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1. Introduction

Given n ≥ 2 and 1 < p < n we consider positive solutions of the well-known critical 
p-Laplace equation

Δpu + up∗−1 = 0 in Rn , (1.1)

where Δp is the usual p-Laplace operator and p∗ is the Sobolev exponent, explicitly

Δpu := div(|∇u|p−2∇u) , and p∗ = np

n− p
.

The critical p-Laplace equation has been the object of several studies in the differential 
geometry and in the PDE’s communities, indeed problem (1.1) is related to the study of 
the critical points of the Sobolev inequality (see e.g. the survey [25]) and, for p = 2, to 
the Yamabe problem (see e.g. the survey [18]). An interesting and challenging problem 
is the classifications of solutions to (1.1): one can show that the following functions

Uλ,x0(x) :=

⎛
⎜⎜⎝
λ

1
p−1

(
n

1
p

(
n−p
p−1

) p−1
p

)
λ

p
p−1 + |x− x0|

p
p−1

⎞
⎟⎟⎠

n−p
p

, λ > 0 , x0 ∈ Rn , (1.2)

form a 2-parameters family of solutions to (1.1)1. Hence the natural question is the 
following:

Given a positive solution to (1.1), is it of the form (1.2)?

The functions described in (1.2) are usually called Aubin-Talenti bubbles, since in two 
independent papers Aubin, in [3], and Talenti, in [29], prove that the functions (1.2)
realize the equality in the sharp Sobolev inequality in Rn.

It is well known (see e.g. [10] and [8]) that there exist multiple sign-changing, non-
radial, finite energy solutions to

Δpu + u|u|p∗−2 = 0 in Rn.

In this paper we focus on non-negative weak solutions to (1.1) which, by the maximum 
principle for quasilinear equations (see e.g. [31]), are either zero or positive.

Turning back to the classification results of positive solutions to (1.1) in the seminal 
paper [4] (see also [22] and [12] for previous important results) the authors consider the 
semilinear case (i.e. p = 2) and they prove that positive smooth solutions to (1.1) with 
p = 2 are given by the Aubin-Talenti bubbles (1.2) (see also [6] and [19]). The proof is 

1 If one chooses a different normalization constant in the numerator of the functions Uλ,x0 , then one 
obtains a constant k �= 1 as a coefficient of up∗−1 in equation (1.1).
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based on a refinement of the method of moving planes (introduced in [1] in the context 
of constant mean curvature hypersurfaces and transposed in [27] and in [13] to study of 
qualitative properties of solutions of the PDE’s) and on the Kelvin transform.

The quasilinear case (i.e. 1 < p < n, p �= 2) is more complicated since, for example, 
the Kelvin transform is not available. Nevertheless the method of moving planes has 
been exploited in [9,26,32] to prove the following classification result:

Let u be a positive weak solution of equation (1.1) with finite energy, i.e.

u ∈ D1,p(Rn) := {u ∈ Lp∗
(Rn) : ∇u ∈ Lp(Rn)} ,

then u(x) = Uλ,x0(x) for some λ > 0 and x0 ∈ Rn.

We mention that this result has been recently generalized in [7] in the anisotropic 
setting (see also [11]) and in convex cones of Rn (see also [20]) and in [5,17,21] in the 
Riemannian setting (see Appendix A for a more detailed discussion).

As far as we know trying to prove the same result without the assumption that u
has finite energy is an open and challenging problem for p �= 2; in this paper we deal 
with this problem obtaining a classification result of all positive weak solutions of (1.1)
in dimensions n = 2, 3 for n2 < p < 2, while for different values of n and p we require 
that u satisfies suitable conditions at infinity (which are weaker than the finite energy 
assumption).

Before stating our results we recall the variational nature of the critical p-Laplace 
equation (1.1): the energy associated to (1.1) is given by

ERn(u) := 1
p

∫
Rn

|∇u|p + 1
p∗

∫
Rn

up∗
,

indeed it is well-known that the Euler-Lagrange equation associated to this energy func-
tional is (1.1). We define the energy on a general open set Ω ⊆ Rn and we split it as 
follows:

EΩ(u) = Ekin
Ω (u) + Epot

Ω (u) := 1
p

∫
Ω

|∇u|p + 1
p∗

∫
Ω

up∗
.

With these notations our first theorem is a rigidity result under a growth assumption 
of the energy on annuli, indeed we have the following:

Theorem 1.1. Let u be a positive weak solution of equation (1.1). If one of the following 
holds

(i) 1 < p ≤ 2n
n+1 and

EAR
(u) = O

(
R

n
n−1

)
, or
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(ii) 2n
n+1 < p < 2 and

EAR
(u) = O

(
R

(2−p)(n−p)
2(p−1)2

)
, or

(iii) p > 2 and u(x) ≤ C|x|α as |x| → ∞ for some α ≥ 0 and

EAR
(u) = O

(
Rk

)
for some k <

2(n− p)
2 + (n− 3)p − α

p[n(p− 2) + p]
(n− p)[2 + (n− 3)p] ,

where AR := B2R \BR, then u(x) = Uλ,x0(x) for some λ > 0 and x0 ∈ Rn.

In particular this result implies the classification of solutions u ∈ D1,p(Rn), simply by 
observing that

u ∈ D1,p(Rn) ⇐⇒ ERn(u) < ∞ .

Here one also has to recall that positive solutions u ∈ D1,p(Rn) have the following 
behavior:

u(x) ≤ C

1 + |x|
n−p
p−1

and |∇u(x)| ≤ C

1 + |x|
n−1
p−1

,

for all x ∈ Rn and some C > 0, as it was shown in [32, Theorem 1.1]. We explicitly note 
that we are not using these estimates in our proofs.

Note also that, if u is a positive weak solution of equation (1.1), by Lemmas 2.7 and 
2.9 for every α > 0 one has

Epot
AR

(u) = O(Rα) ⇐⇒ EAR
(u) = O(Rα) ⇐⇒ Ekin

AR
(u) = O(Rα).

See Remark 2.10 for the proof.

For suitable choices of n and p we can show rigidity results without any further 
assumptions on the solution.

Theorem 1.2. Let u be a positive weak solution of equation (1.1). If one of the following 
holds

(i) n = 2 and 1 < p < 2, or
(ii) n = 3 and 3

2 < p < 2,

then u(x) = Uλ,x0(x) for some λ > 0 and x0 ∈ Rn.

In our last two classification theorems, where we consider general n and p, we rely on 
conditions on the behavior of the solution at infinity, which are much weaker than all 
the results already available in the literature. For 1 < p < 2 we have the following:
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Theorem 1.3. Let u be a positive weak solution of equation (1.1) with

u(x) ≤ C|x|α as |x| → ∞,

for some

α < ᾱ := (3p−n)(n−p)
p(n−2p) .

If one of the following holds

(i) n = 3 and 1 < p ≤ 3
2 , or

(ii) n ≥ 4 and 1 < p < 2,

then u(x) = Uλ,x0(x) for some λ > 0 and x0 ∈ Rn.

For 2 < p < n, on the other hand, we have:

Theorem 1.4. Let u be a positive weak solution of equation (1.1) with

u(x) ≤ C|x|α as |x| → ∞.

Let

α̂ := 2(n−p)
p(p−2) , α̌ := (n−p)2

(p−2)(p−1) , ᾱ := (3p−n)(n−p)
p(n−2p) , α̃ := (3p−n)(n−p)

p(n−3p+2) .

Assume that one of the following holds

(i) n = 3, and 2 < p < 3 and α < α̌;
(ii) n = 4, and

2 < p < p̌ and α < α̂,

or

p̌ ≤ p < 4 and α < α̌;

(iii) n = 5 or n = 6, and

2 < p < n+2
3 and α < ᾱ,

or

n+2 ≤ p < p̌ and α < α̂,
3
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or

p̌ ≤ p < n and α < α̌;

(iv) n ≥ 7 and

2 < p ≤ n
3 and α < α̃,

or

n
3 < p < n+2

3 and α < ᾱ,

or

n+2
3 ≤ p < p̌ and α < α̂,

or

p̌ ≤ p < n and α < α̌,

where p̌ = n−2+
√
n2−4n+12
2 . Then u(x) = Uλ,x0(x) for some λ > 0 and x0 ∈ Rn.

In particular we have the following classifications:

Corollary 1.5. Let u be a positive bounded weak solution of equation (1.1) on Rn, with 
n ≤ 6, or n ≥ 7 and p > n

3 . Then u(x) = Uλ,x0(x) for some λ > 0 and x0 ∈ Rn.

Corollary 1.6. Let u be a positive weak solution of equation (1.1) on Rn with

u(x) ≤ C|x|−
n−p
p .

Then u(x) = Uλ,x0(x) for some λ > 0 and x0 ∈ Rn.

We stress the fact that all the limiting exponents in Theorems 1.3 and 1.4 are strictly 
larger than −n−p

p in the ranges of n and p where they are used. Actually they are 

strictly positive under the hypothesis of Corollary 1.5. Note that the exponent −n−p
p is 

the threshold decay in order for a radial solution to have finite energy.

