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Abstract: The achievement of full autonomy in Unmanned Aerial Vehicles (UAVs) is significantly
dependent on effective motion planning. Specifically, it is crucial to plan collision-free trajectories
for smooth transitions from initial to final configurations. However, finding a solution executable
by the actual system adds complexity: the planned motion must be dynamically feasible. This
involves meeting rigorous criteria, including vehicle dynamics, input constraints, and state con-
straints. This work addresses optimal kinodynamic motion planning for UAVs in the presence of
obstacles by employing a hybrid technique instead of conventional search-based or direct trajectory
optimization approaches. This technique involves precomputing a library of motion primitives by
solving several Two-Point-Boundary-Value Problems (TPBVP) offline. This library is then repeatedly
used online within a graph-search framework. Moreover, to make the method computationally
tractable, continuity between consecutive motion primitives is enforced only on a subset of the
state variables. This approach is compared with a state-of-the-art quadrotor-tailored search-based
approach, which generates motion primitives online through control input discretization and forward
propagation of the dynamic equations of a simplified model. The effectiveness of both methods is
assessed through simulations and real-world experiments, demonstrating their ability to generate
resolution-complete, resolution-optimal, collision-free, and dynamically feasible trajectories. Finally,
a comparative analysis highlights the advantages, disadvantages, and optimal usage scenarios for
each approach.

Keywords: motion planning; kinodynamic planning; autonomous vehicles navigation; quadrotor
UAV; obstacle avoidance; motion primitives

1. Introduction

Unmanned Aerial Vehicles (UAVs) have achieved significant popularity in recent
years, enabling autonomous flight without the need for human pilots. The versatility of
UAVs is evident in their autonomous navigation and task execution, including a wide
range of applications in both civilian and military domains. These applications span
surveillance, reconnaissance, package delivery, and exploration [1]. However, as the
roles of UAVs evolve, navigating complex environments with agility becomes crucial.
While path-planning algorithms ensure collision-free paths, their execution by the actual
system may not be feasible. This is especially evident in agile vehicles, where additional
limitations from dynamics or nonholonomic constraints must be considered. Kinodynamic
motion planning addresses this issue, considering vehicle dynamics, input constraints, and
state constraints.

Frazzoli et al. [2,3] provided some of the pioneering work on real-time kinodynamic
motion planning. The proposed technique involves mapping the dynamics of the vehicle
onto a finite-dimensional space, restricting the vehicle’s potential states to two categories:
either a trim state or a maneuver state. Since then, the field has seen significant progress,
yielding numerous trajectory-generation algorithms. Many researchers have adopted a
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two-step approach, separating geometric and temporal planning. Initially, an optimal
collision-free geometric path is generated by linking a series of waypoints by straight lines.
Subsequently, the path is smoothed and parameterized in time to ensure compliance with
the vehicle dynamics. This smoothing step can be performed in various ways. For instance,
one approach involves selecting the optimal sequence of trims and maneuvers from a
precomputed library of motion primitives [4]. Alternatively, a sequence of polynomial
segments can be jointly optimized to connect waypoints into a smooth trajectory from start
to goal [5]. These two-step strategies significantly simplify the planning problem. However,
the initial geometric path does not consider the dynamics of the vehicle, restricting the
resulting trajectory to a specific homology class. This limitation may exclude the possibility
of achieving a globally optimal (or even feasible) trajectory. Moreover, the final smoothed
trajectory is not guaranteed to be obstacle-free.

Several studies have adopted a direct trajectory-generation approach that integrates the
vehicle dynamics from the beginning, bypassing the two-step process. Many of these works
leverage the inherent differential flatness property of quadrotor dynamics to represent
trajectories using time-parameterized polynomials [6–9]. This transforms the trajectory-
generation problem into the task of determining polynomial coefficients that meet specific
constraints. While this approach has been extensively studied and applied in the context of
quadrotors [6–10], its applicability is limited to systems with similar dynamics. Extending
this methodology to more complex systems such as Vertical Take-Off and Landing (VTOL)
and fixed-wing aircraft presents significant challenges.

Other stream of research use methods based on direct trajectory optimization, such
as [11–14], to design trajectories that account for the full system dynamics. However,
converting the planning problem into a non-convex optimization problem and using local
optimization techniques can fail to find a collision-free trajectory in cluttered environments.
Additionally, most trajectory optimization methods are prone to becoming stuck in local
minima. Consequently, there is growing interest in constructing global solutions for motion
planning problems. Early attempts to address this challenge formulated the problem
as a single optimization problem using a mixed-integer optimization approach [15,16].
However, this method is tractable only for a limited number of obstacles. More recent
approaches, such as those exploiting convex decomposition of the environment [17], allow
for efficient computation but struggle with nonlinear dynamics, as this would result in a
mixed-integer nonlinear problem, which is computationally intractable.

Motion primitives offer a promising alternative by combining the strengths of opti-
mal control, which can handle arbitrary dynamics, with the effectiveness of graph-based
algorithms that perform global searches in non-convex configuration spaces. This paper in-
vestigates motion primitives-based methods for addressing quadrotor kinodynamic motion
planning, focusing on two main approaches. One approach [8] generates motion primi-
tives online through control input discretization and forward propagation of the dynamic
equations of a simplified model, serving as a benchmark for comparison. Additionally, the
approach presented in [18] is revised and customized for quadrotor kinodynamic motion
planning. Specifically, the differential flatness property of quadrotors is exploited to con-
struct a library of precomputed trajectories during an offline phase. This library is then
used online to concatenate the motion primitives using a search-based framework to obtain
a complete trajectory. Moreover, to make the method computationally tractable, continuity
between consecutive motion primitives is enforced only on a subset of the state variables
(position, velocity, and acceleration). The methods are compared through both numeri-
cal simulations and real-world experiments to highlight the strengths and weaknesses of
each approach.

