
1. Introduction
Tracers are typically employed in industrial (Dean et  al.,  2016; Huseby et  al.,  2015; Shen et  al.,  2017) and 
environmental (Solcova et al., 2022) settings to characterize attributes of subsurface systems (i.e., reservoirs/
aquifer) such as, for example, permeability, porosity, or parameters driving geochemical interactions at a scale 
of interest. These are chemical compounds that can be added to the fluids residing in the porous formation. The 
analysis of their migration across the system enables one to gain enhanced knowledge about the system function-
ing. Passive tracers migrate within the fluid phase in which they are injected (usually water, which is taken as a 
wetting phase in a typical subsurface multiphase flow setting) without any interaction with formation fluids and/
or geomaterials. Otherwise, a partitioning tracer is tailored to take advantage of its capability to move back and 
forth between wetting and non-wetting phases, the latter phase being typically oil. Due to this particular behav-
ior, inter-well tracer tests involving injection and recovery of partitioning tracers have been performed since the 
1970s to enhance our knowledge about important reservoir/aquifer characteristics (e.g., residual oil saturation and 
overall oil volume) that can favor optimal and sustainable use of subsurface energy resource (Allison et al., 1991; 
Tang, 1992). These tests are based on the simultaneous injection of several tracers, each associated with a given 
partition coefficient (defined as the ratio between the concentration of the tracer in the oil and in the water phase) 
at one or more injection wells and the subsequent monitoring of tracer concentrations at one or more observation 
wells. If the non-wetting phase is at residual saturation, passive (or non-partitioning) tracers remain in the wetting 
phase and are transported according to the velocity distribution therein. Otherwise, partitioning tracers can reach 
also the non-wetting phase due to diffusion processes. Therefore, partitioning tracer tests are often performed for 
the estimation of the residual oil saturation and volume to support enhanced oil recovery operations, eventually 
through unconventional approaches to increase energy production. Studies related to this technique can be found 
at the laboratory and field scales (see, e.g., Annable et al., 1998; Dean et al., 2016; Dwarakanath et al., 1999; 
Huseby et al., 2015; Jin et al., 1995, 1997, Shen et al., 2017). Laboratory scale studies are particularly critical to 
increase our knowledge of the underlying mechanisms. On one hand, they are key to enhance our ability to model 
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these in the presence of various sources of uncertainty that might hamper characterization of mass transport 
processes across natural porous media. On the other hand, the above-mentioned laboratory scale experiments 
are performed at the Darcy scale and the associated results cannot be transferred to different scales of interest 
without a proper upscaling. This is a crucial issue which is beyond the scope of the present contribution. In the 
above referenced studies the results of partitioning tracer tests are interpreted upon resting on models based 
on different types of analytical (or otherwise numerical) solutions of the advective dispersion equation (ADE) 
including a linear retardation term. A notable weak point of these studies is their reliance on simple analytical 
solutions that cannot be easily extended to interpret more complex situations arising from, for example, heteroge-
neous system parameters (i.e., velocity and dispersion coefficient) and/or considering three-dimensional settings. 
Moreover, estimates of model parameters in the above mentioned studies are typically assessed without consider-
ing uncertainty of available measurements and no information is provided about the uncertainty of the estimated 
parameters.

Random Walk (RW) particle tracking is an efficient and flexible Lagrangian method that is typically employed 
for the numerical solution of advective-dispersive transport in heterogeneous flow fields. In the RW approach the 
solute plume is represented by a set of noninteracting particles and solute concentration is assessed by evaluating 
the density distribution of these particles which migrate through the system due to advection and dispersion. Clas-
sical RW particle tracking schemes are based on the analogy between diffusion theory and stochastic processes 
relying on the strict equivalence between the Langevin equation, and the advection-dispersion equation (e.g., 
Delay et al., 2005; Kinzelbach, 1988; Salamon et al., 2006). For advection-dominated transport settings, the RW 
particle tracking approach is a well-established alternative for modeling subsurface transport with respect to the 
classical grid-based Eulerian methods that suffer from numerical diffusion. Moreover, based on the independence 
of each particle trajectory, the RW methodology is intrinsically adaptable to parallelization, thus yielding a signif-
icant advantage in terms of computational time. An example of a computational tool for the simulation of solute 
transport in groundwater systems particularly suitable for parallelization is proposed by Rizzo et al. (2019).

In some of the classical RW approaches, particles are displaced through an advective (deterministic) and a disper-
sive (stochastic) component. These take place at discrete time steps, with a variable spatial increment that depends 
on the local velocity and on the random noise associated with the dispersive component. Another approach to 
RW particle tracking considers a fixed spatial increment and a (variable) transition (or travel) time is evaluated 
for each particle and for each computational step. This approach is typically termed time domain random walk 
(TDRW; e.g., Banton et al., 1997; Delay et al., 2002; Dentz et al., 2012, James & Chrysikopoulos, 2001; Russian 
et al., 2016 and references therein). This approach is not affected by numerical dispersion if the spatial discretiza-
tion, Δ, fulfills condition Δ < 2 D/u where D and u denote the dispersion coefficient and the velocity magnitude, 
respectively.

In a similar context, Cvetkovic et al. (2004) and Painter et al. (2008) explicitly account for heterogeneous trap-
ping and correlations between transport parameters including an explicit expression (inverse Gaussian) for the 
random advective/dispersive arrival time. Recently, Sole-Mari et al. (2020) proposed an innovative particle track-
ing schemes that use kernel functions to allow particle interactions.

A key objective of this study is to provide an application of the formulation of the TDRW proposed by Dentz 
et al. (2012) and Russian et al. (2016) to include modeling of transport of partitioning tracers across a porous 
medium. We mimic the retardation effect displayed by partitioning versus non-partitioning tracers upon combin-
ing the TDRW scheme with a linear retardation component and a multirate mass transfer approach (e.g., Carrera 
et  al.,  1998; Dentz & Berkowitz,  2003; Haggerty & Gorelick,  1995). The latter is a particularly convenient 
framework as it describes transport in the presence of immobile zones in which the solute can be immobilized/
trapped for a certain amount of time. Our distinctive aims are then: (a) to present a TDRW modeling approach to 
characterize the behavior of partitioning tracers documented through available tests performed at the laboratory 
scale and (b) effectively embedding partitioning tracer data in a stochastic inverse modeling (or history match-
ing) framework. The latter is conducive to a probabilistic characterization of model parameters conditioned on 
available observation of state variable (tracer concentrations) and (eventually) information on some of the model 
parameters (e.g., partition coefficient) obtained through other types of experiments. In contrast to a deterministic 
model calibration framework, our approach has the additional benefit to enable one to assess the way uncer-
tainty associated with model parameters and concentration data propagates to target modeling goals, such as the 
estimate of residual oil saturation in the system, which is a critical information given by the use of partitioning 

Writing – review & editing: Emanuela 
Bianchi Janetti, Alberto Guadagnini, 
Monica Riva

 19447973, 2023, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022W

R
033387 by PO

L
IT

E
C

N
IC

O
 D

I M
IL

A
N

O
, W

iley O
nline L

ibrary on [10/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Water Resources Research

JANETTI ET AL.

10.1029/2022WR033387

3 of 16

tracers. The applicability and the performance of the proposed approach and ensuing operational framework are 
shown in an exemplary setting based on an extensive partitioning tracer data set (Dwarakanath et al., 1999).

2. Methodology
2.1. Transport Model

We consider an experimental scenario where a partitioning and a non-partitioning tracer are simultaneously intro-
duced at the bottom of a fully saturated column packed with a given porous medium. Tracer concentrations are 
measured at the outlet section (top) of the column. The system is characterized by the presence of an immobile 
fluid phase (e.g., oil, hereafter denoted with subscript o) trapped in the column at a given residual saturation, 
Sor, and a flowing phase (e.g., water, hereafter denoted with subscript w) at saturation Sw = 1 − Sor. Partitioning 
tracers tend to distribute between the mobile and immobile fluid phases. They are therefore subject to a delayed 
breakthrough at the column outlet with respect to the non-partitioning tracer.