As an auxiliary result, which may have an independent interest, we prove a gradient 
estimate for positive solutions to (1.1) which is instrumental in the proofs of Theorems 1.1
and 1.4 in the case 2 < p < n.

Proposition 1.7. Let u be a positive weak solution of equation (1.1) with 1 < p < n. Then, 
for every 0 < ε < p−1 it holds
n−p
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|∇u| ≤ C

(
sup

B2R(x0)
u

1
n−p+ε + R−εn−p

p−1

)
u

n−1
n−p−ε on BR(x0)

for some C = C(n, p, ε) > 0, for every R > 0 and every x0 ∈ Rn.

This estimate is sharp for the positive solutions Uλ,x0(x).

Most of the available classification results for the critical p-Laplace equation are based 
on a careful application of the moving plane technique. Interesting exceptions can be 
found in [5,7,17] where the authors, exploiting integral estimates obtained through test 
functions arguments, prove the classification via the vanishing of a suitable traceless 
tensor field depending on the solutions and their derivatives. Similar estimates have been 
used by Gidas and Spruck [14] and Serrin and Zou [28] in the subcritical case. In this 
paper we adopt a similar approach; the starting point in the proof of our classification 
results is the key integral estimate in Corollary 2.4 which in turn is obtained adapting 
arguments in [28] to the critical case.

One of the nice features of our approach is that it can be quite easily extended to the 
Riemannian setting, as it was shown in the case p = 2 in [5]. We review all the needed 
steps in order to adapt our arguments to the case of a Riemannian manifold (Mn, g) in 
the Appendix A, where we sketch the proof of the following:

Theorem 1.8. Let u be a positive weak solution with regularity (2.5)–(2.3) on a complete 
non-compact Riemannian manifold (Mn, g) such that

(i) Ric ≥ 0, if 1 < p < 2, or
(ii) Sec ≥ 0, if 2 < p < n.

Then, under the hypotheses of Theorems 1.1-1.2-1.3-1.4, (Mn, g) is isometric to Rn with 
the Euclidean metric and u(x) = Uλ,x0(x) for some λ > 0 and x0 ∈ Rn.

The paper is organized as follows: in Section 2 we collect some useful preliminary re-
sults that will be needed in the proof of our main theorems, in particular in Corollary 2.4
we prove a key integral estimate that will be the starting point in the proofs of the main 
results; in Section 3 we prove the sharp gradient estimate in Proposition 1.7; in Section 4
we give the proof of Theorem 1.1; in Section 5 we show Theorems 1.3 and 1.4. Finally, 
in Appendix A we discuss the generalizations to the Riemannian setting.

Added note

After this paper was submitted, further developments on this problem appeared in 
the preprints [23] and [33], which were uploaded on the arXiv.
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2. Preliminaries

2.1. The key integral estimate

In this part we collect some well-known facts about equation (1.1): the definition of 
weak solutions and of sub/super-solutions to (1.1) and the regularity theory related to 
the p-Laplace equation. Moreover we show the main integral estimate that we are going 
to use to prove our rigidity results.

Definition 2.1. A weak solution of (1.1) is a function u ∈ W 1,p
loc (Rn) ∩L∞

loc(Rn) such that
∫
Rn

|∇u|p−2〈∇u,∇ψ〉 −
∫
Rn

up∗−1ψ = 0 ∀ψ ∈ W 1,p
0 (Rn),

where W 1,p
0 (Rn) denotes the set of compactly supported functions of W 1,p(Rn).

Moreover, a weak subsolution of (1.1) is a function u ∈ W 1,p
loc (Rn) ∩ L∞

loc(Rn) such 
that ∫

Rn

|∇u|p−2〈∇u,∇ψ〉 −
∫
Rn

up∗−1ψ ≤ 0 ∀ψ ∈ W 1,p
0 (Rn) ,

such that ψ is non-negative. Finally, u ∈ W 1,p
loc (Rn) ∩ L∞

loc(Rn) is a weak supersolution 
of (1.1) if the opposite inequality holds.

Thanks to the regularity theory in [2] (see Theorems 1.1 and 1.4) we have that any 
weak solution of (1.1) satisfies

u ∈ W 2,2
loc (Rn \ Ωcr) ∩ C1,α

loc (Rn), (2.1)

for some α ∈ (0, 1) and, in addition,

|∇u|p−2∇u ∈ W 1,2
loc (Rn), (2.2)

and

|∇u|p−2∇2u ∈ L2
loc(Rn \ Ωcr), (2.3)

for all 1 < p < n, where

Ωcr = {x ∈ Rn | ∇u(x) = 0}.

We note that by a bootstrap argument, any weak solution is actually C∞ on Ωc
cr. Since 

u > 0 in Rn it is easy to see that Ωcr has zero measure (see e.g. [2]). In particular (see 
also equation (10) in [2])
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|∇u|p−2∇2u ∈ L2
loc(Rn). (2.4)

Moreover, if 1 < p ≤ 2 then

u ∈ W 2,2
loc (Rn) ∩ C1,α

loc (Rn), (2.5)

for some α ∈ (0, 1).

Here, also in order to help the reader, we adopt the same notation as in [28, Chapter 
II]. If u is a positive solution of (1.1) we define the vector fields

u := |∇u|p−2∇u, v := u−n(p−1)
n−p |∇u|p−2∇u. (2.6)

It is then convenient to redefine ∇u and ∇v to be 0 on Ωcr, for 1 < p < n. Then we set

U :=
{
∇u, in Ωc

cr

0, in Ωcr,
V :=

{
∇v, in Ωc

cr

0, in Ωcr.
(2.7)

Moreover, we recall the definition of the traceless tensor

V̊ := V − trV
n

Idn

where Idn is the identity tensor.

Using this notation, we have the following fundamental estimate.

Proposition 2.2. Let 1 < p < n, p �= 2, and u be a positive weak solution of equation 
(1.1). Then for every 0 ≤ φ ∈ C∞

0 (Rn) we have
∫

u
(n−1)p
n−p |V̊|2φ ≤ −

∫
u

(n−1)p
n−p 〈v · V̊,∇φ〉

Remark 2.3. We remark that the result holds with the equality sign when p > 2. It also 
holds when p = 2 with the equality sign, replacing V with ∇v (see Proposition 6.2 in 
[28]).

Proof. In case p > 2 the result follows from Proposition 6.2 in [28]. When 1 < p < 2, due 
to problems of regularity, one can first use Proposition 7.1 in [28], where a truncation of 
|∇u| is introduced in order to deal with the critical set of u, and then pass to the limit 
as the relevant parameter ε tends to 0 to conclude. We provide here some details to help 
the reader.

We start with the case p > 2. Formula (6.16) in Proposition 6.2 in [28] with

a = −n(p− 1)
, b = p(n− 1)

, q = np − 1 (2.8)

n− p n− p n− p
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reads as ∫
(ubI + ψ)φ = −

∫
〈ω,∇φ〉.

Here

ω := u
(n−1)p
n−p

(
v ·V − 1

n
v trV

)
= u

(n−1)p
n−p v · V̊.

The expression v ·V is interpreted as the vector with components (v ·V)i = vjVij , for 
i = 1, . . . , n, where we use the Einstein convention of summation over repeated indices. 
Moreover

I := |V|2 − 1
n

tr(V)2 ≡ |V̊|2

and

ψ := ub+2a+q−1
(
A + qÂ

)
|∇u|p + Bub+2a−2|∇u|2p + C div

(
ub+2a−1|∇u|pu

)
≡ 0,

since by our choices of a, b, q one easily computes 
(
A + qÂ

)
= B = C = 0, using their 

explicit expressions in [28]. Some comments are in order: thanks to the regularity of u
stated in (2.2) and (2.4) we have

u ∈ W 1,2
loc (Rn), ubv ∈ W 1,2

loc (Rn), divv ∈ W 1,2
loc (Rn). (2.9)

In particular Lemma 6.4 and Lemma 6.5 in [28] apply and formula (6.17) in [28] holds. 
The rest of the proof of Proposition 6.2 in [28] goes through using (2.9). Thus the result 
immediately follows, with the equality sign.

The case 1 < p < 2 is more involved. For any fixed ε ∈ (0, 1), following [28] we set

|∇u|ε = max{|∇u|, ε}, uε = |∇u|p−2
ε ∇u, vε = u−n(p−1)

n−p uε, Vε = ∇vε.

We observe that (2.9) holds also in this case, therefore the proof of Proposition 7.1 in 
[28] goes through and we obtain

∫
(ubIε + ψε)φ = −

∫
〈ωε,∇φ〉 + O(ε2(p−1)), (2.10)

with

Iε = tr(VεV) − 1
n

trVε trV

ωε =
(
vε · V − 1vε trV

)
u

(n−1)p
n−p = vε · V̊u

(n−1)p
n−p
n
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ψε = ub+2a+q−1
(
Ā + qÂ

)
Γε + Ãub+2a−1|∇u|pdivuε

+ Bub+2a−2|∇u|pΓε + C div
(
ub+2a−1|∇u|puε

)
,

where

Γε = 〈uε,∇u〉 = |∇u|p−2
ε |∇u|2,

see formulas (7.6) and (6.15) in [28]. Using their explicit expressions provided in [28], 
one can easily see that choosing a, b, q as in (2.8) we get B = C = Ā + Ã + qÂ = 0.