The remainder of this paper is organized as follows: Section 2 provides an overview
of the quadrotor model and its differential flatness property. Section 3 formulates the
kinodynamic motion planning problem. Section 4 introduces the methodology presented
in [18], aimed at generating an offline library of motion primitives tailored for systems
with arbitrary dynamics. This method is then adapted to suit the quadrotor system within



Drones 2024, 8, 256 3 of 22

a search-based framework. Additionally, continuity between consecutive motion prim-
itives is enforced on a subset of state variables to enhance computational tractability.
Section 5 introduces the state-of-the-art approach proposed in [8], serving as a benchmark
for comparison. Here, motion primitives for quadrotors are generated online through input
discretization and forward propagation, employing a simplified model of vehicle dynamics.
Section 6 presents the numerical results. Section 7 details the experimental outcomes.
Finally, Section 8 offers a comparative analysis of the two methods, while Section 9 draws
conclusions and delineates potential directions for future research.

Notation: R (R>0,R≥0) denotes the set of (positive, nonnegative) real numbers, Rn

denotes the n-dimensional real coordinate space and Rm×n the set of m × n real matrices.
Given x ∈ Rn, y ∈ Rm, denote (x, y) := [x�, y�]�.

The i-th vector of the canonical basis in Rn is denoted ei and the identity matrix in
Rn×n is In := [e1 · · · ei · · · en]. Given vectors x, y ∈ Rn, the standard inner product is defined
as 〈x, y〉 := x�y. The Euclidean norm of a vector x ∈ Rn is ‖x‖ :=

√〈x, x〉.
The n-dimensional unit sphere is denoted as Sn := {x ∈ Rn+1 : ‖x‖ = 1}. The set

SO(3) := {R ∈ R3×3 : R�R = I3, det(R) = 1} is the 3D Special Orthogonal group. The
map S(·) : R3 → so(3) := {W ∈ R3×3 : W = −W�} is defined such that given x, y ∈ R3

one has S(x)y = x × y.

2. Quadrotor Model

The quadrotor is modeled as a rigid body with six degrees of freedom (DOFs). The
differential equations governing the flight are [19]

ṗ = v

mv̇ = −mge3 + tcRe3

Ṙ = RS(ω)

Jω̇ = −S(ω)Jω + τc.

(1)

In this formulation, p = (x, y, z) ∈ R3 and v = (ẋ, ẏ, ż) ∈ R3 represent the position and
velocity of the quadrotor in the inertial frame, respectively. R ∈ SO(3) is the rotation matrix
describing the orientation of the body frame relative to the inertial frame, and ω ∈ R3

denotes the angular velocity vector in the body frame. m ∈ R>0 is the quadrotor mass
while J = J� ∈ R3×3 is its inertia matrix with respect to the center of mass. tc ∈ R>0
denotes the thrust in the body frame and τc ∈ R3 is a vector of three body torques.
Finally, g = 9.81 ms−2 represents the gravity acceleration and e3 = (0, 0, 1).

2.1. Differential Flatness

Equation (1) is inherently nonlinear and complex to manage. Nevertheless, the dif-
ferential flatness property inherent to quadrotor systems can be leveraged to significantly
simplify the motion planning problem [5] and the tracking problem [20]. As demonstrated
in [21], the quadrotor is a flat system characterized by the following flat outputs:

σ = (p, ψ) ∈ R
4, (2)

where σ is the vector containing the flat outputs. Specifically, these outputs consist of the
coordinates of the center of mass, denoted as p, and the yaw angle ψ.

Differential flatness implies that all the state variables x = (p, v, R, ω) ∈ R12 and
control inputs u = (tc, τc) ∈ R4 can be written as algebraic functions of the flat outputs and
a finite number of their derivatives. As a consequence, any trajectory in the state of the flat
output is flyable as long as the flat outputs and their derivatives satisfy specific smoothness
conditions. In particular, the position p must be at least four times differentiable, while the
yaw angle ψ must be at least twice differentiable (see Appendix A for further details).
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3. Kinodynamic Motion Planning: Problem Statement

Kinodynamic motion planning aims to find the optimal trajectory for a vehicle nav-
igating from an initial state xi to a final state x f while considering both its kinematics
and dynamics.

The kinodynamic motion planning problem can be formulated as an optimization
problem, with the aim of finding the input functions u(t), the corresponding state trajecto-
ries x(t), and the total duration T that minimize the cost function J, all while adhering to
specified constraints. The formulation is as follows:

min
x(t),u(t),T

J =
∫ T

0
‖u(t)‖2 dt + ρT

s.t. ẋ = f (x(t), u(t)), ∀ t ∈ [0, T]

x(t) ∈ X , ∀ t ∈ [0, T]

u(t) ∈ U , ∀ t ∈ [0, T]

x(0) = xi,

x(T) = x f .

(3a)

(3b)

(3c)

(3d)

(3e)

(3f)

Equation (3a) defines the cost function, which aims to strike a balance between minimizing
the total time T and minimizing the control effort required for the trajectory. This balance
is governed by the weight parameter ρ. Equation (3b) enforces the system’s dynamics
outlined in Equation (1). Equation (3c) describes the state constraints, which consist of
obstacle avoidance (non-convex) and limits on velocity and acceleration. Equation (3d)
represents the control input constraints. The initial and final states in Equation (3e) and
Equation (3f) correspond to the boundary conditions.

Explicitly solving Problem (3) is hard due to states and input constraints, as well as
the non-convex nature of obstacle avoidance. An effective strategy to alleviate the compu-
tational load associated with motion planning involves transforming the problem into a
graph-search problem. This method involves choosing a finite set of candidate solutions
known as motion primitives. Motion primitives represent a collection of precomputed
motions tailored for specific dynamic systems. These precalculated solutions address sub-
problems, which can be concatenated to form a complete trajectory that effectively resolves
the motion planning problem.

A motion primitive can be generated through various methodologies, including solv-
ing a Two-Point-Boundary-Value Problem (TPBVP) (see Section 4) or forward integration of
the state equations (see Section 5). Additionally, motion primitives can be generated offline
and stored in a database when dealing with complex systems (see Section 4) or generated
online when a simplified model accurately represents the dynamics of the system (see
Section 5).