We describe transport of a partitioning solute 𝐴𝐴 𝐴𝐴 by embedding retardation and trapping phenomena within the 
advection-dispersion equation, that is,

𝜕𝜕𝜕𝜕𝜂𝜂𝜂𝑤𝑤(𝐱𝐱𝜂 𝑡𝑡)

𝜕𝜕𝑡𝑡
+

𝑆𝑆𝑜𝑜𝑜𝑜

𝑆𝑆𝑤𝑤

𝜕𝜕𝜕𝜕𝜂𝜂𝜂𝑜𝑜(𝐱𝐱𝜂 𝑡𝑡)

𝜕𝜕𝑡𝑡
+ 𝐹𝐹𝑚𝑚(𝐱𝐱𝜂 𝑡𝑡) = −∇ ⋅

[

𝐯𝐯(𝐱𝐱)𝜕𝜕𝜂𝜂𝜂𝑤𝑤(𝐱𝐱𝜂 𝑡𝑡)
]

+ ∇ ⋅

[

𝐃𝐃(𝐱𝐱)∇𝜕𝜕𝜂𝜂𝜂𝑤𝑤(𝐱𝐱𝜂 𝑡𝑡)

]

𝜂 (1)

where cη,α is concentration of the partitioning tracer in fluid phase α (with α = w, o); v(x) is the fluid (e.g., water) 
velocity vector; and 𝐴𝐴 𝐃𝐃(𝐱𝐱) is the dispersion tensor. The sink/source term Fm represents the mass of solute that is 
apportioned between the two (mobile and immobile) phases. Assuming equilibrium, one can introduce the parti-
tion coefficient, 𝐴𝐴 𝐴𝐴𝜂𝜂 , quantifying the affinity of 𝐴𝐴 𝐴𝐴 to the trapped phase, as

𝐾𝐾𝜂𝜂 =
𝑐𝑐𝜂𝜂𝜂𝜂𝜂

𝑐𝑐𝜂𝜂𝜂𝜂𝜂
. (2)

Values of 𝐴𝐴 𝐴𝐴𝜂𝜂 are typically estimated through batch experiments. These are then used under flow-through condi-
tions to estimate the immobile phase saturation and volume starting from partitioning tracer breakthrough curves, 
BTCs (see, e.g., Jin et al., 1995). Making use of Equation 2, Equation 1 can be rewritten as

𝑅𝑅𝜂𝜂

𝜕𝜕𝜕𝜕𝜂𝜂𝜂𝑤𝑤(𝐱𝐱𝜂 𝑡𝑡)

𝜕𝜕𝑡𝑡
= −∇ ⋅

[

𝐯𝐯(𝐱𝐱)𝜕𝜕𝜂𝜂𝜂𝑤𝑤(𝐱𝐱𝜂 𝑡𝑡)
]

+ ∇ ⋅

[

𝐃𝐃(𝐱𝐱)∇𝜕𝜕𝜂𝜂𝜂𝑤𝑤(𝐱𝐱𝜂 𝑡𝑡)

]

− 𝐹𝐹𝑚𝑚; with𝑅𝑅𝜂𝜂 = 1 +𝐾𝐾𝜂𝜂

𝑆𝑆𝑜𝑜𝑜𝑜

𝑆𝑆𝑤𝑤

𝜂 (3)

𝐴𝐴 𝐴𝐴𝜂𝜂 being the retardation coefficient. Various approaches have been used to describe Fm. Here, we follow Haggerty 
et al. (2000) and conceptualize Fm as

𝐹𝐹𝑚𝑚 =

𝑡𝑡

∫
0

𝑑𝑑𝑡𝑡′𝜑𝜑
(

𝐱𝐱, 𝑡𝑡′
) 𝜕𝜕

𝜕𝜕𝑡𝑡
𝑐𝑐𝜂𝜂,𝜂𝜂

(

𝐱𝐱, 𝑡𝑡 − 𝑡𝑡′
)

, (4)

𝐴𝐴 𝐴𝐴 being the memory function. We solve the system of Equations 3 and 4 using a generalization of the TDRW 
approach (see, e.g., Carrera et  al.,  1998; Delay et  al.,  2002; Dentz et  al.,  2012; Haggerty & Gorelick,  1995; 
Russian et al., 2016). The tracer plume is discretized into Np particles (also denoted as random walkers) whose 
position is updated for Ns time steps encompassing the total temporal window analyzed. Particles are injected 
through the system and then moved from the centroid of voxel j, 𝐴𝐴 𝐱𝐱𝑗𝑗 , to the centroid of voxel i, 𝐴𝐴 𝐱𝐱𝑖𝑖 , assuming that 𝐴𝐴 𝐱𝐱𝑗𝑗 
and 𝐴𝐴 𝐱𝐱𝑖𝑖 are connected, according to

𝐱𝐱𝑖𝑖[𝑡𝑡(𝑛𝑛 + 1)] = 𝐱𝐱𝑗𝑗[𝑡𝑡(𝑛𝑛)] + ξ𝑖𝑖𝑗𝑗 ; 𝑡𝑡(𝑛𝑛 + 1) = 𝑡𝑡(𝑛𝑛) + Θ𝑗𝑗 ; Θ𝑗𝑗 = 𝜃𝜃𝑗𝑗 +

𝑛𝑛𝑇𝑇 𝑇𝑗𝑗
∑

𝑙𝑙=1

𝜗𝜗𝑗𝑗𝑙𝑙 with 𝑛𝑛 = 1𝑇 . . . 𝑇 𝑁𝑁𝑠𝑠. (5)

Here, the total travel time, 𝐴𝐴 Θ𝑗𝑗 , that a particle takes to migrate from 𝐴𝐴 𝐱𝐱𝑗𝑗 to 𝐴𝐴 𝐱𝐱𝑖𝑖 is given by the sum of (a) a transition 
time 𝐴𝐴 𝐴𝐴𝑗𝑗 associated with particle displacement across the mobile phase (hereafter denoted as mobile transition 
time) and (b) a total trapping time related to nT,j trapping events, 𝐴𝐴 𝐴𝐴𝑗𝑗𝑗𝑗 being the duration of the l-trapping event; 

𝐴𝐴 ξ𝑖𝑖𝑖𝑖 is a vector pointing from the centroid of voxel j to the centroid of voxel i, and only orthogonal transitions are 
allowed.
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The probability that a particle travels from xj to xi is termed transition probability, wij. It is evaluated as (e.g., 
Dentz et al., 2012)

𝑤𝑤𝑖𝑖𝑖𝑖 =
𝑏𝑏𝑖𝑖𝑖𝑖

∑

[𝑖𝑖𝑗𝑗]

𝑏𝑏𝑗𝑗𝑖𝑖
with

∑

𝑖𝑖𝑖𝑖

𝑤𝑤𝑖𝑖𝑖𝑖 = 1 and 𝑏𝑏𝑖𝑖𝑖𝑖 =
𝑆𝑆𝑖𝑖𝑖𝑖

𝑉𝑉𝑖𝑖𝑅𝑅𝜂𝜂

[

�̂�𝐷𝑖𝑖𝑖𝑖

|𝝃𝝃𝑖𝑖𝑖𝑖|
+

|𝑣𝑣𝑖𝑖𝑖𝑖|

2

(

𝑣𝑣𝑖𝑖𝑖𝑖

|𝑣𝑣𝑖𝑖𝑖𝑖|
+ 1

)

]

, (6)

where the notation 𝐴𝐴
∑

[𝑗𝑗𝑗𝑗]
 corresponds to the sum over all nearest neighbors of voxel i; 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 denotes the contact 

surface between voxels i and j; 𝐴𝐴 𝐴𝐴𝑗𝑗 is the volume associated with voxel j; 𝐴𝐴 �̂�𝐷𝑖𝑖𝑖𝑖 is the effective diffusion coefficient 
between voxels i and j (rendered through different types of formulations depending on the dimensionality of 
the system; e.g., Dentz et al., 2012; Noetinger & Estebenet, 2000); and vij represents the component along 𝐴𝐴 𝝃𝝃𝑖𝑖𝑖𝑖 
of velocity vj evaluated at 𝐴𝐴 𝐱𝐱𝑗𝑗 . Note that the first and second term in the formulation of 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 account for diffusion 
and advection, respectively. Accordingly, the advective component of 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 reduces to 𝐴𝐴 |𝑣𝑣𝑖𝑖𝑖𝑖| when voxel j is located 
downstream of voxel i and vanishes otherwise (i.e., when 𝐴𝐴 𝐱𝐱𝑗𝑗 is upstream of xi).