Since u ∈ C1 and positive, uε and vε converge to u and v in L2
loc respectively. Since 

V and V̊ are in L2
loc and u ∈ C1 and positive, ωε converges to ω in L1

loc as ε tends to 0.
Moreover, Γε converges to |∇u|p in L2

loc and |∇u|pdivuε converges weakly in L2
loc to

|∇u|pdivu = −|∇u|puq,

see the proof of Proposition 7.2 in [28], since for 1 < p < 2 we have u ∈ W 2,2
loc (Rn). Then 

we obtain that ψε converges weakly to 0 in L2
loc as ε tends to 0.

Finally we consider the term Iε. Let

Ωε = {x ∈ Rn | 0 < |∇u| < ε},

then Iε = I ≥ 0 almost everywhere on Ωc
ε and Iε = I = 0 on Ωcr. Thus

∫
φubIε =

∫
Ωc

ε

φubI +
∫
Ωε

φubIε.

By formula (7.22) in [28] we have

lim inf
ε→0

∫
Ωε

φubIε ≥ 0,

while by the monotone convergence theorem we conclude that

lim
ε→0

∫
Ωc

ε

φubI =
∫

φubI.

Passing to the limit as ε tends to 0 in (2.10) we have
∫

ubIφ ≤ −
∫
〈ω,∇φ〉,

which is the desired inequality. �
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An easy consequence of the previous proposition is the following key integral estimate, 
from which we will deduce our main rigidity results.

Corollary 2.4. Let 1 < p < n, p �= 2, and u be a positive weak solution of equation (1.1). 
Then for every 0 ≤ η ∈ C∞

0 (Rn) and l ≥ 2 we have

∫
u

(n−1)p
n−p |V̊|2ηl ≤ C

∫
u

(2−p)n−p
n−p |∇u|2(p−1)|∇η|2ηl−2

and

∫
u

(n−1)p
n−p |V̊|2ηl ≤ C

⎛
⎜⎝ ∫

supp|∇η|

u
(n−1)p
n−p |V̊|2ηl

⎞
⎟⎠

1
2 (∫

u
(2−p)n−p

n−p |∇u|2(p−1)|∇η|2ηl−2
) 1

2

Proof. We consider φ = ηl in Proposition 2.2. Using Cauchy-Schwarz and Young’s in-
equalities and the definition of v we get

∫
u

(n−1)p
n−p |V̊|2ηl ≤ l

∫
u|V̊||∇u|p−1|∇η|ηl−1

≤ 1
2

∫
u

(n−1)p
n−p |V̊|2ηl + C

∫
u

(2−p)n−p
n−p |∇u|2(p−1)|∇η|2ηl−2

and the first inequality follows. The second part of the statement can be obtained simi-
larly, using Hölder’s inequality instead. �
Remark 2.5. A similar estimate appears in [5] in the case p = 2.

2.2. Some a priori estimates

We collect here some general lemmas concerning the behavior of positive solutions of 
the equation (1.1), that we will need in the proofs of our main theorems. The first is a 
lower bound for positive p-superharmonic functions.

Lemma 2.6 ([28, Lemma 2.3]). Let u be a positive weak solution of

Δpu ≤ 0

on Rn \K with K compact and 1 < p < n. Then there exist positive constants ρ, A > 0
such that

u(x) ≥ A
n−p
p−1

for all x ∈ Bc
ρ.
|x|
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The next lemma provides bounds for the kinetic energy in terms of the potential energy 
for positive weak subsolutions of equation (1.1). In particular, solutions u ∈ Lp∗(Rn)
automatically have finite energy.

Lemma 2.7. Let u be a positive weak solution of

−Δpu ≤ up∗−1 in Rn.

Then, for every ε > 0 there exists a constant C = C(n, p) > 0 such that for every R > 0

∫
B2R\BR

|∇u|p ≤ C
(
1 + ε−

p
n−p

) ∫
B5R/2\BR/2

up∗
+ Cε.

Moreover, there exists C = C(n, p) > 0 such that for every R > 0

∫
BR

|∇u|p ≤ C

∫
B2R

up∗
+ C

⎛
⎝ ∫
B2R

up∗

⎞
⎠

n−p
n

.

In particular, if u ∈ Lp∗(Rn), then |∇u| ∈ Lp(Rn), i.e. ERn(u) < ∞.

Remark 2.8. A estimate similar to the second part of the statement appears in the proof 
of Theorems 1.2 and 1.4 in [5] in the case p = 2.

Proof. Testing the weak formulation given in Definition 2.1 with uηq, with q > 1 and 
where η ∈ C∞

0 (Rn), we obtain

∫
u

np
n−p ηq ≥

∫
|∇u|pηq + q

∫
u|∇u|p−2〈∇u,∇η〉ηq−1 ,

i.e., from Cauchy-Schwarz and Young inequalities
∫

|∇u|pηq ≤
∫

u
np

n−p ηq + q

∫
u|∇u|p−1|∇η|ηq−1

≤
∫

u
np

n−p ηq + 1
2

∫
|∇u|pηq + C

∫
|∇η|pupηq−p (2.11)

≤ C
(
1 + ε−

p
n−p

)∫
u

np
n−p ηq + 1

2

∫
|∇u|pηq + ε

∫
|∇η|nηq−n,

for every ε > 0. Let q > n, for any R > 1, we choose η ∈ C∞
0 (Rn) such that η ≡ 1 in 

B2R \BR, η ≡ 0 in BR/2 ∪Bc
5R/2, 0 ≤ η ≤ 1 on Rn and η satisfies

|∇η|2 ≤ CR−2 in (B5R/2 \B2R) ∪ (BR \BR/2).
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Hence, for every ε > 0, we get∫
B2R\BR

|∇u|p ≤ C
(
1 + ε−

p
n−p

) ∫
B5R/2\BR/2

u
np

n−p + Cε,

which is the first part of the statement. In order to prove the second part, let q > p and 
for any R > 1 choose η ∈ C∞

0 (Rn) such that η ≡ 1 in BR, η ≡ 0 in Bc
2R, 0 ≤ η ≤ 1 on 

Rn and η satisfies

|∇η|2 ≤ CR−2 in B2R \BR.

From (2.11) using Hölder inequality we get
∫
BR

|∇u|p ≤ C

∫
B2R

u
np

n−p + C

Rp

∫
B2R\BR

up

≤ C

∫
B2R

u
np

n−p + C

Rp

⎛
⎝ ∫
B2R

u
np

n−p

⎞
⎠

n−p
n

|B2R \BR|
p
n

≤ C

∫
B2R

u
np

n−p + C

⎛
⎝ ∫
B2R

u
np

n−p

⎞
⎠

n−p
n

. �

Similar to the previous lemma, the following provides bounds for the potential energy 
in terms of the kinetic energy for positive weak supersolutions of the equation (1.1). In 
particular, solutions with ∇u ∈ Lp(Rn) automatically have finite energy. Since the proof 
is similar to the previous one, we will omit it.

Lemma 2.9. Let u be a positive weak solution of

−Δpu ≥ up∗−1 in Rn.

Then, for every ε > 0 there exists a constant C = C(n, p) > 0 such that for every R > 0∫
B2R\BR

up∗ ≤ C
(
1 + ε−

p
n(p−1)

) ∫
B5R/2\BR/2

|∇u|p + Cε.

Moreover, there exists C = C(n, p) > 0 such that for every R > 0

∫
BR

up∗ ≤ C

∫
B2R

|∇u|p + C

⎛
⎝ ∫
B2R

|∇u|p
⎞
⎠

n(p−1)
n(p−1)+p

.

In particular, if ∇u ∈ Lp(Rn), then u ∈ Lp∗(Rn), i.e. ERn(u) < ∞.
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Remark 2.10. As already observed in the introduction, if u is a positive weak solution of 
equation (1.1), by Lemmas 2.7 and 2.9 for every α > 0 one has

Epot
AR

(u) = O(Rα) ⇐⇒ EAR
(u) = O(Rα) ⇐⇒ Ekin

AR
(u) = O(Rα).

Indeed by Lemma 2.7 there exists C > 0 such that, for every R > 0, we have

Epot
AR

(u) ≤ EAR
(u) ≤ (C + 1)

∫
B5R/2\BR/2

up∗
+ 1

≤ (C + 1)
(
Epot

AR/2
(u) + Epot

AR
(u) + Epot

A2R
(u)

)
+ 1.

Similarly by Lemma 2.9 for every R > 0

Ekin
AR

(u) ≤ EAR
(u) ≤ (C + 1)

∫
B5R/2\BR/2

|∇u|p + 1

≤ (C + 1)
(
Ekin

AR/2
(u) + Ekin

AR
(u) + Ekin

A2R
(u)

)
+ 1.