4. Search-Based Kinodynamic Planning with Motion Primitives Library for
Differentially Flat Quadrotors

This section builds upon the work presented in [18], which addresses motion planning
for systems with arbitrary dynamics through a two-phase approach: offline and online.
During the offline phase, the state space is discretized to obtain a suitable number of
initial and final condition pairs. Motion primitives are then computed as solutions to
a TPBVP, using these initial and final conditions as boundary conditions. Finally, these
motion primitives are stored in a library. This process shifts the computational demands of
trajectory generation to the offline phase, significantly reducing the computational load
during online motion planning. In the online phase, the task of the planner is to select
suitable motion primitives from the library to generate a complete trajectory. This two-phase
approach enables efficient online motion planning for various systems, including complete
quadrotor models as well as more complex systems like fixed-wing and VTOL aircraft.
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In this section, this methodology is modified by tailoring it specifically to the quadrotor
system, leveraging its inherent differential flatness property. Moreover, to make the method
computationally tractable, continuity between consecutive motion primitives is enforced
only on a subset of the state variables. Finally, the original approach is modified by utilizing
a search-based planner rather than a sampling-based one.

4.1. Motion Primitives Library

Given an initial and a final condition, a motion primitive is the solution to the follow-
ing TPBVP:

min
x(t),u(t),τ

J =
∫ τ

0
‖u(t)‖2 dt + ρτ

s.t. ẋ = f (x(t), u(t)), ∀ t ∈ [0, τ]

x(t) ∈ X , ∀ t ∈ [0, τ]

u(t) ∈ U , ∀ t ∈ [0, τ]

x(0) = xi,

x(τ) = x f .

(4)

Unlike the TPBVP presented in Problem (3), this formulation focuses solely on generating a
short-duration motion primitive rather than solving the overall motion planning problem.
Consequently, the total trajectory duration T is replaced with the primitive duration τ,
and the final state x f is no longer the goal; instead, it is determined by the desired state
space discretization.

In traditional TPBVPs, enforcing system dynamics as constraints can be complex and
computationally demanding. However, for flat quadrotor systems, since all state variables
x and control inputs u can be expressed in terms of flat outputs σ = (p, ψ) and their
derivatives, Problem (4) can be reformulated in the space of flat outputs where the system
dynamics in Equation (1) are inherently satisfied (see Appendix A for further details).
Moreover, when the goal is to generate a smooth trajectory, the yaw angle ψ is typically
negligible, and therefore it is omitted here.

For flat quadrotors, the position along each axis can be represented as a k-th or-
der polynomial

p(t) = cktk + · · ·+ c1t + c0 ∈ R
3. (5)

The corresponding velocity v(t) := ṗ(t), acceleration a(t) := p̈(t) and jerk j(t) :=
...
p (t) can

be obtained by taking the derivatives of Equation (5). Then, Problem (4) can be reformulated
as follows:

minimize
τ,ci ,i=1:k

J =
∫ τ

0
‖p(q)(t)‖2 dt + ρτ

s.t. ‖ ṗ(t)‖ ≤ vmax, ∀ t ∈ [0, τ]

‖ p̈(t)‖ ≤ amax, ∀ t ∈ [0, τ]

‖ ...
p (t)‖ ≤ jmax, ∀ t ∈ [0, τ]

...

‖p(q)(t)‖ ≤ p(q)max, ∀ t ∈ [0, τ]

p(0) = pi, p(τ) = p f

ṗ(0) = vi, ṗ(τ) = v f ,

p̈(0) = ai, p̈(τ) = a f .

(6)

where p(q)(t) is the qth derivative of the position. Additional constraints, such as initial
and final conditions on jerk and snap, can also be considered.

The motion primitives database is generated through an offline process where Problem
(6) is solved for a suitable number of initial and final condition pairs obtained via discretiza-
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tion of the state space. Subsequently, the resulting optimal trajectories and optimal costs
are stored in a Look-Up Table (LUT). Note that thanks to the differential flatness property,
the library can be efficiently stored, as each primitive is defined by a set of coefficients ci
and a duration τ.

Obstacle avoidance is not addressed at this stage of motion library generation. Once
the library is computed, the planner will concatenate the motion primitives online to
construct a complete trajectory while considering obstacles. To concatenate the primitives,
the initial conditions of a candidate primitive must coincide with the final conditions
of the previous one. Ideally, one would grid the entire state space and construct the
motion primitives accordingly. However, this would result in a prohibitively large library.
Therefore, in practice, these final and initial conditions are enforced only on a subset of
the state variables. This ensures the continuity of the planned trajectory for this specific
subset. The remaining state variables will be continuous along each motion primitive and
will experience discontinuity only at the points where primitives are concatenated.

It is worth noting that in cases where a vehicle model is not available, trajectories can
be obtained directly from experimental flight data [2]. Therefore, it can be safely assumed
that primitives are inherently compatible with vehicle dynamics.

Figure 1 shows a subset of the motion primitives database for a quadrotor originating
from the steady state xi = yi = vxi = vyi = 0.

Figure 1. Example of planar motion primitives library for quadrotor using third-order polynomials
for 2D position (x, y) with constraints (vx, vy) ∈ [−1, 1] ms−1 and (ux, uy) = (ax, ay) ∈ [−3, 3] ms−2.
Red dot: initial steady state (xi = yi = vxi = vyi = 0). Blue dots: final states. Black lines:
reference trajectories for various final velocities. Pink lines: trajectories obtained by mirroring the
reference ones.

Invariance Properties

The motion primitive library can grow to include many primitives, requiring a consid-
erable amount of memory for database storage. However, several invariance properties, ex-
tensively explored in previous works [3,22], can be leveraged to minimize this requirement.

Dynamic systems, characterized by translation invariance, demonstrate consistent
behavior under coordinate translations. This means that all trajectories can be rigidly
translated to start from any arbitrary point. This property allows for the maintenance of
a small database while covering the entire vehicle operating space. In practice, for the
two-dimensional case, the initial position can be set to (x̂i, ŷi) = (0, 0) during the database
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construction phase. Subsequently, the motion primitives can be easily translated to match
any other initial position (xi, yi), as shown in Figure 2.

(a) original nodes (b) translated nodes (c) inverse translation

Figure 2. Steps involved in the geometric translation. (a) First, translation is performed on initial and
final states (vi, v f ). (b) New states (v̂i, v̂ f ) with the initial state v̂i placed at the origin of the library.
(c) Inverse translation to restore the trajectory connecting the original states (vi, v f ).

In particular, a first translation is performed on the pair of initial and final states
(vi, v f ) (Figure 2a). This translation aims to relocate the initial state vi to the origin of the
library (Figure 2b), resulting in a new pair of states (v̂i, v̂ f ). Subsequently, a database query
is executed to find the trajectory connecting these two states. Finally, an inverse translation
is applied to restore the trajectory connecting the original pair of boundary states (vi, v f )
(Figure 2c).