Following Russian et al. (2016), we treat the transition time 𝐴𝐴 𝐴𝐴𝑗𝑗 as a random variable distributed according to an 
exponential probability density function  (𝐴𝐴 𝐴𝐴𝜃𝜃𝑗𝑗 )

𝑝𝑝𝜃𝜃𝑗𝑗 (𝑡𝑡) =
𝑤𝑤𝑖𝑖𝑗𝑗

𝑏𝑏𝑖𝑖𝑗𝑗
exp

(

−
𝑤𝑤𝑖𝑖𝑗𝑗

𝑏𝑏𝑖𝑖𝑗𝑗
𝑡𝑡

)

. (7)

Trapping events occur at a rate 𝐴𝐴 𝐴𝐴𝑗𝑗 during a particle transition characterized by a mobile transition time 𝐴𝐴 𝐴𝐴𝑗𝑗 . The 
latter affects the number of trapping events nT,j that are drawn from the Poisson-distribution

𝑝𝑝𝑛𝑛𝑇𝑇 ,𝑗𝑗
(𝑛𝑛|𝜃𝜃𝑗𝑗) =

(𝜔𝜔𝑗𝑗𝜃𝜃𝑗𝑗)
𝑛𝑛

𝑛𝑛!
exp(−𝜔𝜔𝑗𝑗𝜃𝜃𝑗𝑗). (8)

In the following, we consider a constant trapping rate (i.e., 𝐴𝐴 𝐴𝐴𝑗𝑗 = 𝐴𝐴 ) and a 
trapping time 𝐴𝐴 𝐴𝐴𝑗𝑗𝑗𝑗 distributed according to a Pareto density function

���� (�) =

⎧

⎪

⎨

⎪

⎩

� ��

��+1
�� � ≥ �

0 �� � < �
 (9)

where 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴  are the shape and scale parameters of the distribution, respec-
tively. As shown by Benson and Meerschaert (2009), the memory function in 
Equation 4 can be related to the trapping time density (Equation 9)  as

𝑝𝑝𝜗𝜗𝑗𝑗𝑗𝑗 (𝑡𝑡) = −
1

𝜔𝜔

𝑑𝑑𝑑𝑑(𝑡𝑡)

𝑑𝑑𝑡𝑡
. (10)

Therefore, the use of Equation 9 corresponds to the widely used power law 
memory function, that is, 𝐴𝐴 𝐴𝐴(𝑡𝑡) = 𝜔𝜔𝜔𝜔𝛽𝛽𝑡𝑡−𝛽𝛽 (Haggerty et al., 2000). The work-
flow associated with the algorithm proposed to evaluate BTCs of a parti-
tioning tracer at a given cross section of the flow and transport domain is 
graphically sketched in Figure 1.

2.2. Model Calibration

Let Nc be the number of concentration data associated with tracer 𝐴𝐴 𝐴𝐴 in the water 
phase (w). These are collected in vector 𝐴𝐴 𝐜𝐜

∗
𝜂𝜂𝜂𝜂𝜂 (the symbol * is employed to denote 

experimental observations), that is, 𝐴𝐴 𝐜𝐜
∗
𝜂𝜂𝜂𝜂𝜂 =

[

𝑐𝑐∗𝜂𝜂𝜂𝜂𝜂1
𝜂 𝑐𝑐∗𝜂𝜂𝜂𝜂𝜂2

𝜂 ...𝜂 𝑐𝑐∗𝜂𝜂𝜂𝜂𝜂𝑁𝑁𝐶𝐶

]𝑇𝑇

 . We intro-

duce the vector of unknown TDRW model parameters 𝐴𝐴 𝐩𝐩 =
[

𝑆𝑆𝑜𝑜𝑜𝑜, 𝐾𝐾𝜂𝜂, 𝜔𝜔, 𝜔𝜔, 𝜔𝜔
]𝑇𝑇  

and the vector of model-based concentrations 𝐴𝐴 𝐜𝐜𝜂𝜂𝜂𝜂𝜂 =

[

𝑐𝑐𝜂𝜂𝜂𝜂𝜂1
𝜂 𝑐𝑐𝜂𝜂𝜂𝜂𝜂2

𝜂 ...𝜂 𝑐𝑐𝜂𝜂𝜂𝜂𝜂𝑁𝑁𝐶𝐶

]𝑇𝑇

 . 

As commonly assumed (e.g., Carrera & Neuman, 1986; Carrera et al., 2005; 
Chavent,  2010; Poeter & Hill,  1997; Tarantola,  2005), we consider errors 

Figure 1. Sketch of the workflow associated with the algorithm proposed to 
evaluate BTCs of a partitioning tracer at a given cross section.
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associated with concentration measurements to be uncorrelated. This renders a diagonal covariance matrix of 
concentration measurement errors, nonzero entries being equal to the observation error variance, 𝐴𝐴 𝐴𝐴2

𝜂𝜂𝜂𝜂𝜂𝑖𝑖
 (with 

i = 1, …, 𝐴𝐴 𝐴𝐴𝐶𝐶 ). Following Tellinghuisen (2009) and Bianchi Janetti et al. (2012), we set 𝐴𝐴 𝐴𝐴𝜂𝜂𝜂𝜂𝜂𝑖𝑖
= 𝐴𝐴0𝑐𝑐

∗
𝜂𝜂𝜂𝜂𝜂𝑖𝑖

 , where 𝐴𝐴 𝐴𝐴0 
is related to the accuracy of the experimental device. This is related to the observation that the standard deviation 
of concentration measurements is not constant and is proportional to the measured concentration. Estimates of 
model parameters can then be obtained by considering concentration data. The data set can also be complemented 
by additional information. Here, we embed in the analysis experimental information, 𝐴𝐴 𝐴𝐴∗

𝜂𝜂  , on the partition coef-
ficient 𝐴𝐴 𝐴𝐴𝜂𝜂 . These data are usually available on the basis of batch experiments and are affected by an observation 
error variance, 𝐴𝐴 𝐴𝐴2

𝐾𝐾
 . Note that 𝐴𝐴 𝐴𝐴𝜂𝜂 is included in the set of uncertain model parameters since batch experiments 

estimated values are not always representative of flow through conditions.

First, we determine Maximum Likelihood (ML) estimates of p, 𝐴𝐴 𝐴𝐴2

0
 , and 𝐴𝐴 𝐴𝐴2

𝐾𝐾
 (denoted as 𝐴𝐴 �̂�𝐩 , 𝐴𝐴 𝐴𝐴𝐴2

0
 , and 𝐴𝐴 𝐴𝐴𝐴2

𝐾𝐾
 , respectively) 

by minimizing of the Negative Log Likelihood criterion (NLL)

NLL =
𝐽𝐽

𝜎𝜎2

0

+𝑁𝑁𝐶𝐶 ln 𝜎𝜎2

0
+ ln 𝜎𝜎2

𝐾𝐾
+ 2

𝑁𝑁𝐶𝐶
∑

𝑖𝑖=1

ln 𝑐𝑐∗𝜂𝜂𝜂𝜂𝜂𝑖𝑖
+ (𝑁𝑁𝐶𝐶 + 1)ln 2𝜋𝜋𝜂 (11)

where

𝐽𝐽 =
[

𝐜𝐜
∗
𝜂𝜂𝜂𝜂𝜂 − 𝐜𝐜𝜂𝜂𝜂𝜂𝜂

]𝑇𝑇
𝚺𝚺

−𝟏𝟏
[

𝐜𝐜
∗
𝜂𝜂𝜂𝜂𝜂 − 𝐜𝐜𝜂𝜂𝜂𝜂𝜂

]

+ 𝜆𝜆
(

𝐾𝐾∗
𝜂𝜂 −𝐾𝐾𝜂𝜂

)2
with 𝜆𝜆 = 𝜎𝜎2

0
∕𝜎𝜎2

𝐾𝐾
. (12)

Here, 𝐴𝐴 𝚺𝚺 is a diagonal matrix of size 𝐴𝐴 𝐴𝐴𝐶𝐶  × 𝐴𝐴 𝐴𝐴𝐶𝐶 with entries 𝐴𝐴 Σ𝑖𝑖𝑖𝑖 =
(

𝑐𝑐∗𝜂𝜂𝜂𝜂𝜂𝑖𝑖

)2 and λ serves as a weight of the regulariza-
tion term associated with 𝐴𝐴 𝐴𝐴∗

𝜂𝜂  . Note that on the basis of Equation 3 if no information on the partition coefficient is 
available (which corresponds to disregarding the regularization term in Equation 12), one cannot estimate jointly 

𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜 and 𝐴𝐴 𝐴𝐴𝜂𝜂 but only the retardation factor. Hence, relying on available information about the partition coefficient 
(albeit typically stemming from batch tests) is critical to estimate both parameters.

Minimization of Equation 12 with respect to p, 𝐴𝐴 𝐴𝐴2

0
 , and 𝐴𝐴 𝐴𝐴2

𝐾𝐾
 is likely to be unstable (see Carrera & Neuman, 1986). 

Thus, we follow the procedure proposed by Carrera and Neuman (1986) and (a) fix the value of the regularization 
weight 𝐴𝐴 𝐴𝐴 ; (b) minimize J (Equation (12)) to obtain Jmin and a ML estimate of p, 𝐴𝐴 �̂�𝐩 ; (c) compute a ML estimate 
of 𝐴𝐴 𝐴𝐴2

0
 as 𝐴𝐴 𝐴𝐴𝐴2

0
= 𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚∕(𝑁𝑁𝑐𝑐 + 1) ; and (d) compute a ML estimate of 𝐴𝐴 𝐴𝐴2

𝐾𝐾
 as 𝐴𝐴 𝐴𝐴𝐴2

𝐾𝐾
= 𝐴𝐴2

0
∕𝜆𝜆 . Steps (b)–(d) are repeated for 

several values of the 𝐴𝐴 𝐴𝐴 until a minimum NLL (Equation 11) is identified. This procedure constitutes the backbone 
of the classical ML approach. It yields best estimates of model parameters and is here applied by considering the 
experimental observations provided by Dwarakanath et al. (1999).