Thus we conclude.

3. A sharp gradient estimate

In this section we will prove the sharp gradient estimate in Proposition 1.7. To the 
best of our knowledge this result is new and we believe that it may have independent 
interest.

We begin by defining the (second order part of the) linearized p-Laplace operator (see 
e.g. [16,30])

Pf (w) := |∇f |p−2Δw + (p− 2)|∇f |p−4∇2w(∇f,∇f).

Observe that Pf (f) = Δpf . The following inequality follows from the extension to p-
Laplace operator of the classical Bochner formula (see e.g. [16,30]).

Lemma 3.1. Given x ∈ Rn, a domain U containing x and a function f ∈ C3(U), if 
|∇f |(x) �= 0, at x it holds

1
p
Pf (|∇f |p) ≥ 1

n
(Δpf)2 + n

n− 1

(
1
n

Δpf − (p− 1)|∇f |p−4∇2f(∇f,∇f)
)2

+ |∇f |p−2
[
〈∇f,∇Δpf〉 − (p− 2) Δpf

|∇f |2∇
2f(∇f,∇f)

]

Proof. It follows combining the p-Bochner formula [30, Proposition 3.1] with the sharp 
estimate [30, Lemma 3.2]. �
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3.1. Proof of Proposition 1.7

Let u be a positive weak solution of equation (1.1) with 1 < p < n and define 
f := ua > 0, a ∈ R \{0}. By regularity we know that f is smooth where |∇f | > 0. Thus, 
where |∇f | > 0, we have

∇f = aua−1∇u

and,

Δpf = div (|∇f |p−2∇f)

= a|a|p−2div (u(a−1)(p−1)|∇u|p−2∇u)

= a|a|p−2u(a−1)(p−1)Δpu + a|a|p−2(a− 1)(p− 1)u(a−1)(p−1)−1|∇u|p

= −a|a|p−2u(a−1)(p−1)+q + a|a|p−2(a− 1)(p− 1)u(a−1)(p−1)−1|∇u|p

= −a|a|p−2f
(a−1)(p−1)+q

a + (a− 1)(p− 1)
a

|∇f |p
f

,

with q = p∗ − 1. Using Lemma 3.1, where |∇f | > 0, we obtain

1
p
Pf (|∇f |p) ≥ 1

n (Δpf)2 + n
n−1

(
1
n

Δpf − (p− 1)|∇f |p−4∇2f(∇f,∇f)
)2

+ |∇f |p−2
[
〈∇f,∇Δpf〉 − (p− 2) Δpf

|∇f |2∇
2f(∇f,∇f)

]

≥ 1
n−1 (Δpf)2 + |∇f |p−2〈∇f,∇Δpf〉

− 2(p−1)+(n−1)(p−2)
(n−1) |∇f |p−4Δpf∇2f(∇f,∇f)

= 1
n−1 (Δpf)2 + |∇f |p−2〈∇f,∇Δpf〉 + c1|∇f |−2Δpf〈∇|∇f |p,∇f〉

≥ (1−a)(p−1)[p−1+a(n−p)]
a2(n−1) f−2|∇f |2p − c2f

(a−1)(p−1)+q
a −1|∇f |p

+
(
c1|∇f |−2Δpf + c3f

−1|∇f |p−2) 〈∇|∇f |p,∇f〉

= (1−a)(p−1)[p−1+a(n−p)]
a2(n−1) f−2|∇f |2p − c2f

(a−1)(p−1)+q
a −1|∇f |p

+
(
c4f

(a−1)(p−1)+q
a |∇f |−2 + c5f

−1|∇f |p−2
)
〈∇|∇f |p,∇f〉

with

c1 = −2(p−1)+(n−1)(p−2)
p(n−1) , c2 = |a|p−2

[
n+1
n−1 (a− 1)(p− 1) + q

]
,

c3 = (a−1)(p−1)
a , c4 = −a|a|p−2c1, c5 = (a−1)(p−1)

a c1 + c3.

We choose a
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a := − p− 1
n− p

+ ε (3.1)

for a given 0 < ε < p−1
n−p . Then there exists λ = λ(ε) > 0 such that, where |∇f | > 0, we 

have

1
p
Pf (|∇f |p) ≥ λf−2|∇f |2p − c2f

(a−1)(p−1)+q
a −1|∇f |p (3.2)

+
(
c4f

(a−1)(p−1)+q
a |∇f |−2 + c5f

−1|∇f |p−2
)
〈∇|∇f |p,∇f〉.

If |∇f | achieves its maximum in B2R at some point x̄ ∈ B2R, we have

∇|∇f |p = 0 and Pf (|∇f |p) ≤ 0 at x̄

and (3.2) implies, at x̄,

0 ≥ f−2|∇f |p
(
λ|∇f |p − c2f

(a−1)(p−1)+q
a +1

)
= f−2|∇f |p

(
λ|∇f |p − c2u

(a−1)(p−1)+q+a
)
.

Moreover, since q + 1 = np
n−p we have

θ := (a− 1)(p− 1) + q + a = p

n− p
+ pε > 0. (3.3)

We obtain

sup
B2R

|∇f | ≤ C sup
B2R

u
θ
p ⇐⇒ |∇u(x)| ≤ C

(
sup
B2R

u
1

n−p+ε

)
u(x)

n−1
n−p−ε

for all x ∈ B2R.
On the other hand, if |∇f | does not achieve its maximum at some point x̄, we have to 

employ a cutoff argument. For a given 0 < δ < 1
2 there exist nonnegative cutoff functions 

φ = φ(|x|) with φ ≡ 1 on BR, φ ≡ 0 on Bc
2R, 0 ≤ φ ≤ 1 on Rn and such that

|∇φ| ≤ C

R
φ1−δ, |∇2φ| ≤ C

R2φ
1−2δ, (3.4)

on B2R \BR for some C > 0.2 Let

H := φ|∇f |p

and x̄ be a maximum point of H. We can assume that φ(x̄) > 0 and |∇f |(x̄) > 0. At x̄
we have

2 We observe that such cutoff functions can be obtained setting φ(x) = ψ
(

|x|
R

)1/δ
, where ψ ∈ C2([0, ∞))

is such that ψ ≡ 1 in [0, 1), ψ ≡ 0 in [2, ∞) and 0 ≤ ψ ≤ 1.
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∇H = 0, PfH ≤ 0,

Therefore, at x̄, we have

∇H = 0 ⇐⇒ ∇|∇f |p = −φ−2H∇φ. (3.5)

Moreover, using (3.5), we have

∇i∇jH = φ−1H∇i∇jφ− 2φ−2H∇iφ∇jφ + φ∇i∇j |∇f |p

and thus

ΔH = φ−1HΔφ− 2φ−2H|∇φ|2 + φΔ|∇f |p.

Using the definition of Pf , at x̄ we obtain

0 ≥ |∇f |4−pPfH

= |∇f |2φ−2 (φΔφ− 2|∇φ|2
)
H + φ|∇f |2Δ|∇f |p

+ (p− 2)φ−2 [φ∇2φ(∇f,∇f)H − 2〈∇φ,∇f〉2H + φ3∇2|∇f |p(∇f,∇f)
]

≥ φ|∇f |4−pPf |∇f |p − C

R2φ
−2δ|∇f |2H,

i.e.

0 ≥ φ1+2δPf |∇f |p − C

R2φ
− p−2

p H
2(p−1)

p . (3.6)

From (3.2), we have

1
p
Pf (|∇f |p) ≥ λf−2φ−2H2 − c2f

−2uθφ−1H

−
(
c4f

−1uθ|∇f |−2 + c5f
−1|∇f |p−2)φ−2〈∇φ,∇f〉H,

where θ > 0 is defined in (3.3). We get

1
p
Pf (|∇f |p) ≥ λf−2φ−2H2 − Cf−2uθφ−1H − C

R
f−1uθφ−1−δ+ 1

pH
p−1
p

− C

R
f−1φ−1−δ− p−1

p H
2p−1

p .

Using Lemma 2.6, on B2R we have

f = ua ≤ CR−an−p
p−1 = CR1−εn−p

p−1 ⇐⇒ − 1 ≥ −CR−εn−p
p−1
R f
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Therefore

1
p
Pf (|∇f |p) ≥ f−2(λφ−2H2 − Cφ−1uθH − Cφ−1−δ+ 1

puθR−εn−p
p−1 H

p−1
p

− Cφ−1−δ− p−1
p R−εn−p

p−1 H
2p−1

p
)
.

Using (3.6) we obtain

0 ≥ λφ−2H2 − Cφ−1uθH − Cφ−1−δ+ 1
puθR−εn−p

p−1 H
p−1
p

− Cφ−1−δ− p−1
p R−εn−p

p−1 H
2p−1

p − Cφ−1−2δ− p−2
p R−2εn−p

p−1 H
2(p−1)

p .