Additionally, specific systems, like quadrotors, possess additional invariance proper-
ties, being invariant to horizontal plane translations and rotations about the vertical axis.
Observing Figure 1 it becomes evident that the motion primitives for the quadrotor are
symmetric with respect to both the x- and y-axes. As a result, only trajectories within the
first quadrant (depicted by black curves) need to be stored in the database. Trajectories in
other quadrants (depicted by pink curves) can be generated through mirroring.

4.2. Library-Based Kinodynamic Motion Planning

The motion primitives library establishes a finite lattice discretization within the state
space, enabling the construction of a graph representation G(V , E). Here, V represents
the set of states, and E represents the set of edges. The states in V are the initial and final
conditions obtained through the state space discretization. The edges in E are defined by
selecting a subset of the motion primitives library, ensuring continuity of the desired state
variables with those of the previous motion primitive. Through this graph representation,
the motion planning problem can be rewritten as a graph-search problem. This search prob-
lem can be solved using either search-based [8,9], or sampling-based [2,3,18,23] algorithms,
which differ mainly in the optimality of the solution and computational time.

Sampling-based methods avoid the explicit construction of the configuration space by
randomly or systematically sampling the space to build a graph representation of the envi-
ronment. Search-based methods, on the other hand, employ traditional search algorithms to
navigate a predefined representation of the configuration space. The primary distinction be-
tween these two methods lies in their approach to motion planning. Search-based methods
aim to find optimal solutions, prioritizing optimality, while sampling-based methods focus
on finding feasible solutions, emphasizing practicality and efficiency. Therefore, sampling-
based algorithms are fast and particularly useful for complex and high-dimensional spaces.
However, sampling-based methods employ a randomized approach, which could repre-
sent an obstacle when fast online replanning is required. Specifically, paths generated
by sampling-based methods during successive replanning phases may exhibit significant
variations, making them less suitable for applications where path consistency is crucial [9].
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Based on these considerations, the A* algorithm [24] is employed to efficiently solve
this graph-search problem. A* employs the GetSuccessorsLibrary procedure described
in Algorithm 1 to explore the state space and build the graph. When provided with the
current node under expansion v, this procedure is employed to query the database of
motion primitives. This process involves a sequence of continuity checks and translations.
Specifically, line 5 performs the continuity check, selecting primitives whose initial state
xi matches the current node v. Line 6 executes the primitive translation, as illustrated in
Figure 2b,c. In line 7, a collision check is performed on the translated primitive pr′. If it
passes the check, its final state x′f is added to the successors list along with its associated cost.

Algorithm 1 Given the current node under expansion v and the motion primitive library
L, including initial states xi, final states x f , connecting primitives pr, and their associated
effort costs c, find the set of successors Succ(v) and their cost SuccCost(v)

1: function GetSuccessorsLibrary(v, L)
2: Succ(v) ← ∅;
3: SuccCost(v) ← ∅;
4: for all (xi, x f ) ∈ L do

5: if isEqual(xi, v) then
6: pr′ ← TranslatePrimitive(v, pr);
7: if isCollisionFree(pr′) then
8: x′f ← pr′(τ);
9: Succ(v) ← Succ(v) ∪ {x′f };

10: SuccCost(v) ← SuccCost(v) ∪ {c + ρτ};
11: end if
12: end if
13: end for
14: return Succ(v), SuccCost(v);
15: end function

5. Search-Based Kinodynamic Planning with Online Motion Primitives

This section describes the state-of-the-art approach outlined in [8], serving as a bench-
mark for comparison with the method presented in Section 4. This method introduces a
search-based planning method for computing obstacle-free and dynamically feasible trajec-
tories for quadrotors navigating obstacle-cluttered environments. In this approach, motion
primitives are generated online through input discretization and forward propagation of
the dynamic equations of a simplified model, leveraging the differential flatness property
of quadrotors. Specifically, each motion primitive is created by applying a constant control
input to an initial state for a predefined duration. These primitives induce a finite lattice
discretization of the state space, enabling a graph representation. As a result, the motion
planning problem can be transformed into a graph-search problem, which can then be
solved using search-based algorithms.

5.1. Motion Primitives Generation

As previously stated, by leveraging the differential flatness property of quadrotors,
the position along each axis can be expressed as a k-th order polynomial (Equation (5)).
These polynomial trajectories can be derived from a linear time-invariant system

ẋ = Ax + Bu

ẋ =

⎡
⎢⎢⎢⎢⎢⎣

0 I3 0 . . . 0
0 0 I3 . . . 0
...

. . . . . . . . .
...

0 . . . . . . 0 I3
0 . . . . . . 0 0

⎤
⎥⎥⎥⎥⎥⎦x +

⎡
⎢⎢⎢⎢⎢⎣

0
0
...
0
I3

⎤
⎥⎥⎥⎥⎥⎦u, (7)
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where the state x(t) consists of position p(t) and its (k − 1) derivatives (velocity v, accelera-
tion a, jerk j, snap s, etc.) in a three-dimensional space x(t) = (p(t), ṗ(t), p̈(t), . . . , p(k−1)(t)).
Upon examination of Equation (7), it becomes evident that the quadrotor dynamics exhibit
decoupling along each axis. Consequently, one can approach each axis as a double, triple,
or k integrator system [8,10].

A motion primitive is generated independently for each of the three spatial axes
by applying a constant control input ul ∈ UL to an initial state xi = (pi, vi, ai, . . .) for a
duration τ. The resulting trajectory takes the form outlined in Equation (5). Equivalently,
the trajectory resulting from the linear time-invariant system described in Equation (7) is
represented as follows:

x(t) = eAtxi +

[∫ t

0
eA(t−β)B dβ

]
ul = F(t)xi + G(t)ul .

Following the procedure proposed in [8], a discretization UL = {u1, . . . , uL} of the
admissible control input set U = [−umax, umax] is considered. Each control ul ∈ R3 defines
a short-duration trajectory, denoted motion primitive. To create this discretization, a
discrete number of samples Ns is selected along each axis within the permissible control
input range [0, umax]. This choice of samples results in a discretization step du = umax

Ns
,

which, in turn, generates a total of (2Ns + 1)3 motion primitives [25]. Figure 3 shows an
example of motion primitives generated through this approach.