Considering the classical ML approach, the constant 𝐴𝐴 𝐴𝐴2

0
 estimated at the end of the inversion as explained above 

includes both model and experimental errors. Assessing model error would require considering alternative inter-
pretive models and rank them on the basis of various criteria, accounting for their quality of fit to observations 
and number of parameters (see, e.g., Bianchi Janetti et al., 2012). To this purpose, the experimental BTC of a 
partitioning tracer is interpreted according to the following alternative models: (a) the TDRW model proposed in 
the manuscript, (b) the advection dispersion equation with a linear retardation factor, and (c) the advection disper-
sion equation with a non-linear retardation factor (based on Langmuir isotherm). In Supporting Information S1, 
we show that the proposed TDRW model can be preferable to other models characterized by a reduced number 
of parameters on the basis of AIC and BIC criteria (Akaike, 1974; Schwartz, 1978).

Probability distributions of model parameters conditional on available data can then be evaluated through a 
stochastic inverse modeling approach. We do so by performing minimization of Equation 12 upon considering a 
collection of NMC random realizations of the vector 𝐴𝐴 𝐜𝐜

∗
𝜂𝜂𝜂𝜂𝜂 and of 𝐴𝐴 𝐴𝐴∗

𝜂𝜂  . These realizations are obtained by perturbation 
of 𝐴𝐴 𝐜𝐜

∗
𝜂𝜂𝜂𝜂𝜂 and 𝐴𝐴 𝐴𝐴∗

𝜂𝜂  through Gaussian white noises whose variances are set to yield a given value of 𝐴𝐴 𝐴𝐴 . The stochastic 
inversion is then repeated for various values of 𝐴𝐴 𝐴𝐴 to assess the impact of the latter on the probabilistic distribution 
of uncertain model parameters. Note that the chosen Gaussian distribution for realizations of 𝐴𝐴 𝐜𝐜

∗
𝜂𝜂𝜂𝜂𝜂 and 𝐴𝐴 𝐴𝐴∗

𝜂𝜂  is a 
typical choice and is based on the idea that measurement errors are accidental. This choice is at the basis of the 
ML approach and allows deriving Equations 11 and 12.

Minimization of Equation 12 is obtained through a standard genetic algorithm implemented in the MATLAB 
environment (i.e., the ga function of MATLAB R2021b). The latter enables an efficient search of the parameter 
space during model inversion. The algorithm starts by evaluating Equation 12 for an initial population of M 

 19447973, 2023, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022W

R
033387 by PO

L
IT

E
C

N
IC

O
 D

I M
IL

A
N

O
, W

iley O
nline L

ibrary on [10/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Water Resources Research

JANETTI ET AL.

10.1029/2022WR033387

6 of 16

points in the parameter space. At each step, the minimization algorithm makes use of the selection, crossover, 
and mutation functions to randomly produce new individuals that are characterized by a decreased value of the 
objective function (i.e., of Equation 12). The algorithm converges after N iterations when a given population does 
not produce an offspring that is significantly different from any of the previous ones. This procedure requires 
performing NMC × M × N runs of the forward model. Note that the values of NMC, M, and N need to be sufficiently 
high to ensure (a) stability in the computation of the parameter distributions as well as (b) convergence of the 
minimization algorithm.

It is remarked that relying on the full TDRW model set-up described in Section 2.1 to simulate tracer concen-
trations poses a significant challenge in terms of computational effort (see Section 3). For this reason, the target 
system response (i.e., a BTC associated with tracer concentration at specified times) is evaluated upon relying on 
a surrogate (or reduced-order) model. For the purpose of our study, a surrogate model based on the generalized 
Polynomial Chaos Expansion (gPCE; e.g., Le Maȋtre & Knio, 2010; Porta et al., 2014; Xiu & Karniakidis, 2002) is 
considered, the presented methodology being fully compatible with other choices of model reduction techniques.

An additional advantage of employing a gPCE representation is that Sobol’ indices (Sobol,  2001) can be 
computed with simple algebraic operations from the coefficients of the polynomial expansion. These indices are 
variance-based global sensitivity metrics and can be employed to apportion the variance of a target model output 
amongst the uncertain model parameters driving the system behavior. In this context, a global sensitivity analysis 
based on Sobol’ indices is performed with the aim of diagnosing the model behavior across time by assessing the 
way uncertainty associated with model parameters affects uncertainty of the target modeling goals/results. With 
this spirit and consistent with the work of Dell'Oca et al. (2020), the sensitivity analysis is performed prior to 
model calibration. Details about the methodology employed to obtain the surrogate model approximation and the 
Sobol’ sensitivity indices are illustrated in Appendix A. Note that our results should not be significantly affected 
by the choice of a different surrogate model characterized by a comparable error. This is related to the observa-
tion that we used the surrogate model solely to obtain a quick estimate of the target variable as a function of the 
uncertain model parameters to assist global sensitivity analysis and Sobol’ indices evaluations. The accuracy of 
the adopted gPCE is assessed in Appendix A and in Supporting Information S1. We further note that in our case 
the need of the surrogate model was strictly related to the computational effort required for a single calibration 
with the full TDRW model. The reduction of time ensuing the use of a surrogate model with respect to the full 
model depends on many factors, such as, for example, the complexity of the full model, the number of parameters, 
or the order of regression. While reliance on a surrogate model unavoidably introduces an error, in some cases 
(as the one we consider) it is necessary to resort to it, given the computational time requirements to obtain stable 
and robust results.

3. Test Case and Experimental Data Set
The robustness of the proposed methodology and operational framework is assessed by considering the 
water-saturated column experiment performed at the laboratory scale and presented by Dwarakanath et al. (1999). 
The column is packed with alluvial aquifer material and residual DNAPL saturation, Sor, is attained via water-
flooding. Injection of tracers is performed in the presence of a constant flow rate. A conservative (1-propanol) 
and four partitioning (1-pentanol, 3-methyl-3-pentanol, 2-ethyl-1-butanol and 1-hexanol) tracers characterized 
by diverse partitioning coefficients are simultaneously and instantaneously injected. Breakthrough curves are 
observed at the outlet section of the column.

The steady state mean flow is aligned along the x direction in the experimental setup (see Figure 2). We then 
model the system as a two-dimensional domain discretized into voxels of side Δ = 5 × 10 −4 m. This yields 
a lattice composed by 200 × 60 voxels along directions x and y, respectively (see Figure 2). Note that in this 
two-dimensional system, even as homogeneous, particles can migrate along two orthogonal directions. We 
chose to rely on such a conceptual picture to avoid further constraining of the modeling approach. Due to 
the imposed conditions, the velocity component along direction y vanishes. A constant dispersion coefficient 

𝐴𝐴 𝐴𝐴 = 𝐴𝐴𝑚𝑚 + 𝛼𝛼𝐿𝐿𝑢𝑢 is then considered, u, 𝐴𝐴 𝐴𝐴𝑚𝑚 , and 𝐴𝐴 𝐴𝐴𝐿𝐿 being the advective velocity along direction x, molecular 
diffusion, and longitudinal dispersivity, respectively. Simulation of the migration of each of the tracers consid-
ered is performed upon instantaneously injecting a set of Np  =  10 6 random walkers, uniformly distributed 
across the entire cross section of the domain at x = 0. A TDRW is then simulated for Ns = 10 2 time steps to 
obtain BTCs at the outlet (i.e., at x = Lx). Values of u and D are estimated by a classical ML model calibra-
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tion against the experimental BTC available for the conservative tracer. This yields u = 1.4 × 10 −3 m s −1 and 
D = 2.0 × 10 −6 m 2 s −1. The corresponding Péclet number is 𝐴𝐴 Pe = 𝑢𝑢𝑢𝑢𝑥𝑥∕𝐷𝐷  = 70. Model parameters p associ-
ated with a partitioning tracer are then estimated as detailed in Section 4. In principle, it would be possible 
estimating u and D together with p. Otherwise, this would contribute to increase significantly the complexity 
of the calibration (also considering the limited amount of data available, see Section 4). Therefore, we follow 
a standard practice and rely on the analysis of conservative tracer data to infer values of u and D. Doing so 
enables us to gear our attention toward the calibration of the parameters associated with the partitioning tracer 
model, which is the focus of the work. The spatial discretization fulfills condition Δ < 2 D/u, to avoid numerical 
dispersion. Moreover, preliminary analyses have shown that the considered setting for Np and Δ yields results 
that are not significantly affected by the number of particles and the spatial discretization (see in Supporting 
Information S1 for additional details) since these parameters mainly affect low concentration values for which 
no experimental data are available.