Now, choosing δ < min{ 1
p , 

1
2}, since 0 ≤ φ ≤ 1, at x̄ we obtain

0 ≥ λH2 − CuθH − CuθR−εn−p
p−1 H

p−1
p − CR−εn−p

p−1 H
2p−1

p − CR−2εn−p
p−1 H

2(p−1)
p

≥ λ

2H
2 − C

(
u2θ + R−2ε p(n−p)

p−1

)
,

where we used Young’s inequality.3 This clearly implies

H ≤ H(x̄) ≤ C
(
uθ(x̄) + R−ε p(n−p)

p−1

)
on B2R

for every R > 0, and in particular

|∇f |p ≤ C

(
sup
B2R

uθ + R−ε p(n−p)
p−1

)
on BR,

i.e.

|∇u| ≤ C

(
sup
B2R

u
1

n−p+ε + R−εn−p
p−1

)
u

n−1
n−p−ε on BR

which is the thesis. �
In case u is controlled by a power of the distance at infinity, one can obtain the 

following point-wise estimate on the gradient of u in terms of u. In [17, Corollary 2.2]
the authors obtained a logarithmic gradient estimate in case p = 2.

3 We remark that on the third term uθR
−ε n−p

p−1 H
p−1
p we used the following generalization of the classical 

Young’s inequality:

abc ≤ εa
r + k1(ε)bs + k2(ε)ct ,

for all a, b, c ≥ 0, ε > 0 and where r, s, t > 1 are such that 1
r + 1

s + 1
t = 1.
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Corollary 3.2. Let u be a positive weak solution of equation (1.1) with 1 < p < n. Assume

u(x) ≤ C|x|α

for all x ∈ Bc
1, for some α ∈ R. Then, for every 0 < ε < p−1

n−p it holds

|∇u(x)| ≤ C

(
|x|

(
1

n−p+ε
)
α + |x|−εn−p

p−1

)
u(x)

n−1
n−p−ε

for some C = C(n, p, ε, α) > 0, for every x ∈ Bc
4.

Proof. It is sufficient to apply Proposition 1.7 on B|x|/4(x) at the point x. �
4. Rigidity with energy control

In this section we prove Theorem 1.1.

4.1. Proof of Theorem 1.1 (I)

Let u be a positive weak solution of equation (1.1) with 1 < p ≤ 2n
n+1 . From Corol-

lary 2.4 with l = 2 we have∫
u

(n−1)p
n−p |V̊|2η2 ≤ C

∫
u

(2−p)n−p
n−p |∇u|2(p−1)|∇η|2, (4.1)

for every η ∈ C∞
0 (Rn) with η ≥ 0. For any R > 1, we choose η ∈ C∞

0 (Rn) such that 
η ≡ 1 in BR, η ≡ 0 in Bc

2R, 0 ≤ η ≤ 1 on Rn and η satisfies

|∇η|2 ≤ CR−2 in AR = B2R \BR.

We show that the integral on the righthand side of (4.1) is uniformly bounded in R. 
Since p ≤ 2n

n+1 < 2, we have

(2 − p)n− p

n− p
≥ 0 and 2(p− 1) < p.

If 1 < p < 2n
n+1 , using Hölder inequality we obtain

∫
u

(2−p)n−p
n−p |∇u|2(p−1)|∇η|2 ≤ C

R2

⎛
⎝∫
AR

up∗

⎞
⎠

(2−p)n−p
np

⎛
⎝∫
AR

|∇u|p
⎞
⎠

2(p−1)
p

|AR|
1
n

≤ C

R
Epot

AR
(u)

(2−p)n−p
np Ekin

AR
(u)

2(p−1)
p

≤ C

R
EAR

(u)
n−1
n .
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If p = 2n
n+1 , similarly we have

∫
u

(2−p)n−p
n−p |∇u|2(p−1)|∇η|2 =

∫
|∇u|

2(n−1)
n+1 |∇η|2

≤ C

R2

⎛
⎝∫
AR

|∇u| 2n
n+1

⎞
⎠

n−1
n

|AR|
1
n

≤ C

R
Ekin

AR
(u)

n−1
n

≤ C

R
EAR

(u)
n−1
n .

Thanks to the energy assumptions, in both cases we have that the righthand side of 
(4.1) is uniformly bounded in R. Hence

∫
Rn

u
(n−1)p
n−p |V̊|2 < ∞,

and by the second inequality in Corollary 2.4, passing to the limit as R tends to infinity, 
we obtain ∫

Rn

u
(n−1)p
n−p |V̊|2 = 0,

i.e.

V̊ = ∇v − divv
n

Idn ≡ 0 in Ωc
cr. (4.2)

Let Ω0 ⊆ Ωc
cr be a connected component of Ωc

cr. Since 0 < u ∈ C1,α
loc (Rn) then

v = u− p
n−p ∈ C1,α

loc (Rn).

Since

v = −
(
n− p

p

)p−1

|∇v|p−2∇v

we get

divv = −
(
n− p

p

)p−1

Δpv

= u−n(p−1)
n−p Δpu− n(p− 1)

u− p(n−1)
n−p |∇u|p
n− p
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= −u
p

n−p − n(p− 1)
n− p

u− p(n−1)
n−p |∇u|p ∈ C0,α

loc (Rn).

By standard elliptic regularity, we have v ∈ C2,α
loc (Ω0), u ∈ C2,α(Ω0) and then divv ∈

C1,α
loc (Ω0). Differentiating (4.2), we get

∂i (divv) = n∂i (divv) .

Therefore divv = const on Ω0 and thus v = C(x − x0), for some C ∈ R and some 
x0 ∈ Rn. Thus

v = C1 + C2|x− x0|
p

p−1

on Ω0, for some C1, C2 > 0. Then u(x) = Uλ,x0(x) on Ω0 for some λ > 0 and x0 ∈ Rn. 
Since the argument above holds whenever ∇u �= 0, we must have Ω0 = Rn \ {x0} and 
the result follows.

4.2. Proof of Theorem 1.1 (ii)

Let u be a positive weak solution of equation (1.1) with 2n
n+1 < p < 2. From Corol-

lary 2.4 with l = 2 we have∫
u

(n−1)p
n−p |V̊|2η2 ≤ C

∫
u

(2−p)n−p
n−p |∇u|2(p−1)|∇η|2. (4.3)

We choose the same cutoff functions as in (i). Since 2n
n+1 < p < 2, we have

(2 − p)n− p

n− p
< 0 and 2(p− 1) < p.

Thanks to Lemma 2.6 we have u ≥ CR−n−p
p−1 on AR and using Hölder inequality we get

∫
u

(2−p)n−p
n−p |∇u|2(p−1)|∇η|2 ≤ CR− (n−1)(2−p)

p−1

⎛
⎝∫
AR

|∇u|p
⎞
⎠

2(p−1)
p

|AR|
2−p
p

≤ CR− (n−p)(2−p)
p(p−1) Ekin

AR
(u)

2(p−1)
p

≤ CR− (n−p)(2−p)
p(p−1) EAR

(u)
2(p−1)

p

Thanks to the energy assumption, we have that the righthand side of (4.3) is uniformly 
bounded in R. Hence ∫

Rn

u
(n−1)p
n−p |V̊|2 = 0,

and the conclusion follows as in the proof of Theorem 1.1 (i).
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4.3. Proof of Theorem 1.1 (iii)

Let u be a positive weak solution of equation (1.1) with 2 < p < n and assume

u(x) ≤ C|x|α,

as |x| → ∞ for some α ≥ 0. From Corollary 2.4 with l = 2 we have

∫
u

(n−1)p
n−p |V̊|2η2 ≤ C

∫
u

(2−p)n−p
n−p |∇u|2(p−1)|∇η|2. (4.4)

We choose the same cutoff functions as in (i). We have

∫
u

(2−p)n−p
n−p |∇u|2(p−1)|∇η|2 =

∫
u

(2−p)n−p
n−p |∇u|θ|∇u|2(p−1)−θ|∇η|2

≤ CR

(
1

n−p+ε
)
αθ

∫
u

(2−p)n−p+θ(n−1)−ε(n−p)θ
n−p |∇u|2(p−1)−θ|∇η|2,

for every θ > 0 and every ε > 0 small enough, where we used the gradient estimate in 
Corollary 3.2. We assume

p− 2 < θ < 2(p− 1) and θ >
(p− 2)n + p

n− 1 − ε(n− p)

and we apply Hölder inequality to obtain
∫

u
(2−p)n−p

n−p |∇u|2(p−1)|∇η|2

≤ CR

(
1

n−p+ε
)
αθ−2

⎛
⎝∫
AR

up∗

⎞
⎠

θ(n−1)−(p−2)n−p−ε(n−p)θ
np

⎛
⎝∫
AR

|∇u|p
⎞
⎠

2(p−1)−θ
p

|AR|
p+θ+ε(n−p)θ

np

≤ CR

(
1

n−p+ε
)
αθ−1+ θ+ε(n−p)θ

p Epot
AR

(u)
θ(n−1)−(p−2)n−p−ε(n−p)θ

np Ekin
AR

(u)
2(p−1)−θ

p

≤ CR

(
1

n−p+ε
)
αθ−1+ θ+ε(n−p)θ

p EAR
(u)

np−p−θ−ε(n−p)θ
np

Under our assumptions, EAR
(u) ≤ CRk for some k > 0. Then

∫
u

(2−p)n−p
n−p |∇u|2(p−1)|∇η|2 ≤ CR

(
1

n−p+ε
)
αθ−1+ θ+ε(n−p)θ

p +k
(

np−p−θ−ε(n−p)θ
np

)
.