Figure 3. 2D motion primitives for a jerk-controlled system from an initial state (red dot) to different
final states (blue dots).

The generated motion primitives are feasible with respect to control input constraints
(e.g., acceleration), as they are derived from inputs within the admissible control input
set. However, it is important to note that constraints regarding other state variables (e.g.,
velocity) and obstacle avoidance are not taken into account during the motion primitive
generation phase. Each primitive must be evaluated against these constraints to ensure
a trajectory that is both dynamically feasible and collision-free. This feasibility check
occurs online, which is inherently time-consuming and significantly slows down real-time
trajectory computation.

5.2. Graph Construction

Motion primitives create a finite lattice discretization within the state space, enabling
the construction of a graph representation G(V , E), as illustrated in Figure 4. Here, V
represents the set of states and E represents the set of edges. The states in V , depicted as
blue dots in Figure 4, are generated by iteratively applying each control input ul ∈ UL for a
duration τ to each initial state. This process results in (2Ns + 1)3 distinct motion primitives.
Among these, the motion primitives that are both collision-free and dynamically feasible,
shown as black curves in Figure 4, form the set of edges E . Motion primitives that collide
with obstacles or are dynamically unfeasible (e.g., exceed velocity limits), depicted as red
curves in Figure 4, are excluded from the graph representation.



Drones 2024, 8, 256 10 of 22

Figure 4. Graph G(V , E) generated from a starting point (green circle) located at coordinates
(xi, yi) = (2, 2) to a goal point (green diamond) positioned at coordinates (x f , y f ) = (5, 5). Blue
dots: a set of nodes V . Black curves: a set of edges E (feasible motion primitives). Red curves:
unfeasible motion primitives.

5.3. Search-Based Kinodynamic Motion Planning

By leveraging the graph representation, the motion planning problem can be reformu-
lated as a graph-search problem, representing the discrete version of Problem (3). Based
on [25], this can be done by treating the control as piecewise constant over intervals of
duration τ: u(t) = ∑N−1

n=0 un. Given an initial state xi, a goal region Xgoal , and a finite set of
motion primitives, each with a duration τ > 0, the objective is to determine the optimal
sequence of control inputs un, n = 0, ..., N − 1 such that

min
un ,xn ,N

(
N−1

∑
n=0

‖un‖2 + ρN

)
τ

s.t. xn(t) = F(t)xi,n + G(t)un, ∀ n = 0, . . . , N−1, t ∈ [0, τ]

xn(t) ∈ X , ∀ n = 0, . . . , N−1, t ∈ [0, τ]

un ∈ UL, ∀ n = 0, . . . , N−1

xi,n+1 = xn(τ), ∀ n = 0, . . . , N−1

xi,0 = xi,

xi,N ∈ Xgoal .

(8)

As mentioned in Section 2.1, the position p is required to be four times differentiable, and
the yaw angle ψ must be twice differentiable to fully define the state (see Appendix A for
further details). Under these conditions, Equation (1) is automatically satisfied. However,
lower degrees of differentiability are often utilized for computational efficiency.

The A* algorithm [24] is used to solve Problem (8). A* employs the GetSuccessors
procedure outlined in Algorithm 2 to explore the state space and construct the graph. In
essence, for each control action within the admissible control input set ul ∈ UL, a motion
primitive is generated. This involves applying the selected control action ul to the current
node v for a duration τ. Subsequently, the trajectory’s dynamic feasibility and obstacle
avoidance are evaluated. If both criteria are met, the successor node v f is added to the
successors list along with the cost of the primitive.



Drones 2024, 8, 256 11 of 22

Algorithm 2 Given the current node v and the discretized control set UL, find the set of
successors of v Succ(v) and their associated cost SuccCost(v)

1: function GetSuccessors(v, UL,τ)
2: Succ(v) ← ∅;
3: SuccCost(v) ← ∅;
4: for all ul ∈ UL do
5: pr ← GeneratePrimitive(v,ul,τ);
6: if isDynamicallyFeasible(pr) and isCollisionFree(pr) then
7: v f ← pr(τ);
8: Succ(v) ← Succ(v) ∪ {v f };
9: SuccCost(v) ← SuccCost(v) ∪ {(‖ul‖2 + ρ)τ};

10: end if
11: end for
12: return Succ(v), SuccCost(v);
13: end function

6. Numerical Simulations

This section presents the numerical simulations performed to demonstrate the effec-
tiveness of the two methods. Specifically, a quadrotor is tasked with navigating from an
initial state located at (xi, yi) = (2, 1) m to a final state positioned at (x f , y f ) = (42, 12) m
within a 2D 45 m × 15 m virtual environment. At both the initial and final states, velocity
and eventually accelerations are set to zero.

Motion primitives library: To guarantee the automatic satisfaction of the system
dynamics described in Equation (1), the position p must be at least four times differentiable.
Therefore, a fifth-order polynomial representation of the 2D position is considered. This
ensures continuity in terms of position, velocity, acceleration, jerk, snap, and the derivative
of snap along each primitive. However, to prevent the library from becoming prohibitively
large, the initial and final conditions for database generation are enforced only on position,
velocity, and acceleration. As a result, the planned trajectory will be continuous in position,
velocity, and acceleration. The remaining state variables will be continuous along each
motion primitive and will experience discontinuity at the concatenation points.

The motion primitives library is generated by solving a particular instance of Problem
(6) for every combination of initial and final states, employing MATLAB’s R2024a fmincon
function. Specifically, a trade-off between the integral of the jerk squared and primitive
duration is minimized. Constraints are imposed on total acceleration and total jerk, set,
respectively, at amax = 3

√
2 ms−2 and jmax = 15

√
2 ms−3. Note that by leveraging the

differential flatness property, the imposition of constraints on acceleration and jerk effec-
tively restricts the commanded thrust and commanded angular rates to ensure adherence
to the actuation constraints. This ensures that the motion primitives remain feasible and
executable within the physical constraints of the platform. Additional information can be
found in Appendix A.