4. Results and Discussion
Application of the classical ML inversion considering the available experimental information yields ML esti-
mates of 𝐴𝐴 𝐴𝐴2

0
 , 𝐴𝐴 𝐴𝐴2

𝐾𝐾
 , and p for each of the partitioning tracers. Figure 3 depicts the Negative Log Likelihood (NLL) 

criterion evaluated after model inversion (conditional on the available data) versus λ = 𝐴𝐴 𝐴𝐴𝐴2

0
∕ 𝐴𝐴𝐴2

𝐾𝐾
 for the 1-pentanol 

partitioning tracer. NLL displays a minimum at λ ≈ 10 −2. The ensuing model calibration results are listed in 
Table 2. For this value of λ, we obtain 𝐴𝐴 𝐴𝐴𝐴2

0
  = 0.0135 and 𝐴𝐴 𝐴𝐴𝐴2

𝐾𝐾
  = 1.35. This result suggests that the estimated partition 

coefficient associated with the batch experiments is affected by an uncertainty which is significantly larger than 
that associated with the available concentration data since

�2
� =

�2
0

�
=

�2
�,��

��2�,��

, i.e., ��

��
= �

��,��

��,��

with � =
��,��

√

���,��
. (13)

We note that considering 𝐴𝐴 𝐴𝐴  ≈ 10 −2 and 𝐴𝐴 �̂�𝐾𝜂𝜂  = 4 (see Table 2) yields a ≈ 2.5 for 
the 1-pentanol tracer. This, in turn, leads to 𝐴𝐴 𝐴𝐴𝐾𝐾∕𝐾𝐾𝜂𝜂 < 𝐴𝐴𝜂𝜂𝜂𝜂𝜂∕𝑐𝑐𝜂𝜂𝜂𝜂𝜂 .

It is further noted that our estimate of 𝐴𝐴 𝐴𝐴 is consistent with the definition of 𝐴𝐴 𝐴𝐴𝜂𝜂 
provided in Equation 2. This can be seen upon applying the formulation for 
error propagation to Equation 2, which in turn corresponds to a Taylor series 
expansion of 𝐴𝐴 𝐴𝐴2

𝐾𝐾
 truncated at first order (under the assumption that 𝐴𝐴 𝐴𝐴2

𝜂𝜂𝜂𝜂𝜂 and 
𝐴𝐴 𝐴𝐴2

𝜂𝜂𝜂𝜂𝜂 are sufficiently small) to obtain an approximate estimate of 𝐴𝐴 𝐴𝐴2

𝐾𝐾
 as

𝜎𝜎2

𝐾𝐾
=

1

𝑐𝑐
2
𝜂𝜂𝜂𝜂𝜂

(

𝜎𝜎2
𝜂𝜂𝜂𝜂𝜂 +

𝑐𝑐
2
𝜂𝜂𝜂𝜂𝜂

𝑐𝑐
2
𝜂𝜂𝜂𝜂𝜂

𝜎𝜎2
𝜂𝜂𝜂𝜂𝜂

)

. (14)

Here, 𝐴𝐴 𝐴𝐴2
𝜂𝜂𝜂𝜂𝜂 and 𝐴𝐴 𝐴𝐴2

𝜂𝜂𝜂𝜂𝜂 are the variance of concentration measurements performed 
in the water and oil phase, respectively, in a batch system; the overbar denotes 
the mean operator and mean values of concentrations can be replaced by their 
experimental counterparts. Considering that 𝐴𝐴 𝐴𝐴2

𝜂𝜂𝜂𝜂𝜂 = 𝐴𝐴2

0
𝑐𝑐
2
𝜂𝜂𝜂𝜂𝜂 and 𝐴𝐴 𝐴𝐴2

𝜂𝜂𝜂𝜂𝜂 = 𝐴𝐴2

0
𝑐𝑐
2
𝜂𝜂𝜂𝜂𝜂 

and substituting these expressions in Equation 14 yields

Figure 2. Geometry of the system and schematic representation of the TDRW modeling framework with trapping. Blue 
arrows in the central panel illustrate a particle trajectory for eight exemplary steps.

Figure 3. Dependence of NLL (Equation 11) on 𝐴𝐴 𝐴𝐴 obtained through a 
classical ML model calibration conditional to the 1-pentanol partitioning 
tracer data.
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𝜎𝜎2

𝐾𝐾
=

1

𝑐𝑐
2
𝜂𝜂𝜂𝜂𝜂

(

𝜎𝜎2

0
𝑐𝑐
2
𝜂𝜂𝜂𝜂𝜂 +

𝑐𝑐
2
𝜂𝜂𝜂𝜂𝜂

𝑐𝑐
2
𝜂𝜂𝜂𝜂𝜂

𝜎𝜎2

0
𝑐𝑐
2
𝜂𝜂𝜂𝜂𝜂

)

= 2𝜎𝜎2

0

𝑐𝑐
2
𝜂𝜂𝜂𝜂𝜂

𝑐𝑐
2
𝜂𝜂𝜂𝜂𝜂

. (15)

From Equation 15 one can then note that 𝐴𝐴 1∕𝜆𝜆 = 2𝑐𝑐
2
𝜂𝜂𝜂𝜂𝜂∕𝑐𝑐

2
𝜂𝜂𝜂𝜂𝜂 = 2𝐾𝐾2

𝜂𝜂  . Considering that 𝐴𝐴 �̂�𝐾𝜂𝜂 > 1 for 1-pentanol (see 
Table 2), one can expect that 𝐴𝐴 𝐴𝐴 𝐴 1 , which is consistent with our estimate.

Figure 4 depicts the temporal evolution of the concentrations of the conservative tracer (Propanol) and the four 
partitioning tracers (1-pentanol, 3-methyl-3-pentanol, 2-ethyl-1-butanol, and 1-hexanol). Symbols and curves 
correspond to experimental values and classical ML model calibration results, respectively. The BTCs are 
affected by increasingly significant retardation as 𝐴𝐴 �̂�𝐾𝜂𝜂 increases. As described by Equation 3, this corresponds 
to an increased effect of trapping of the partitioning tracer in the immobile phase. Figure 4 documents a very 
good  agreement between numerical and experimental results for the range of investigated pore volumes (i.e., at 
all investigated times) and for all of the considered chemicals. While Dwarakanath et al. (1999) show that the 
partitioning tracer BTCs could not be interpreted through a classical advection dispersion model, our results 
document that the late time behavior of the BTCs is well interpreted by the TDRW model after a classical ML 
calibration. Note that our ML estimates 𝐴𝐴 �̂�𝑆𝑜𝑜𝑜𝑜 and 𝐴𝐴 �̂�𝐾𝜂𝜂 are consistent with the values reported by Dwarakanath 
et al. (1999), as seen by the results listed in Table 2 for all partitioning tracers. ML estimates of parameters char-
acterizing the trapping phenomenon (i.e., 𝐴𝐴 𝐴𝐴𝐴 , 𝐴𝐴 𝛽𝛽  and 𝐴𝐴 𝐴𝐴𝐴  ) are similar for all tracers. This result suggests that all of 
the investigated tracers are characterized by a similar behavior, as rendered through the analysis of the tail of the 
corresponding BTC.

Principal, 𝐴𝐴 𝐴𝐴𝑝𝑝𝑝𝑝𝑝 , and total, 𝐴𝐴 𝐴𝐴𝑇𝑇
𝑝𝑝𝑝𝑝𝑝

 , Sobol’ indices associated with all (five) model parameters, p, for the 1-pentanol 
tracer concentration are depicted in Figure 5. Sobol’ indices are evaluated as a function of time (here expressed in 
terms of the injected pore volume) to detect the influence of each of the uncertain model parameters across vari-
ous segments of the BTC. Our results show that the two parameters mainly affecting the variance of partitioning 
tracer concentration close to the peak (i.e., at PV ≈ 1.65) are 𝐴𝐴 𝐴𝐴𝜂𝜂 and 𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜 . This is related to the definition of retar-
dation coefficient (see Equation 3) that directly embeds these two parameters. Considering the late time tails of 
the BTCs, suggests that the shape parameter of the distribution of the trapping times (i.e., β) governs the late time 
behavior of solute concentrations. Otherwise, with the exception of the early arrival times, Sobol’ indices assign 
an almost negligible effect to parameters τ and ω, suggesting that the variance of partitioning tracer concentration 
is not significantly impacted by the number of trapping events.

Stochastic model calibration is then performed by relying on a collection of NMC = 1000 realizations. These are 
obtained by perturbing experimental data as described in Section 2.2 and setting M = 1000. Calibration of each 
member of the ensemble involves running (on average) N ≈ 200 model iterations. As indicated in Section 2.2, 
target system responses (e.g., tracer concentration at monitored times) are evaluated upon relying on surrogate 
models based on the generalized Polynomial Chaos Expansion (gPCE) to alleviate the computational effort. Note 
that the total CPU-time needed considering the gPCE approximation is ∼2.0% of the one required upon relying 
on the full model (see Section 3). The assessment of the accuracy of the gPCE is described in Appendix A, 
where we show that the reduced model enables us to capture the full model results needed for the purpose of our 
analysis.