Since p − 2 < (p−2)n+p
n−1−ε(n−p) < 2(p − 1), by choosing θ close to (p−2)n+p

n−1−ε(n−p) and ε close to 0, 
thanks to the energy assumption, we have that the righthand side of (4.4) is uniformly 
bounded in R. Hence
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∫
Rn

u
(n−1)p
n−p |V̊|2 = 0,

and the conclusion follows as in the proof of Theorem 1.1 (i).

5. Rigidity with control at infinity

In this section we prove Theorems 1.3 and 1.4. We start by proving the following weak 
energy estimate which shows that a weighted energy has controlled growth on balls.

Lemma 5.1. Let u be a positive weak solution of equation (1.1) for some 1 < p < n and 
let t < −1. Then, for every R > 1, we have

∫
BR

u
np+t(n−p)

n−p +
∫
BR

ut|∇u|p ≤ CRβ ,

for some C = C(n, p, t) > 0 and

β :=
{
− t(n−p)

p t + p > 0
− (t+1)(n−p)

p−1 t + p ≤ 0.

Proof. We choose η ∈ C∞
0 (Rn) be such that η ≡ 1 in BR, η ≡ 0 in Bc

2R, 0 ≤ η ≤ 1 on 
Rn and η satisfies

|∇η|2 ≤ CR−2 in AR = B2R \BR.

Testing the weak formulation given in 2.1 with ut+1ηl, for l sufficiently large, we obtain

−
∫

u
np+t(n−p)

n−p ηl = −(t + 1)
∫

ut|∇u|pηl − l

∫
ut+1|∇u|p−2〈∇u,∇η〉ηl−1

≥ |t + 1|
∫

ut|∇u|pηl − l

∫
ut+1|∇u|p−1|∇η|ηl−1

If t + p > 0, we get

−
∫

u
np+t(n−p)

n−p ηl ≥ |t + 1|
∫

ut|∇u|pηl − ε

∫
u

np+t(n−p)
n−p ηl − ε

∫
ut|∇u|pηl

− Cε

∫
|∇η|

np+t(n−p)
p ηl−

np+t(n−p)
p

≥ (|t + 1| − ε)
∫

ut|∇u|pηl − ε

∫
u

np+t(n−p)
n−p ηl − CεR

−np+t(n−p)
p |B2R|
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for some ε > 0, where we used Cauchy-Schwarz and Young’s inequalities.4 Choosing ε
small enough, we conclude.

On the other hand, if t + p ≤ 0, we get

−
∫

u
np+t(n−p)

n−p ηl ≥ |t + 1|
∫

ut|∇u|pηl − ε

∫
ut|∇u|pηl − Cε

∫
ut+p|∇η|pηl−p

≥ (|t + 1| − ε)
∫

ut|∇u|pηl − CεR
− (t+p)(n−p)

p−1 −p+n

≥ (|t + 1| − ε)
∫

ut|∇u|pηl − CεR
− (t+1)(n−p)

p−1

for some ε > 0, where we used Lemma 2.6. Choosing ε small enough, we conclude. �
5.1. Proof of Theorems 1.2 and 1.3

Let u be a positive weak solution of equation (1.1) with 1 < p < 2 and let γ ≥ 0. Let 
η as in the proof of the previous lemma. From Corollary 2.4 with l = 2 we have

∫
u

(n−1)p
n−p |V̊|2η2 ≤ C

∫
u

(2−p)n−p
n−p |∇u|2(p−1)|∇η|2. (5.1)

We choose η ∈ C∞
0 (Rn) be such that η ≡ 1 in BR, η ≡ 0 in Bc

2R, 0 ≤ η ≤ 1 on Rn and 
η satisfies

|∇η|2 ≤ CR−2 in AR = B2R \BR.

Since p < 2, then 2(p − 1) < p and, by Hölder inequality we obtain

∫
u

(2−p)n−p
n−p |∇u|2(p−1)|∇η|2

≤ sup
AR

uγ

∫
AR

u
(2−p)n−p

n−p −γ |∇u|2(p−1)|∇η|2

≤ 1
R2 sup

AR

uγ

∫
AR

u
(2−p)n−p

n−p −γ− 2t(p−1)
p

(
ut|∇u|p

) 2(p−1)
p

4 We remark that on the third term ut+1|∇u|p−1|∇η|ηl−1 we used the following generalization of the 
classical Young’s inequality:

abc ≤ εa
r + εb

s + k(ε)ct ,

for all a, b, c ≥ 0, ε > 0 and where r, s, t > 1 are such that 1
r + 1

s + 1
t = 1.



26 G. Catino et al. / Advances in Mathematics 433 (2023) 109331
≤ 1
R2 sup

AR

uγ

⎛
⎝∫
AR

ut|∇u|p
⎞
⎠

2(p−1)
p

⎛
⎝∫
AR

u
(2−p)np−p2−γp(n−p)−2t(p−1)(n−p)

(n−p)(2−p)

⎞
⎠

2−p
p

.

We choose

t = t̄ := − p

n− p
− γ

in order to have

(2 − p)np− p2 − γp(n− p) − 2t̄(p− 1)(n− p)
(n− p)(2 − p) = np + t̄(n− p)

n− p
.

We observe that

t̄ < −1 ⇐⇒ (γ − 2)p < (γ − 1)n. (5.2)

Then, from Lemma 5.1, we obtain

∫
u

(2−p)n−p
n−p |∇u|2(p−1)|∇η|2 ≤ C

R2 sup
AR

uγ

⎛
⎝∫
AR

ut̄|∇u|p
⎞
⎠

2(p−1)
p

⎛
⎝∫
AR

u
np+t̄(n−p)

n−p

⎞
⎠

2−p
p

≤ C sup
AR

uγRβ−2. (5.3)

5.2. Proof of Theorem 1.2 (i)

Let n = 2, 1 < p < 2 and choose γ = 0. In particular (5.2) is satisfied and t̄ + p =
−p(p−1)

2−p < 0. Then, β = 2 and from (5.3) we get
∫

u
4−3p
2−p |∇u|2(p−1)|∇η|2 ≤ C,

for every R > 0. Hence, arguing as in the proof of Theorem 1.1 (i), from Corollary 2.4
the conclusion follows.

5.3. Proof of Theorem 1.2 (ii)

Let n = 3. If 3
2 < p < 2 we again choose γ = 0. In particular (5.2) is satisfied and 

t̄ + p = p(2−p)
3−p > 0. Then, β = 1 and from (5.3) we get

∫
u

6−4p
3−p |∇u|2(p−1)|∇η|2 ≤ CR−1 −→ 0,

as R tends to ∞. Hence, arguing as in the proof of Theorem 1.1 (i), from Corollary 2.4
the conclusion follows.
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5.4. Proof of Theorem 1.3 (i)

If 1 < p ≤ 3
2 we assume

u(x) ≤ C|x|α,

as |x| → ∞, for some α < ᾱ := 3(p−1)(3−p)
p(3−2p) . If γ satisfies (5.2), from (5.3) we get

∫
u

6−4p
3−p |∇u|2(p−1)|∇η|2 ≤ CRβ−2+αγ .

We choose α and γ such that

{
(γ − 2)p < 3(γ − 1)
β − 2 + αγ ≤ 0

⇐⇒
{
γ > 3−2p

3−p

α ≤ 2−β
γ .

For γ close to 3−2p
3−p , we have t̄ + p close to p − 1 > 0. Then

β = 1 + γ(3 − p)
p

and α ≤ p(γ + 1) − 3γ
pγ

.

Since the right-hand side in the second inequality is decreasing in γ, it is sufficient to 
have

α <
3(p− 1)(3 − p)

p(3 − 2p) = ᾱ.

Letting R → ∞, from (5.1) we obtain
∫
Rn

u
2p

3−p |V̊|2 = 0,

and the conclusion follows as in the proof of Theorem 1.1 (i).

5.5. Proof of Theorem 1.3 (ii)

Let n ≥ 4, 1 < p < 2 and assume

u(x) ≤ C|x|α,

as |x| → ∞, for some α < ᾱ := (3p−n)(n−p)
p(n−2p) . If γ satisfies (5.2), from (5.3) we get

∫
u

(2−p)n−p
n−p |∇u|2(p−1)|∇η|2 ≤ CRβ−2+αγ .
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We choose α and γ such that
{

(γ − 2)p < n(γ − 1)
β − 2 + αγ ≤ 0

⇐⇒
{
γ > n−2p

n−p

α ≤ 2−β
γ .