Online motion primitives: To achieve a dynamically feasible trajectory, a fourth-order
polynomial representation of position should be employed, with the snap serving as control
input. However, planning in higher-dimensional spaces requires more time. Additionally,
discretizing the snap is not intuitive due to its lack of direct physical meaning. Furthermore,
an online feasibility check, as described in Section 5.1, must be conducted for velocity,
acceleration, and jerk. This process is computationally intensive when performed online,
making it inefficient. In practice, it is more effective to sample over acceleration and
employ second-order polynomials for position, as done in [8]. This approach restricts
the feasibility check to velocity alone, significantly reducing the online computational
load. Additionally, discretizing acceleration is straightforward due to the well-understood
impact of acceleration on the behavior of the system. Therefore, in this example, second-
order polynomials are used to represent position. The 2D quadrotor state is defined as
x(t) = (x, y, vx, vy) and acceleration a = (ax, ay) is used as control input. Total velocity
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‖v‖ =
√

v2
x + v2

y is constrained to be lower than 1.5
√

2 ms−1. Maximum acceleration along

each axis is set to 3 ms−2.

6.1. Parameters Selection and State Space Discretization

This section explains how the discretization of the state space, as well as input dis-
cretization UL and the primitive duration τ, influence planning performance. Furthermore,
it elaborates on their selection process tailored to the specific application at hand.

State space discretization for library computation: The discretization of the state space
significantly affects planning performance, including computation time and solution opti-
mality. The grid resolution determines the density of the graph and the computation time.
A fine-resolution grid results in a denser graph, allowing for a more complete search and
smoother trajectories. However, a denser graph requires more exploration to reach the
goal, thus increasing computation time due to the higher number of nearby nodes to be
checked. Conversely, a coarse resolution grid limits the set of candidate solutions, which
can potentially result in search failures. Specifically, if the state space discretization is not
fine enough, the resulting problem could become infeasible. However, for computational
reasons, a coarse grid is preferable as it reduces the number of neighbor connections to be
evaluated, therefore speeding up the search process.

Determining the optimal state space discretization depends on the specific applica-
tion. For this specific application, the following state space discretization has been found
suitable. The database is assembled starting from an initial position at (xi, yi) = (0, 0). It
is based on a uniform square grid, where the final state position coordinates (x f , y f ) ∈
[−4, 0) ∪ (0, 4]× [−4, 0) ∪ (0, 4] and each square cell spans one meter. These values have
been selected based on the simulation environment. Given that the environment is large
and filled with obstacles, it is beneficial to include both long (e.g., 4 m) and short (e.g.,
1 m) motion primitives in the library. This approach allows the system to use shorter
motion primitives for navigating through obstacle-dense regions to avoid collisions and
longer primitives for traversing obstacle-free areas, ensuring smoother motion. Initial and
final velocities (vxi, vyi, vx f , vy f ) and initial and final accelerations (axi, ayi, ax f , ay f ) are each
selected from a set of three values to prevent the library from becoming prohibitively large.
Specifically, initial and final velocities are selected from {−1.5, 0, 1.5} ms−1, and initial and
final accelerations are chosen from {−3, 0, 3} ms−2.

Control input discretization and motion primitive duration for online motion primitives
computation: The motion primitives duration τ and the control input discretization UL
have a significant effect on the planning performance, including computation time and
optimality of the solution. The primitives duration τ determines the density of the graph
and computation time. A small τ results in a denser graph, requiring more exploration
to reach the goal, therefore increasing computation time. Conversely, large τ reduces
the space of candidate solutions, potentially leading to search failures. Specifically, if
the discretization of the control input UL is not fine enough, the resulting problem could
become infeasible (i.e., the set of candidate solutions could be empty). Moreover, since the
goal is to optimize the duration of the overall trajectory, the duration of the primitives τ
imposes a lower bound on the optimality of the solution. As the duration of the motion
primitives decreases, so does the cost of the optimal trajectory. However, for computational
reasons, a longer duration is preferable. The control space discretization UL also influences
the density of the graph and computation time: finer discretization yields a slower but
more complete search and smoother trajectories, while coarser discretization produces
the opposite effect. Moreover, finer control space discretization UL significantly increases
computation time, making the approach impractical in practice.

The optimal combination of control input discretization and primitive duration de-
pends on the specific application. For this specific application, the following values have
proven to be suitable. To ensure a balance between search completeness and computational
efficiency, the set of control inputs is discretized into nine options within the allowable
range of (ux, uy) = (ax, ay) ∈ [−3, 3] ms−2 and the primitive duration is set at τ = 0.5 s.
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6.2. Simulations Results

This section presents the results of the numerical simulations.
Planning with motion primitives library: Figure 5 shows the optimal collision-free tra-

jectory guiding the vehicle from the initial state (green dot) to the goal state (red dot).
Figures 6–8 depict the velocity, acceleration, and actuation profiles. These figures demon-
strate the efficacy of this approach in generating collision-free and dynamically feasible
trajectories. Observing the velocity profile in Figure 6, it is evident that rather than experi-
encing a gradual and continuous increase in velocity, sudden changes in acceleration occur.
This issue arises from constraining velocity and acceleration at each node to match one
of the values in the database precisely. To obtain a smoother trajectory, a finer state space
discretization is required.

Figure 5. Simulation employing the planning with motion primitives library method. Green dot:
initial position. Red dot: final positions. Blue curve: optimal trajectory. Black dots: expanded states.

Figure 6. Velocity profile for the optimal trajectory in Figure 5.

Figure 7. Acceleration profile for the optimal trajectory in Figure 5. Red lines: acceleration limits.
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Figure 8. Jerk profile for the optimal trajectory in Figure 5. Red lines: jerk limits.

Planning with online motion primitives: Figure 9 shows the optimal collision-free tra-
jectory guiding the vehicle from the start state (green dot) to the target state (red dot).
Figures 10 and 11 show the velocity profile and the actuation (acceleration) profile for the
optimal trajectory, demonstrating adherence to velocity constraints.

Figure 9. Simulation employing the planning with online motion primitives method. Green dot:
initial position. Red dot: final position. Blue curve: optimal trajectory. Black dots: expanded nodes.

Figure 10. Velocity profile for the optimal trajectory in Figure 9. Red lines: velocity limits.
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Figure 11. Actuation (acceleration) profile for the optimal trajectory in Figure 9.

7. Experimental Results

This section presents the experimental tests performed to demonstrate the effectiveness
of the two methods on a real quadrotor.