Figure 6 depicts normalized (with respect to the maximum concentration value) BTCs obtained for the collection 
of stochastic model calibrations upon setting λ = (a) 0.01, (b) 1.0, and (c) 100 for the 1-pentanol partitioning 
tracer. Gray curves correspond to the ensemble of TDRW results obtained upon minimizing Equation 12. The 
average BTC (continuous black curve) and the 95% confidence interval associated with the collection of stochas-
tic inverse modeling results (demarcated by dashed black curves) are also shown. Red symbols represent the 
available experimental concentrations and their associated 95% confidence interval corresponding to ±2�̂0�∗�,��

 
(where 𝐴𝐴 𝐴𝐴𝐴0 is evaluated through the ML model inversion, as described in Section 2.2). Most of the experimental 
concentration values lie inside the 95% confidence interval associated with inverse modeling results for all of 
the investigated values of λ. It can be noted that increasing the value of λ yields an enhanced spread of model 
results. It also yields a slightly worse (overall) match to the experimental data, as quantified in terms of the 
average (across the ensemble) value of JMIN, which is equal to 0.798, 1.084, and 1.384 for λ = 0.01, 1 and 100, 
respectively. Average NLL values across the collection of inversions are equal to −178.11, −174.74, and −173.55 
for λ = 0.01, 1, and 100, respectively. These results are consistent with those stemming from the classical ML 
inversion where a minimum NLL is observed at 𝐴𝐴 𝐴𝐴  = 0.01 (see Figure 3).
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As mentioned in Section 2.2, the regularization weight 𝐴𝐴 𝐴𝐴 corresponds to the 
ratio between the variances of measurement errors associated with concentra-
tion and partition coefficient data. Thus, values of 𝐴𝐴 𝐴𝐴  < 1 mimic experimental 
conditions where the error variance associated with the partition coefficient is 
higher than its counterpart related to solute concentrations, while 𝐴𝐴 𝐴𝐴  > 1 corre-
sponds to the opposite situation. For 𝐴𝐴 𝐴𝐴  = 100 (see Figure 6c) any deviation of the 
estimated 𝐴𝐴 �̂�𝐾𝜂𝜂 value with respect to 𝐴𝐴 𝐴𝐴∗

𝜂𝜂 has a marked weight in the objective func-
tion. Otherwise, setting 𝐴𝐴 𝐴𝐴  = 0.01 (see Figure 6a) corresponds to imposing only a 
weak constraint on the estimated value of the partition coefficient. Note that, as 
hilighted in Section 2.2, the presence of the regularization term is key because it 
enables us to obtain joint estimates of the partition coefficient and of 𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜 .

Sample marginal distributions of estimated parameter values 𝐴𝐴 �̂�𝐩 resulting from 
stochastic model calibration for the three investigated values of 𝐴𝐴 𝐴𝐴 are depicted 

in Figure  7. These are complemented by sample distributions of the resulting retardation coefficient values 
obtained through Equation 3. As a reference, lower and upper limits of parameter supports listed in Table 1 and 
within which model inversion is performed are also depicted (vertical red lines). Parameter estimates ensuing the 
classical ML inversion based on available experimental data are also included (vertical black lines). These esti-
mates approximately correspond to the most frequent value (i.e., the mode) of the sample distributions obtained 
with the stochastic inversions in most of the cases.

Sample distributions of 𝐴𝐴 �̂�𝐾𝜂𝜂 and 𝐴𝐴 �̂�𝑆𝑜𝑜𝑜𝑜 are significantly affected by 𝐴𝐴 𝐴𝐴 . Their peak and standard deviation increase and 
decrease with 𝐴𝐴 𝐴𝐴 , respectively. In particular, the uncertainty associated with the estimate of 𝐴𝐴 𝐴𝐴𝜂𝜂 is very low when 

𝐴𝐴 𝐴𝐴  = 100.

No clear trend with 𝐴𝐴 𝐴𝐴 is detectable for the sample distributions of 𝐴𝐴 𝐴𝐴𝐴 , 𝐴𝐴 𝛽𝛽  , and 𝐴𝐴 𝐴𝐴𝐴  . The distribution of 𝐴𝐴 𝐴𝐴𝐴 displays a 
bimodal character, with peaks that appear to increase with 𝐴𝐴 𝐴𝐴 . The reduction of uncertainty due to ML inversion, 
with respect to initial parameter space bounds, is quite remarkable for parameter 𝐴𝐴 𝛽𝛽  while being less evident for 𝐴𝐴 𝐴𝐴𝐴 
and 𝐴𝐴 𝐴𝐴𝐴  , regardless of the value of 𝐴𝐴 𝐴𝐴 . This result is consistent with the observation that the global sensitivity analysis 
reveals that 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴  are not significantly affecting the target model output (see Figure 5). Conversely, note that all 
parameters are associated with distributions resulting from stochastic model calibration that are markedly differ-
ent from the prior uniform density considered for the global sensitivity analysis before stochastic ML inversion.

Relationships between estimated parameter pairs can be visualized through scatterplots of parameter values 
obtained from the ensemble of NMC inverse modeling results. As an example, Figure 8 depicts the scatterplot 
corresponding to the pair of estimated parameters 𝐴𝐴 �̂�𝐾𝜂𝜂 -𝐴𝐴 �̂�𝑆𝑜𝑜𝑜𝑜 for 𝐴𝐴 𝐴𝐴  = 0.01, 1, and 100. The corresponding marginal 
distributions are also depicted together with parameter estimates obtained through the classical ML inversion 
based on available experimental data, for completeness. We note that 𝐴𝐴 �̂�𝐾𝜂𝜂 and 𝐴𝐴 �̂�𝑆𝑜𝑜𝑜𝑜 display a strong negative correla-
tion for 𝐴𝐴 𝐴𝐴  = 0.01 and 1. This is consistent with the way they appear in the definition of the retardation coefficient 
(see Equation 3). An empirical relationship between these two parameters can then be obtained, for example, 

Table 1 
Selected Uncertain Model Parameters and Associated Intervals of 
Variability, as Defined by Their Lower (Min) and Upper (Max) Boundaries

Parameter Description Min Max

𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜 Residual oil saturation 0.15 0.27

𝐴𝐴 𝐴𝐴𝜂𝜂 Partition coefficient 2.62 4.86

𝐴𝐴 𝐴𝐴 Rate of trapping events 0.49 1.13

𝐴𝐴 𝐴𝐴  Shape parameter 0.50 1.10

𝐴𝐴 𝐴𝐴  Scale parameter 6.10 × 10 −4 1.1 × 10 −3

Table 2 
Values of Model Parameter Estimates Obtained Through a Classical ML Inversion Considering the Available Experimental 
Information and λ ≈ 10 −2

Parameter Description 1-Pentanol 3-Methyl-3-pentanol 2-Ethyl-1-butanol 1-Hexanol

𝐴𝐴 �̂�𝑆𝑜𝑜𝑜𝑜 Residual oil saturation 0.20 0.19 0.19 0.19

𝐴𝐴 𝐴𝐴∗
𝑜𝑜𝑜𝑜 Residual oil saturation 0.18 0.18 0.18 0.18

𝐴𝐴 �̂�𝐾𝜂𝜂 Partitioning coefficient 4.00 5.85 12.68 17.78

𝐴𝐴 𝐴𝐴∗
𝜂𝜂  Partition coefficient 3.74 5.77 12.60 17.70

𝐴𝐴 𝐴𝐴𝐴 Rate of trapping events 1.05 0.942 0.994 0.942

𝐴𝐴 𝛽𝛽  Shape parameter 0.79 0.877 0.888 1.086

𝐴𝐴 𝐴𝐴𝐴  Scale parameter 1.10 × 10 −3 1.00 × 10 −3 8.59 × 10 −4 1.10 × 10 −3

Note. *values reported by Dwarakanath et al. (1999).
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through a linear regression model. This yields 𝐴𝐴 �̂�𝑆𝑜𝑜𝑜𝑜 = −0.044�̂�𝐾𝜂𝜂 + 0.38 and 
𝐴𝐴 �̂�𝑆𝑜𝑜𝑜𝑜 = −0.049�̂�𝐾𝜂𝜂 + 0.40 for λ  =  0.01 and 1, respectively (with coefficient 

of determination R 2 = 0.97; see red lines in Figure 8). This result provides 
further support to the observation that information on the partition coefficient 
is critical for the joint estimation of 𝐴𝐴 𝐴𝐴𝜂𝜂 and 𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜 . Conversely, as mentioned 
above, for 𝐴𝐴 𝐴𝐴  = 100 the estimate of the partition coefficient displays only a 
weak variability across realizations and is virtually uncorrelated with 𝐴𝐴 �̂�𝑆𝑜𝑜𝑜𝑜 . It 
is noted that the width of the support of the sample distributions of the retar-
dation coefficient (𝐴𝐴 �̂�𝑅𝜂𝜂 ) resulting from stochastic model calibration increases 
with 𝐴𝐴 𝐴𝐴 , with an ensuing decrease of the corresponding peak value (Figure 7f). 
Distributions of other pairs of parameters (including 𝐴𝐴 𝛽𝛽  ) are not characterized 
by significant correlation (not shown).