For γ close to n−2p
n−p , we have t̄ + p close to p − 1 > 0. Then

β = 1 + γ(n− p)
p

and α ≤ p(γ + 1) − nγ

pγ
.

Since the right-hand side in the second inequality is decreasing in γ, it is sufficient to 
have

α <
(3p− n)(n− p)

p(n− 2p) = ᾱ.

Letting R → ∞, from (5.1) we obtain
∫
Rn

u
(n−1)p
n−p |V̊|2 = 0,

and the conclusion follows as in the proof of Theorem 1.1 (i).

5.6. Proof of Theorem 1.4

Let p > 2 and assume

u(x) ≤ C|x|α,

as |x| → ∞. We choose η ∈ C∞
0 (Rn) be such that η ≡ 1 in BR, η ≡ 0 in Bc

2R, 0 ≤ η ≤ 1
on Rn and η satisfies

|∇η|2 ≤ CR−2 in AR = B2R \BR.

Case 1: α ≥ 0. We have∫
u

(2−p)n−p
n−p |∇u|2(p−1)|∇η|2 =

∫
u

(2−p)n−p
n−p |∇u|θ|∇u|2(p−1)−θ|∇η|2

≤ C

R2 sup
AR

uγ

∫
u

(2−p)n−p−γ(n−p)
n−p |∇u|θ||∇u|2(p−1)−θ

≤ CR

(
1

n−p+ε
)
αθ−2 sup

AR

uγ

∫
u

(2−p)n−p−γ(n−p)+θ(n−1)−ε(n−p)θ
n−p |∇u|2(p−1)−θ

= CR

(
1

n−p+ε
)
αθ−2 sup

AR

uγ

∫
u

(2−p)n−p−γ(n−p)+θ(n−1)−ε(n−p)θ
n−p − t[2(p−1)−θ]

p
(
ut|∇u|p

) 2(p−1)−θ
p ,
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for every t ∈ R, θ > 0, γ ≥ 0 and every ε > 0 small enough, where we used the gradient 
estimate in Corollary 3.2 with α ≥ 0. We assume

p− 2 < θ < 2(p− 1) (5.4)

and we apply Hölder inequality to obtain
∫

u
(2−p)n−p

n−p |∇u|2(p−1)|∇η|2

≤ CR

(
1

n−p+ε
)
αθ−2 sup

AR

uγ

⎛
⎝∫
AR

u

{
(2−p)n−p−γ(n−p)+θ(n−1)−ε(n−p)θ

n−p − t[2(p−1)−θ]
p

}
p

2−p+θ

⎞
⎠

2−p+θ
p

·

·

⎛
⎝∫
AR

ut|∇u|p
⎞
⎠

2(p−1)−θ
p

.

We choose

t = t̄ := −p + θ + ε(n− p)θ
n− p

− γ

in order to have{
(2 − p)n− p− γ(n− p) + θ(n− 1) − ε(n− p)θ

n− p
− t̄[2(p− 1) − θ]

p

}
p

2 − p + θ

= np + t̄(n− p)
n− p

.

We observe that

t̄ < −1 ⇐⇒ (γ − 2)p < (γ − 1)n + θ + ε(n− p)θ. (5.5)

Then, from Lemma 5.1, we obtain
∫

u
(2−p)n−p

n−p |∇u|2(p−1)|∇η|2

≤ CR

(
1

n−p+ε
)
αθ−2 sup

AR

uγ

⎛
⎝∫
AR

ut̄|∇u|p
⎞
⎠

2(p−1)−θ
p

⎛
⎝∫
AR

u
np+t̄(n−p)

n−p

⎞
⎠

2−p+θ
p

≤ C sup
AR

uγR
β+

(
1

n−p+ε
)
αθ−2

≤ CR
β+

(
1

n−p+ε
)
αθ−2+αγ (5.6)
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We aim at finding θ and γ satisfying (5.4) and (5.5) such that

β +
(

1
n− p

+ ε

)
αθ − 2 + αγ ≤ 0. (5.7)

Case 1.1: If p ≥ n+2
3 , we choose θ close to p − 2, γ = 0 and ε > 0 small enough. Then 

t̄ + p is close to

−p2 + (n− 2)p + 2
n− p

If n+2
3 ≤ p < n−2+

√
n2−4n+12
2 := p̌, then t̄ + p > 0 and hence β = − t̄(n−p)

p . A simple 
computation shows that (5.7) is satisfied if

α <
2(n− p)
p(p− 2) =: α̂.

On the other hand, if p ≥ p̌, then t̄+ p < 0 and hence β = − (t̄+1)(n−p)
p−1 , which is close to 

3p−n−2
p−1 . Thus (5.7) is satisfied if

α <
(n− p)2

(p− 2)(p− 1) =: α̌.

Case 1.2: If 2 < p < n+2
3 , we choose again θ close to p − 2, γ close to n−3p+2

n−p and ε > 0
small enough. Then t̄ + p is close to p − 1 > 0 and hence β = − t̄(n−p)

p and it is close to 
n−p
p . Hence, in order to verify (5.7) it is sufficient to choose

α <
(3p− n)(n− p)

p(n− 2p) =: ᾱ.

In particular this case occurs only if n3 < p < n+2
3 .

Case 2: α < 0. We have
∫

u
(2−p)n−p

n−p |∇u|2(p−1)|∇η|2 =
∫

u
(2−p)n−p

n−p |∇u|θ|∇u|2(p−1)−θ|∇η|2

≤ C

R2 sup
AR

uγ

∫
u

(2−p)n−p−γ(n−p)
n−p |∇u|θ|∇u|2(p−1)−θ

≤ CR−2 sup
AR

uγ

∫
u

(2−p)n−p−γ(n−p)+θ(n−1)−ε(n−p)θ
n−p |∇u|2(p−1)−θ

= CR−2 sup
AR

uγ

∫
u

(2−p)n−p−γ(n−p)+θ(n−1)−ε(n−p)θ
n−p − t[2(p−1)−θ]

p
(
ut|∇u|p

) 2(p−1)−θ
p ,
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for every t ∈ R, θ > 0, γ ≥ 0 and every ε > 0 small enough, where we used the gradient 
estimate in Corollary 3.2 with α < 0. We assume

p− 2 < θ < 2(p− 1) (5.8)

and we apply Hölder inequality to obtain
∫

u
(2−p)n−p

n−p |∇u|2(p−1)|∇η|2

≤ CR−2 sup
AR

uγ

⎛
⎝∫
AR

u

{
(2−p)n−p−γ(n−p)+θ(n−1)−ε(n−p)θ

n−p − t[2(p−1)−θ]
p

}
p

2−p+θ

⎞
⎠

2−p+θ
p

·

·

⎛
⎝∫
AR

ut|∇u|p
⎞
⎠

2(p−1)−θ
p

.

We choose

t = t̄ := −p + θ + ε(n− p)θ
n− p

− γ

in order to have
{

(2 − p)n− p− γ(n− p) + θ(n− 1) − ε(n− p)θ
n− p

− t̄[2(p− 1) − θ]
p

}
p

2 − p + θ

= np + t̄(n− p)
n− p

.

We observe that

t̄ < −1 ⇐⇒ (γ − 2)p < (γ − 1)n + θ + ε(n− p)θ. (5.9)

Then, from Lemma 5.1, we obtain
∫

u
(2−p)n−p

n−p |∇u|2(p−1)|∇η|2

≤ CR−2 sup
AR

uγ

⎛
⎝∫
AR

ut̄|∇u|p
⎞
⎠

2(p−1)−θ
p

⎛
⎝∫
AR

u
np+t̄(n−p)

n−p

⎞
⎠

2−p+θ
p

≤ C sup
AR

uγRβ−2

≤ CRβ−2+αγ (5.10)
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We aim at finding θ and γ satisfying (5.8) and (5.9) such that

β − 2 + αγ < 0. (5.11)

Case 2.1: If p ≥ n+2
3 the choice θ close to p − 2, γ = 0 and ε > 0 small enough gives 

that β < 2 both if t̄ + p > 0 and if t̄ + p ≤ 0. Since α < 0, (5.11) is satisfied.

Case 2.2: If 2 < p < n+2
3 , we choose again θ close to p − 2, γ close to n−3p+2

n−p and ε > 0
small enough. Then t̄ + p is close to p − 1 > 0 and hence β = − t̄(n−p)

p and it is close to 
n−p
p . Hence a simple computation shows that, in order to verify (5.11), it is sufficient to 

choose

α <
(3p− n)(n− p)
p(n− 3p + 2) := α̃.