7.1. Experimental Set-Up

Flight tests take place within the indoor Flying Arena for Rotorcraft Technologies
(FlyART) at Politecnico di Milano, equipped with a Motion Capture system (Mo-Cap)
comprising 12 cameras (Figure 12). The UAV employed for these tests is an ANT-X fixed-
pitch quadrotor [26] (Figure 12). The Mo-Cap system detects markers mounted to the UAV
and collects measurements, which are then transmitted to a ground control station. These
measurements, along with the trajectory to be followed defined by specific waypoints, are
forwarded to the drone at frequencies of 100 Hz and 20 Hz, respectively.

Note that the maximum velocity vmax and acceleration amax constraints generally
come from the dynamics of the system in question, such as the thrust-to-weight ratio. The
platform utilized in the experimental tests has a thrust-to-weight ratio of approximately 2.5.
However, it is often necessary to impose constraints on maximum velocity and acceleration
due to spatial limitations and safety concerns. As a result, lower values are selected as
constraints for the experimental tests.

Figure 12. ANT-X quadrotor [26] and indoor environment used for the experiments.

The control system employed follows a set-up similar to the PX4 autopilot, employing
a cascaded controller structure. Specifically, it features a double cascade arrangement using
P/PID controllers for position and attitude control. Moreover, this set-up involves modifi-
cations to the PX4 autopilot, incorporating position, velocity, and acceleration feedforwards.
For more details, please refer to [27,28].

The motion planning computations are executed in MATLAB on a personal computer
equipped with an Intel Core i7 processor running at 2.30 GHz and 16 GB RAM. Future
work will involve converting all components of the online phase to C++ for execution on
an embedded processor within the quadrotor.
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The UAV operates in a 10 m × 4 m environment featuring two 0.4 m × 1.5 m obstacles.
The starting position is set at pi = (−3.5, 0.5, 1) m, and the goal region is a square with a
side length of 0.5 m, centered at p f = (3,−0.5, 1) m. Velocity and acceleration are zero at
both the initial and final positions.

7.2. Experiment: Planning with Motion Primitives Library

A fifth-order polynomial representation of the 2D position is employed for this ex-
periment. The database of motion primitives is computed by solving a particular instance
of Problem (6) for every combination of boundary conditions. The database is assembled
starting from an initial position at (xi, yi) = (0, 0). It is based on a uniform square grid,
where the final state position coordinates (x f , y f ) ∈ [−2, 0) ∪ (0, 2]× [−2, 0) ∪ (0, 2] and
each square cell spans half a meter. Initial and final velocities are selected from {−1.5, 0, 1.5}
ms−1, and initial and final accelerations are chosen from {−4.5, 0, 4.5} ms−2. Total veloc-
ity, acceleration, and jerk limits are set at vmax = 1.5

√
2 ms−1, amax = 4.5

√
2 ms−2 and

jmax = 15
√

2 ms−3. In this experiment, a constraint on the maximum speed is added due
to spatial limitations and safety concerns. Refer to Section 6.1 for insights on selecting the
state space discretization.

Figure 13 shows the obstacle-free planned trajectory. Figures 14 and 15 depict the
position and velocity profiles with their references, demonstrating precise tracking. Refer-
ences represent the desired positions and velocities of the planned trajectory. Specifically,
they are the target values for each motion primitive that composes the planned trajectory.
These target values are fed to the control system to ensure tracking and execution of the
planned path.

(a) (b)
Figure 13. Planned trajectory in the indoor environment employing the planning with motion
primitives library method. Green square: start location. Green diamond: goal location. (a) 3D view.
(b) top view.

Figure 14. Position reference (dashed) compared to the tracked profile (solid) for the planned
trajectory in Figure 13.
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Figure 15. Velocity reference (dashed) compared to the tracked profile (solid) for the planned
trajectory in Figure 13.

7.3. Experiment: Planning with Online Motion Primitives

In this experiment, second-order polynomials are used to represent position. The 2D
quadrotor state is defined as x(t) = (x, y, vx, vy) and acceleration a = (ax, ay) is used as
control input. The set of control inputs is discretized with nine options within the allowable
range of (ux, uy) = (ax, ay) ∈ [−3, 3] ms−2 and the duration of the primitives is set to a

fixed value of τ = 0.5 s. Total velocity ‖v‖ =
√

v2
x + v2

y is constrained to be lower than

1.5
√

2 ms−1. Refer to Section 6.1 for insights on selecting the input discretization and
primitive duration.

Figure 16 depicts the planned obstacle-free trajectory. Figures 17 and 18 show the
tracked position and velocity profiles alongside their corresponding references, demon-
strating good tracking.

(a) (b)
Figure 16. Planned trajectory in the indoor environment employing the planning with online motion
primitives method. Green square: start location. Green diamond: goal location. (a) 3D view.
(b) top view.

Figure 17. Position reference (dashed) compared to the tracked profile (solid) for the planned
trajectory in Figure 16.
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Figure 18. Velocity reference (dashed) compared to the tracked profile (solid) for the planned
trajectory in Figure 16 .

8. Discussion

This section delves into a comparative analysis of the two approaches, each offering
distinct advantages. The selection of the appropriate method depends on the specific
characteristics of the system at hand and its performance requirements. For a concise
overview, the key features of both methods are summarized in Table 1 and discussed in the
following sections.

Table 1. Key features of the two methods.

Planning with Online Motion Primitives Planning with Motion Primitives Library

suitable for simple systems suitable for complex systems
fixed-duration primitives optimized-duration primitives

online feasibility check offline feasibility check
online collision check online collision check

meticulous control input and duration tuning meticulous grid discretization

8.1. Adaptability to Complex Systems

The planning with online motion primitives method is advantageous when a simplified
representation of the system accurately captures its dynamics. This approach is particularly
useful in scenarios where moderate performance and tracking are acceptable, making a
simplified model adequate to satisfy these requirements. However, its applicability to
more complex systems is limited. On the other hand, the planning with motion primitives
library method is the preferred choice when a simplified representation of the system fails
to meet performance requirements, necessitating a more complex model. In fact, this
method extends its applicability beyond differentially flat quadrotor systems to encompass
a wide range of complex systems, including VTOL and fixed-wing aircraft. Its versatility
is attributed to its capacity to shift the computational demands of trajectory generation
to an offline phase, therefore ensuring precise solutions without compromising efficiency.
Furthermore, this method is advantageous in scenarios requiring aggressive and agile
maneuvers, where precise tracking and the full utilization of the system’s capabilities
are essential.