5. Conclusions
Our study provides a methodological framework for (a) the simulation of 
breakthrough curves (BTCs) associated with partitioning tracers observed 
in laboratory-scale column experiments and (b) a stochastic calibration of 
uncertain model parameters. The interpretive model is based on a TDRW 

particle tracking methodology to simulate solute transport through a porous medium. We extend the range of 
applicability of such an approach to include transport of partitioning tracers through the inclusion of retardation 
and trapping mechanisms. Model calibration is first performed through a classical Maximum Likelihood (ML) 
approach on the basis of experimental observations of chemical concentrations as well as information on the 
partition coefficient characterizing solute sorption. A stochastic inverse modeling approach is also employed to 
obtain sample probability distributions of model parameters conditional on available data. The applicability and 
the performance of the methodology are demonstrated upon considering the unique and extensive set of partition-
ing tracer experiments of Dwarakanath et al. (1999). Our work leads to the following major conclusions.

1.  Comparisons between the experimental BTCs of Dwarakanath 
et al.  (1999) and those stemming from classical ML calibration docu-
ment the ability of a TDRW-based model tailored to simulate transport 
of partitioning tracers to characterize observed temporal histories of 
tracer concentration at the column outlet. This is seen across the whole 
range of investigated pore volumes (i.e., at all investigated times) and for 
all of the considered chemicals, characterized by different values of the 
partition coefficient, 𝐴𝐴 𝐴𝐴𝜂𝜂 .

2.  Results from a global sensitivity analysis performed through classical 
Sobol’ indices suggests that model parameters mainly affecting uncer-
tainty of partitioning tracer concentration within the early/intermediate 
range of observation times (i.e., corresponding to a pore volume (PV) up 
to ≈2.0) are 𝐴𝐴 𝐴𝐴𝜂𝜂 and residual oil saturation, 𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜 . This is chiefly related to 
the definition of retardation coefficient that directly embeds these two 
parameters. Relying on a regularization term embedded in the Nega-
tive Log Likelihood criterion (NLL; Equations 11 and 12) enables us to 
include information on 𝐴𝐴 𝐴𝐴𝜂𝜂 in the context of ML model calibration. We 
show that considering these types of information, which are typically 
available on the basis of batch experiments, is critical to obtain joint 
estimates of 𝐴𝐴 𝐴𝐴𝜂𝜂 and 𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜 . Otherwise, late-time concentrations (i.e., corre-
sponding to PV > 2.0) are mainly affected by the parameter β, character-
izing the slope of the of the trapping time distribution.

3.  Minimization of NLL for a classical ML model inversion (conditional 
on available data) is obtained for a values of the regularization weight 
λ ≈ 10 −2. This suggests that the estimated partition coefficient associated 
with the batch experiments is affected by an uncertainty which is signif-
icantly larger than that associated with the available concentration data.

Figure 4. Experimental (symbols) and TDRW solution (curves) for the 
reference conservative tracer (propanol) and four partitioning tracers 
(1-pentanol, 3-methyl-3-pentanol, 2-ethyl-1-butanol, 1-hexanol) characterized 
by different partition coefficients. Parameters of the TDRW model are 
calibrated using a classical ML approach.

Figure 5. Principal and total Sobol indices associated with the five TDRW 
model parameters evaluated considering the 1-pentanol tracer concentration as 
target model output. The sensitivity indices are evaluated as a function of the 
pore volume.
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4.  Model calibration performed in a stochastic context upon considering noisy data to mimic measurement 
errors associated with data collection yields sample probability distributions of model parameters conditional 
on available information. Considering the distributions of the estimated model parameters, we note that 𝐴𝐴 �̂�𝐾𝜂𝜂 
and 𝐴𝐴 �̂�𝑆𝑜𝑜𝑜𝑜 display a strong negative correlation. This result provides additional support to the above mentioned 
observation that information on the partition coefficient, as guaranteed by the presence of a regularization 
term in the objective function, is important for the joint estimation of 𝐴𝐴 𝐴𝐴𝜂𝜂 and 𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜 .

5.  Conditioning on available data through stochastic ML inversion yields a remarkable reduction of the uncer-
tainty associated with some of the model parameters (i.e., 𝐴𝐴 �̂�𝐾𝜂𝜂 , 𝐴𝐴 �̂�𝑆𝑜𝑜𝑜𝑜 , and 𝐴𝐴 𝛽𝛽  ), with respect to the initial parameter 
space extent. The effect of conditioning on residual parameter uncertainty is less evident for the trapping 
rate, 𝐴𝐴 𝐴𝐴𝐴 , and the scale parameter of the trapping time distribution, 𝐴𝐴 𝐴𝐴𝐴  . The latter finding is consistent with the 
observation that the global sensitivity analysis reveals that ω and τ are not significantly affecting the target 
model output.

As a final remark, we note that a key feature of a stochastic model calibration approach is that the sample distri-
bution of model parameters allows identifying a collection of possible model responses, fully conditional on a 

Figure 6. Collection of NMC = 1000 breakthrough curves (continuous gray curves) obtained from the stochastic inverse 
modeling results considering λ = (a) 0.01, (b) 1, and (c) 100. Average (continuous black curve) and 95% confidence interval 
bounds (dashed black curves) are also shown. Red symbols correspond to available experimental concentrations. The 
associated 95% confidence intervals evaluated from a classical application of ML model calibration to the experimental data 
(see also Figure 4) is depicted (red vertical bars).
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Figure 7. Sample marginal distributions of estimated parameter values resulting from stochastic model calibration for the three investigated values of 𝐴𝐴 𝐴𝐴 : (a) 𝐴𝐴 �̂�𝐾𝜂𝜂 , (b) 
𝐴𝐴 �̂�𝑆𝑜𝑜𝑜𝑜 , (c) 𝐴𝐴 𝐴𝐴𝐴 , (d) 𝐴𝐴 𝛽𝛽  , (e) 𝐴𝐴 𝐴𝐴𝐴  . Sample distributions of the resulting retardation coefficient, 𝐴𝐴 �̂�𝑅𝜂𝜂 , values obtained through Equation 3 are shown (f). Lower and upper limits of 

parameter supports within which model inversion is performed are also depicted (vertical red lines; see Table 1) together with parameter estimates obtained through the 
classical ML inversion based on available experimental data (vertical black lines).
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given set of observations of tracer concentration and model parameters. As such, this approach yields a collec-
tion of calibrated parameters which in principle could be used for stochastic simulation and characterization of 
scenarios of interest. In the current form, the methodology has been applied to model (section-averaged) break-
through curves associated with homogeneous column tracer tests at the Darcy scale. It might be of interest to 
relate parameters governing a Darcy scale representation with descriptors associated with trapped phase ganglia 
distributions (e.g., their location and volume). This can certainly constitute a further development of our work, 
possibly in conjunction with detailed flow and transport experiments (eventually based on direct imaging) at 
various scales.

Appendix A: Surrogate Model and Sobol’ Indices

The MP = 5 uncertain parameters of the TDRW model are collected in a vector p, that is, 𝐴𝐴 𝐩𝐩 =
[

𝑆𝑆𝑜𝑜𝑜𝑜, 𝐾𝐾𝜂𝜂, 𝜔𝜔, 𝜔𝜔, 𝜔𝜔
]𝑇𝑇 . For 

the purpose of evaluating the surrogate model, we consider the entries of p as independent and identically distributed 
(iid) random variables, each characterized by a uniform density. This enables us to assign equal weight to each of the 
values of a given model parameter within its support. The (random) parameter space across which the full system 
model is evaluated and the surrogate model is constructed is then defined as 𝐴𝐴 𝚪𝚪 =

[

𝐩𝐩
min, 𝐩𝐩max

]

 , 𝐴𝐴 𝐩𝐩
min and 𝐴𝐴 𝐩𝐩

max denoting 
vectors containing lower and upper bounds of parameter variability intervals, respectively (see Table 1). As stated in 
Section 2.2, our surrogate (or reduced-order) model relies on the generalized Polynomial Chaos Expansion, gPCE. 
We approximate 𝐴𝐴 𝐜𝐜𝜂𝜂𝜂𝜂𝜂 through a linear combination of multivariate orthonormal Legendre polynomials, that is, 𝐴𝐴 𝐴𝐴𝒙𝒙(𝒑𝒑) , 
as

𝑓𝑓 (𝒑𝒑) ≅ 𝛾𝛾𝟎𝟎 +

𝑀𝑀𝑃𝑃
∑

𝑖𝑖=1

∑

𝒙𝒙∈ℑ𝑖𝑖

𝛾𝛾𝒙𝒙𝜓𝜓𝒙𝒙(𝒑𝒑) +
𝑀𝑀𝑃𝑃
∑

𝑖𝑖=1

𝑀𝑀𝑃𝑃
∑

𝑗𝑗𝑗𝑖𝑖

∑

𝒙𝒙∈ℑ𝑖𝑖𝑖𝑗𝑗

𝛾𝛾𝒙𝒙𝜓𝜓𝒙𝒙(𝒑𝒑) + ...;