To conclude we observe that we have∫
u

(2−p)n−p
n−p |∇u|2(p−1)|∇η|2 ≤ CR−δ

for some δ > 0 if one of the assumptions

(i) n = 3, and 2 < p < 3 and α < α̌;
(ii) n = 4, and

2 < p < p̌ and α < α̂,

or

p̌ ≤ p < 4 and α < α̌;

(iii) n = 5 or n = 6, and

2 < p < n+2
3 and α < ᾱ,

or

n+2
3 ≤ p < p̌ and α < α̂,

or

p̌ ≤ p < n and α < α̌;

(iv) n ≥ 7 and

2 < p ≤ n and α < α̃,
3
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or

n
3 < p < n+2

3 and α < ᾱ,

or

n+2
3 ≤ p < p̌ and α < α̂,

or

p̌ ≤ p < n and α < α̌,

hold. Then letting R → ∞, from (5.1) we obtain
∫
Rn

u
(n−1)p
n−p |V̊|2 = 0,

and the conclusion follows as in the proof of Theorem 1.1 (i).
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Appendix A. Riemannian setting

In this Appendix we consider the case of a complete, non-compact (without boundary) 
Riemannian manifold (Mn, g) of dimension n ≥ 2. We will emphasize the main differences 
with respect to Euclidean case when dealing with the same issues.

We consider positive weak solutions of

Δpu + up∗−1 = 0 in Mn (A.1)

where Δp is the usual p-Laplace-Beltrami operator with respect to the metric g. More-
over, we denote with Ric and Sec the Ricci and the sectional curvatures of (Mn, g), 
respectively.

When Ric ≥ 0 equation (A.1) has been recently studied, in the semilinear case p = 2, 
in [5] and [17]; in particular, in [5] the authors prove that the only positive classical 
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solutions to (A.1) are given by the Aubin-Talenti bubbles (1.2) with p = 2 and the 
Riemannian manifold is isometric to the Euclidean space, provided n = 3 or u has finite 
energy or u satisfies suitable conditions at infinity. Furthermore, when the manifold is 
a Cartan-Hadamard manifold, i.e. complete and simply connected Riemannian manifold 
with non positive sectional curvature, in [21] the authors prove that all the positive 
energy minimizing solutions to (A.1) are given by the Aubin-Talenti bubbles (1.2) and 
the Riemannian manifold is isometric to the Euclidean space, assuming the validity of 
an optimal isoperimetric inequality on Mn.

In this appendix we deal with the quasilinear case, i.e. 1 < p < n, and we show that 
the analogue of Theorems 1.1-1.2-1.3-1.4 holds, provided that the Riemannian manifold 
(Mn, g) satisfies:

(i) Ric ≥ 0, if 1 < p < 2, or
(ii) Sec ≥ 0, if 2 < p < n.

Of course, if n = 2, both conditions are replaced by non-negativity of the scalar/Gauss 
curvature. The main differences with respect to the Euclidean case are the following:

• By assumption, we choose u to be a positive weak solution having the regularity 
given in (2.5)–(2.3).

• The estimate in Corollary 2.4 becomes the following

∫
u

(n−1)p
n−p |V̊|2ηl +

∫
u

(n−1)p
n−p Ric(v,v)ηl ≤ C

∫
u

(2−p)n−p
n−p |∇u|2(p−1)|∇η|2ηl−2 ,

(A.2)
the Ricci tensor appears when computing

div (v · ∇v) = ∇j(∇ivjvi) = ∇j∇ivjvi + ∇ivj∇jvi

= ∇i∇jvjvi − Ric(v,v) + |∇v|2

since ∇jvi is symmetric. This identity is used in the proof of Propositions 6.2 and 
7.1 in [28], which are used in our proof of Corollary 2.4.

• Let r(x) := dist(x, ̂x) be the geodesic distance from a fixed point x̂ ∈ M . Due to the 
presence of the curvature, when Ric ≥ 0 the Laplacian comparison implies that the 
function r−

n−p
p−1 is a weak p-subharmonic function, i.e. its p-Laplacian is non-negative. 

Hence, Lemma 2.6 holds true also in this setting.
• Lemma 2.7 and Lemma 2.9 still hold, provided

Vol(BR) ≤ CRn

for every R > 0, which is ensured by Bishop-Gromov volume comparison.
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• Concerning the Bocher formula in Lemma 3.1 we recall that from [30] we have

1
p
Pf (|∇f |p) ≥ 1

n
(Δpf)2 + n

n− 1

(
1
n

Δpf − (p− 1)|∇f |p−4∇2f(∇f,∇f)
)2

+ |∇f |p−2
[
〈∇f,∇Δpf〉 − (p− 2) Δpf

|∇f |2∇
2f(∇f,∇f)

]

+ |∇f |2(p−2)Ric(∇f,∇f) .

Thus, Lemma 3.1 still holds thanks to the condition Ric ≥ 0, which holds in particular 
when Sec ≥ 0. Indeed we have

1
p
Pf (|∇f |p)

≥ 1
n

(Δpf)2 + n

n− 1

(
1
n

Δpf − (p− 1)|∇f |p−4∇2f(∇f,∇f)
)2

(A.3)

+ |∇f |p−2
[
〈∇f,∇Δpf〉 − (p− 2) Δpf

|∇f |2∇
2f(∇f,∇f)

]
.

• Following the proof of the gradient estimate in Proposition 1.7 (in particular, the 
estimate above (3.6)), one can observe that the same arguments work if we can 
construct a family of smooth cut-off functions φ defined on B2R such that

|∇φ| ≤ C

R
φ1−δ, |∇f |2Δφ + (p− 2)∇2φ(∇f,∇f) ≥ − C

R2φ
1−2δ|∇f |2. (A.4)

Assume that (Mn, g) has Sec ≥ 0. Let r(x) := dist(x, ̂x) be the geodesic distance 
from a fixed point x̂ ∈ M and let ψ ∈ C2([0, ∞)) be such that ψ ≡ 1 in [0, 1), ψ ≡ 0
in [2, ∞), ψ′ ≤ 0 and 0 ≤ ψ ≤ 1. Since

∇2ψ(r) = ψ′∇2r + ψ′′dr ⊗ dr,

by standard Hessian comparison (see e.g. [24]) we know that, since the sectional 
curvatures are nonnegative, outside the cutlocus of x̂, one has

∇2r ≤ n− 1
r

gij ,

and thus the function ψ(r) satisfies ψ′ ≤ 0 and

|∇ψ(r)| ≤ C, |∇f |2Δψ + (p− 2)∇2ψ(∇f,∇f) ≥ −C

r
|∇f |2.

Therefore, the function φ(r) = ψ
(
r
R

)1/δ satisfies (A.4) (outside the cutlocus of x̂). 
To overcome the lack of regularity in the cutlocus of x̄ one can use the so called 
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Calabi trick. Therefore all the arguments in the proof of Proposition 1.7 go through, 
more explicitly we use (A.3) in place of Lemma 3.1 and the cutoff functions φ = φ(r)
satisfying (A.4) in place of the cutoff functions φ = φ(|x|) satisfying (3.4). Thus we 
obtain the following extension to the Riemannian setting:

Proposition A.1. Let (Mn, g) be a complete Riemannian manifold with nonnegative 
sectional curvature. Let u be a positive weak solution of equation (1.1) with 1 < p < n. 
Then, for every 0 < ε < p−1

n−p it holds

|∇u| ≤ C

(
sup

B2R(x0)
u

1
n−p+ε + R−εn−p

p−1

)
u

n−1
n−p−ε on BR(x0)

for some C = C(n, p, ε) > 0, for every R > 0 and every x0 ∈ Mn.

We explicitly note that this estimate is used only in the case 2 < p < n.

Remark A.2. Gradient estimates for positive p-harmonic functions have been ob-
tained in [16] and [34]. In particular in [34] the authors managed to avoid imposing 
conditions on the sectional curvature, using integral estimates based on a Moser iter-
ation argument, which only uses nonnegative Ricci curvature and first derivatives of 
the distance function. We expect that the same argument could work in our setting.

• In all the proofs of Theorems 1.1-1.2-1.3-1.4 we used the fact that volume of geodesic 
balls has at most Euclidean growth, which is guaranteed by our curvature assump-
tions (i) and (ii), as already observed.

• The final step in the proofs of Theorems 1.1-1.2-1.3-1.4, in the Riemannian setting, 
goes as follows. From (A.2), we obtain

∫
M

u
(n−1)p
n−p |V̊|2 +

∫
M

u
(n−1)p
n−p Ric(v,v) = 0

i.e.

V̊ = ∇v − divv
n

g ≡ 0 in Ωc
cr, Ric(v,v) ≡ 0 in M. (A.5)

Let Ω0 ⊆ Ωc
cr be a connected component of Ωc

cr. Arguing as in the proof of The-
orem 1.1, by elliptic regularity, we have divv ∈ C1,α

loc (Ω0). Differentiating the first 
identity in (A.5), we get

∇idivv = n∇j∇ivj = n∇idivv − Ricijvj = n∇idivv.

Therefore divv = const on Ω0. Hence, the vector field v is homotetic, i.e. it satisfies
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∇ivj + ∇jvi = λgij , λ ∈ R.

Therefore, by a classical result of Kobayashi [15], we have that Ω0 must be locally 
Euclidean and we conclude as in the proof of Theorem 1.1.
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