8.2. Motion Primitives Duration

In the planning with online motion primitives method, all the motion primitives have
the same duration, denoted as τ, which is usually set sufficiently large for computational
reasons. However, this hinders the overall objective of achieving a minimum-time trajectory.
In contrast, the planning with motion primitives library method employs minimum-time
primitives generated by solving a TPBVP, aligning more closely with the objective of
achieving a minimum-time trajectory.
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8.3. Motion Primitives Feasibility Check

The planning with online motion primitives method generates motion primitives through
control input discretization and forward propagation of the dynamic equations of a sim-
plified model. Consequently, the resulting primitives are feasible with respect to control
inputs (e.g., acceleration) but do not inherently incorporate velocity constraints, necessi-
tating a subsequent feasibility check. This additional step involves further computations
and significantly slows down the online trajectory computation. In contrast, the planning
with motion primitives library method directly incorporates velocity, acceleration, and other
constraints into its library, eliminating the need for a subsequent feasibility check and
accelerating online trajectory computation.

8.4. Further Considerations

In a known environment, geometric considerations on the environment itself (e.g.,
environment dimensions, characteristics distances between obstacles) easily translate into
grid selection. On the contrary, the tuning process for the control input set and the duration
of primitives τ is more challenging, especially for complex systems.

9. Conclusions

This work addresses trajectory planning for UAVs in the presence of obstacles by
introducing a library of motion primitives tailored for quadrotors. The versatility of this
approach lies in its ability to shift the computational demands of trajectory generation to
the offline phase of database construction. To further enhance computational tractability,
continuity between consecutive motion primitives is enforced only on a subset of state vari-
ables (position, velocity, and acceleration). This method has proven effective in maintaining
computational efficiency while ensuring accurate trajectory planning and proves promising
for applications to more complex systems, including VTOL and fixed-wing aircraft.

The proposed method is compared with a state-of-the-art quadrotor-tailored search-
based planner, which generates motion primitives online by discretizing control inputs
and propagating the dynamic equations of a simplified model forward. However, this
state-of-the-art approach is computationally efficient only for simple systems, such as single
or double integrators. Conversely, the proposed library-based method enables efficient
motion planning for arbitrary systems.

Notably, both methodologies demonstrate the ability to generate resolution-complete,
collision-free, resolution-optimal, and dynamically feasible trajectories, as demonstrated
by numerical and experimental results. Furthermore, a comparison of the two approaches
highlights their respective strengths and weaknesses.

Future research will focus on addressing motion planning in unknown and dynamic
environments. This involves vision-based dynamic replanning using real-time data to
navigate and avoid newly detected obstacles. Furthermore, upcoming studies will concen-
trate on developing motion primitive libraries for the identified model of the quadrotor.
Additionally, efforts will be directed toward mitigating the discontinuity of the state vari-
ables at the nodes. Although enforcing continuity during the library construction phase
presents memory challenges, a potential solution involves generating a trajectory that
guarantees only position and velocity continuity at the nodes. This trajectory will serve as
a high-quality initial guess for an online trajectory-generation algorithm, with continuity in
other states achieved in a receding horizon fashion.
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Appendix A. Differential Flatness

A system can be defined differentially flat if a subset of the output, called flat output,
exists, such that the state and input can be defined as functions of the flat output and a
finite number of its derivatives. More precisely, a nonlinear system

ẋ = f (x, u), x ∈ R
n, u ∈ R

m (A1)

is differentially flat if and only if there exists a flat output σ = (σ1, . . . , σm) depending on
the state and on a finite number of the input derivatives

σ = h(x, u, u̇, . . . , u(r)), σ ∈ R
m (A2)

such that the state x and the input u can be defined as smooth functions of this flat output
and its derivatives as follows:

x = hx(σ, σ̇, σ̈, . . . , σ(q))

u = hy(σ, σ̇, σ̈, . . . , σ(q)),

(A3)

(A4)

where hx and hy are smooth functions and q is some finite number.
As demonstrated in [21], the quadrotor with the four inputs is a flat system character-

ized by the flat output

σ = (p, ψ), (A5)

where p = (x, y, z) are the coordinates of the center of mass and ψ is the yaw angle.
Consequently, the state of the quadrotor x = (p, v, R, ω) and its control input u = (tc, τc)
can be expressed as algebraic functions of the four selected flat outputs and a finite number
of their derivatives.

In particular, the translational components of the state (position p, velocity v, accelera-
tion a, jerk j, and snap s) can easily be derived from the first three elements of σ, σ̇, σ̈,

...
σ ,

and
....
σ , respectively. Additionally, the orientation R can be written as an algebraic function

of the acceleration a, which involves the first three components of the second derivative of
the flat output σ̈, as well as the yaw angle ψ

R = fR(a, ψ). (A6)

Furthermore, the thrust input tc is a function of the acceleration a

tc = ftc(a). (A7)

The body rates ω can be written as functions of the acceleration a, jerk j, yaw angle ψ and
its first derivative ψ̇

ω = fω(a, j, ψ, ψ̇). (A8)
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Finally, the angular accelerations (torque inputs) ω̇ can be expressed as functions of the
acceleration a, jerk j, snap s, yaw angle ψ and its first ψ̇ and second ψ̈ derivatives.

ω̇ = fω̇(a, j, s, ψ, ψ̇, ψ̈). (A9)

The complete expressions of the previous relations and their proof can be found in [21] and
can be derived by neglecting the drag component.

The expression of the state variables x and control inputs u as functions of the flat
outputs σ, and their derivatives guarantees the automatic satisfaction of the system dynam-
ics detailed in Equation (1). This is true as long as the flat outputs and their derivatives
adhere to specific smoothness conditions. Specifically, the position p must be at least four
times differentiable, and the yaw angle ψ must be at least twice differentiable to retrieve
the complete state of the quadrotor system, as shown in Equations (A6)–(A9), which show
that the original states x and control inputs u of the quadrotor depend on the snap s (the
fourth derivative of the position) and ψ̈ (the second derivative of the yaw).
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