𝜓𝜓𝒙𝒙(𝒑𝒑) =
𝑀𝑀𝑃𝑃
∏

𝑖𝑖=1

𝜓𝜓𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝑝𝑝𝑖𝑖); 𝛾𝛾𝒙𝒙 = ∫
Γ

𝑓𝑓 (𝒑𝒑)𝜓𝜓𝒙𝒙(𝒑𝒑)𝜌𝜌Γ𝒑𝒑 𝑑𝑑𝒑𝒑𝑖

 (A1)

where 𝐴𝐴 𝒙𝒙 = {𝑥𝑥1, ..., 𝑥𝑥𝑀𝑀} ∈ ℕ
𝑀𝑀𝑃𝑃 is a multi-index expressing the degree of each univariate polynomial, 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝑝𝑝𝑖𝑖) ; 𝐴𝐴 𝐴𝐴𝒙𝒙 

are the gPCE coefficients; 𝐴𝐴 𝐴𝐴Γ𝒑𝒑 denotes the probability density of p; 𝐴𝐴 ℑ𝑖𝑖 and 𝐴𝐴 ℑ𝑖𝑖𝑖𝑖𝑖 include all indices such that only the 
ith component does not vanish or only the ith and jth components are not zero, respectively, and so on. Evaluating 
coefficients 𝐴𝐴 𝐴𝐴𝒙𝒙 in Equation A1 entails resorting to a regression-based method (Sudret, 2008). The latter is based on 
(a) the evaluation of the full model and its gPCE approximation at a number of points in the parameter space and (b) 
the minimization of the sum of the square of the differences between the exact and the approximated solutions. Here, 
accurate results have been obtained truncating the gPCE at order 5, considering Nt = 2000 full model runs. The latter 
are performed upon relying on a quasi-Monte Carlo sampling technique (see, e.g., Fajraoui et al., 2012; Maina & 
Guadagnini, 2018). The ability of a gPCE of a given order to approximate concentration at the target pore volumes 
(i.e., the Ns time steps encompassing the total temporal window analyzed in the TDRW simulations) is assessed 
upon considering the full model solutions evaluated at NV = 200 sets of parameter values that are randomly selected 

Figure 8. Scatterplots of pairs of 𝐴𝐴 �̂�𝐾𝜂𝜂 -𝐴𝐴 �̂�𝑆𝑜𝑜𝑜𝑜 values obtained from the ensemble of NMC inverse modeling results for 𝐴𝐴 𝐴𝐴  = (a) 0.01, (b) 1, and (c) 100. The corresponding 
marginal distributions are also depicted. A linear regression model is depicted in red for 𝐴𝐴 𝐴𝐴  = 0.01 and 1. The green diamonds corresponds to parameter estimates 
obtained through the classical ML inversion based on available experimental data.
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across the parameter space and are not employed for the assessment of the gPCE. For each target pore volume, we 
compute a mean absolute relative error (MAREj) between the full model and the gPCE approximation, that is,

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗 =
1

𝑁𝑁𝑉𝑉

𝑁𝑁𝑉𝑉
∑

𝑘𝑘=1

|

|

|

𝑐𝑐𝜂𝜂𝜂𝜂𝜂𝑗𝑗𝜂𝑘𝑘
− 𝑐𝑐𝜂𝜂𝜂𝜂𝜂𝑔𝑔𝑔𝑔𝑔𝑔𝑀𝑀𝜂𝑗𝑗𝜂𝑘𝑘

|

|

|

𝑐𝑐𝜂𝜂𝜂𝜂𝜂𝑗𝑗𝜂𝑘𝑘

𝑗𝑗 = 1𝜂 ....𝜂 𝑁𝑁𝑠𝑠𝜂 (A2)

where 𝐴𝐴 𝐴𝐴𝜂𝜂𝜂𝜂𝜂𝑗𝑗𝜂𝑗𝑗
 is concentration of the partitioning tracer 𝐴𝐴 𝐴𝐴 in the water phase evaluated with the full model at time 

step j with the set of parameters k, 𝐴𝐴 𝐴𝐴𝜂𝜂𝜂𝜂𝜂𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝜂𝑔𝑔𝜂𝑔𝑔
 is its counterpart computed with the gPCE.

Average values of MAREj, denoted with 𝐴𝐴 ⟨𝑀𝑀𝐴𝐴𝑀𝑀𝑀𝑀𝑗𝑗⟩ and evaluated for the set of the target pore volumes, are 
depicted in Figure A1a versus the order of gPCE approximation. 𝐴𝐴 ⟨𝑀𝑀𝐴𝐴𝑀𝑀𝑀𝑀𝑗𝑗⟩ decreases with increasing order of 
the gPCE and is approximately equal to 0.4% when a gPCE at order five is adopted. Figure A1b depicts scat-
terplots of normalized (with respect to the maximum concentration value) concentrations evaluated with the 
full model and their counterparts evaluated with the gPCE approximation of order 5 for all NV sets of parameter 
values. These results clearly denote a good agreement between full model results and the gPCE. They suggest 
that the considered surrogate model enables us to capture with high fidelity the full model results needed for the 
purpose of our analysis. Additional analyses on the accuracy of the proposed surrogate model are presented in 
Supporting Information S1.

Once the coefficients 𝐴𝐴 𝐴𝐴𝒙𝒙 have been computed, approximations of the Sobol’ indices can be obtained (see, e.g., 
Sudret, 2008 and references therein). First, we compute mean, E[f], and variance, V[f], of f(p) as

E[𝑓𝑓 ] = 𝛾𝛾𝟎𝟎; V[𝑓𝑓 ] =
∑

𝒙𝒙∈ℕ𝑀𝑀𝑃𝑃

𝛾𝛾2𝒙𝒙 − 𝛾𝛾2
𝟎𝟎
. (A3)

Sobol’ indices are then obtained as

𝑆𝑆𝑝𝑝𝑖𝑖 =
∑

𝒙𝒙∈ℑ𝑖𝑖

𝛾𝛾2𝒙𝒙

V[𝑓𝑓 ]
𝑆𝑆𝑝𝑝𝑖𝑖𝑖𝑖 =

∑

𝒙𝒙∈ℑ𝑖𝑖𝑖𝑖𝑖

𝛾𝛾2𝒙𝒙

V[𝑓𝑓 ]
. (A4)

Here, 𝐴𝐴 𝐴𝐴𝑝𝑝𝑖𝑖 is the principal Sobol’ index associated with the ith parameter and collects all contributions to the vari-
ance of f(p) which are only due to the ith uncertain parameter, 𝐴𝐴 𝐴𝐴𝑖𝑖 ; and 𝐴𝐴 𝐴𝐴𝑝𝑝𝑖𝑖𝑖𝑖 is the Sobol’ index corresponding to the 
mixed effects of uncertain parameters 𝐴𝐴 𝐴𝐴𝑖𝑖 and 𝐴𝐴 𝐴𝐴𝑗𝑗 .

The total Sobol’ index associated with 𝐴𝐴 𝐴𝐴𝑖𝑖 is then defined as

𝑆𝑆𝑇𝑇
𝑝𝑝𝑖𝑖
= 𝑆𝑆𝑝𝑝𝑖𝑖 +

∑

𝑖𝑖≠𝑗𝑗
𝑆𝑆𝑝𝑝𝑖𝑖𝑖𝑗𝑗 +

∑

𝑗𝑗𝑖𝑗𝑗≠𝑛𝑛
𝑆𝑆𝑝𝑝𝑗𝑗𝑖𝑗𝑗𝑖𝑛𝑛 + .... (A5)

Figure A1. Performance of the surrogate model: (a) average MAREj metric (Equation A2) versus order of the generalized Polynomial Chaos Expansion (gPCE) 
approximation; (b) scatterplot of normalized solute concentration evaluated through the gPCE of order five versus their counterparts computed with the full model for 
the NV = 200 sets of parameter values randomly selected in the parameter space and not employed for the assessment of the gPCE.
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and includes the terms appearing in Equation A4 as well as all terms associated with the mixed effects of 𝐴𝐴 𝐴𝐴𝑖𝑖 and 
other random model parameters (e.g., the term 𝐴𝐴 𝐴𝐴𝑝𝑝𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 includes the mixed effects of uncertain parameters 𝐴𝐴 𝐴𝐴𝑗𝑗 , 𝐴𝐴 𝐴𝐴𝑘𝑘 
and 𝐴𝐴 𝐴𝐴𝑛𝑛 ).

Data Availability Statement
The set of experimental observations of Dwarakanath et al. (1999) analysed in the manuscript, the breakthrough 
curves obtained with the TDRW particle tracking methodology considering the parameters estimated via classi-
cal Maximum Likelihood (ML) approach and the key results of the stochastic inverse modeling technique can be 
downloaded from Bianchi Janetti et al. (2023).
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