in our analyses, which we also made publicly available in [33,34], provides the
advantage of including measurements from a set of distinct instances of the same
device. This feature makes our dataset more suitable for testing realistic attack
scenarios.

Concerning the definition of the leakage function as the Hamming weight of
the result of the considered operation, i.e., SBOX output, our conclusions align
with those in [27], that is, the performance of DL-based attacks decreases because
of the imbalance induced by the set of Hamming weight values, as they allow to
gather the dataset samples in nine classes with quite different cardinalities.

Concerning the portability of the DL-SCA vulnerability proved when con-
sidering a single device instance or multiple device instances during the training
phase, we mostly confirm the results provided in [6], where the attackers consid-
ered an AES-128 software implementation for an 8-bit microprocessor clocked
at only 16 MHz (in contrast to our 32-bit CPU clocked at 168 MHz). Indeed we
show that, when only one device is used for profiling, attacking a device differ-
ent from the profiled one leads to a decrease in the performance of the model.
We also show that using traces from multiple device instances for training, in
general, helps the model to better generalize and to become more portable.

In our study, see Fig. 10b, a notable discrepancy is highlighted by the use,
during the training phase, of the plaintext values fed to each cipher run and of
traces obtained with a random key, when a worsening of the attack performance
is observed only in the case of a dataset composed by traces coming from multiple
device instances (two).
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6 Concluding Remarks

We have provided a systematic comparison of different approaches to train an
MLP for power-based SCA against a software implementation of AES. We have
tested the effect of changing different parameters, such as the type of traces used,
i.e., with fixed or random key, the target leakage function used, and the usage
of plaintext information. We have validated results on a 32-bit CPU platform,
namely the Riscure Pinata. In addition, we have provided a new study on the use
of the plaintext information during the training, thus showing that its influence
depends on other factors, like the choice of target or the available data. In the
end, using the plaintext provides a benefit when dealing with datasets collected
using a random key. We have found that when collecting a dataset, using a single
fixed key is the better choice in terms of attack performance, but that it is also
possible to get a similar, albeit lower, performance by using random keys and
providing plaintext information. We have performed our tests also considering
the portability of the model, and we have confirmed that using traces from
multiple training devices helps in building a better model. Finally, we provide a
new dataset to perform further studies concerning the portability on a complex
target, thus filling the gap present in the currently available public datasets.

Future work will consider protected AES implementations, e.g., by masking,
and the effect of selecting other points of interest (other than the SBox output)
from the traces. It would also be interesting to study the behaviour of optimized
AES implementations. In all these cases, different intermediate values need to
be chosen, thus leading to the use of different and potentially more complex
leakage models. Further experimentation is needed to evaluate the attack effort
required. This also applies if we consider ciphers other than AES. Since the leak-
age behaviour is tightly related to the microarchitectural details of the processor
[3], our results are representative for targets based around the same processor,
i.e., Cortex M4, which is widely diffused. Processors with a significantly different
microarchitecture may exhibit other behaviours.
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