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Abstract. This preliminary study is concerned with the identification of three-dimensional
coherent structures, defined as intense Reynolds-stress events, in the turbulent boundary layer
developing over the suction side of a NACA4412 airfoil at a Reynolds number based on the
chord lenght and the incoming velocity of Rec = 200, 000. The scientific interest for such
flows originates from the non-uniform adverse pressure gradient that affects the boundary-
layer development. Firstly, we assess different methods to identify the turbulent-non-turbulent
interface, in order to exclude the irrotational region from the analysis. Secondly, we evaluate
the contribution of the considered coherent structures to the enhanced wall-normal velocity,
characteristic of adverse pressure gradients. Our results show that it is necessary to limit the
detection of coherent structures to the turbulent region of the domain, and that the structures
reveal qualitative differences between the contributions of intense events to the wall-normal
velocity in adverse-pressure-gradient and zero-pressure-gradient turbulent boundary layers.

1. Introduction
Turbulent boundary layers (TBLs) subjected to pressure gradients have been widely studied,
both experimentally and via numerical simulations. High-fidelity numerical simulations were
first employed to investigate adverse-pressure-gradient (APG) effects on flat-plate turbulent
boundary layers by Spalart and Watmuff [1]. Some of the pioneering numerical studies
on the flow around wing profiles include the large-eddy simulation (LES) performed by
Jansen [2] (NACA4412) and the direct numerical simulation (DNS) performed by Shan et al. [3]
(NACA0012), which was limited to Rec = 100, 000. Note that the Reynolds number is defined
as Rec = U∞c/ν, where U∞ is the incoming velocity, c the chord length of the airfoil, and ν
the kinematic viscosity. Our group has performed a DNS of the flow around a NACA4412 at
Rec = 400, 000, which is the highest Reynolds number for a DNS on such cases studied so far
[4], and a series of well-resolved LES at Rec up to 1, 000, 000 [5].

As discussed by Bobke et al. [6], to explain the behaviour of turbulent boundary layers
subjected to pressure gradients it is necessary to consider the combined effects of the Reynolds
number and the spatial development of the Clauser pressure-gradient parameter β. Note that
the Clauser pressure-gradient parameter is defined as β = δ∗/τw dPe/dxt, where δ∗ is the
displacement thickness, τw is the mean wall-shear stress and dPe/dxt is the derivative of the
pressure at the boundary-layer edge in the wall-parallel direction. How the Reynolds number and
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the streamwise pressure distribution interact in determining the state of the turbulent boundary
layer in complex cases, such as the flow around wings, is still an open question. Besides the
traditional approach of considering the statistical properties of the flow, several recent studies
have focused on the characterisation of so-called coherent structures, i.e. regions of the domain
which exhibit a certain degree of homogeneity in space. An example of such structures are
the intense Reynolds-stress events, firstly recognised to play a relevant role in the dynamics of
the flow by Wallace et al. [7]. Lozano-Durán et al. [8] characterised these events in turbulent
channel flow, and Maciel et al. [9] studied the same structures in TBLs subjected to weak and
strong APGs. They found that the instantaneous structures are significantly affected by the
presence of the pressure gradient and, in particular, they reported that in stronger APGs wall-
attached structures are less common, they tend to be more elongated in the spanwise direction
rather than in the streamwise and that their spatial organisation is more chaotic. Some of these
observations have been confirmed by Tanarro et al. [10] through analysis of power-spectral-
density distributions around wings.

In the present paper, we consider the three-dimensional Reynolds-stress coherent structures
already examined by Lozano-Durán et al. [8] and Maciel et al. [9] and we study the TBL
developing over the suction side of a NACA 4412 wing section at Rec = 200, 000. To identify the
effects of the non-uniform pressure gradient, we perform a comparison with the zero-pressure-
gradient (ZPG) TBL data-set described in Ref. [11], with Reynolds numbers based on the
momentum thickness between Reθ = 620 and Reθ = 2140. The procedure described in Ref. [8]
can be summarised in the following steps: 1) perform the percolation analysis, by means of which
it is possible to calibrate the threshold used to identify the structures; 2) identify the considered
three-dimensional structures; and 3) compute statistics of the size and location of the structures
as well as conditional averages. Contrary to channel flow, the interface between the TBL and the
irrotational region requires specific care, and in this study we evaluate how different definitions
of the interface can impact the results of the structure identification. Subsequently, we consider
the wall-normal velocity conditioned to intense to intense uv events, to investigate how these
structures are related with the stronger wall-normal convection characteristic of APG TBLs.

The paper is organized as follows: in section 2, we describe the considered data-sets and
the procedure for structure identification; in section 3, we present the results of the percolation
analysis and a preliminary study of the relation between coherent structures and the wall-normal
convection in APG; in section 4, we summarise our results.

2. Methodology
In this section, we describe the APG and ZPG data-sets and the definition of coherent structures,
including the different criteria for identifying the turbulent-non-turbulent-interface (TNTI).

2.1. Data-set
The numerical simulation of the wing section was performed with the spectral-element code
Nek5000 [12], using the PN − PN−2 formulation. The numerical domain is decomposed
into hexahedral elements, and velocity and pressure are represented inside each element by
Lagrangian interpolants defined on nodes with Gauss–Lobatto–Legengre (GLL) and Gauss–
Lobatto (GL) distributions, respectively. The domain sizes are 6c, 4c and 0.2c in the streamwise,
vertical and spanwise directions, respectively, and the leading edge of the airfoil is located at a
distance of 2c from the inflow. The simulation is a well-resolved LES, based on the relaxation-
term filter proposed by Schlatter et al. [13]. The resolution within the turbulent boundary
layer around the wing profiles is ∆x+t = 18, ∆y+n = (0.64, 11) and ∆z+ = 9 in the tangential,
wall-normal and spanwise directions, respectively. Using polynomial order of 11th, to reach this
resolution required approximately 127, 000 elements and 220 million grid points. The location of
transition to turbulence is prescribed by applying tripping at x/c = 0.1 on pressure and suction
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sides, which is implemented as described by Schlatter and Örlü [14]. We employ a Reynolds-
averaged Navier–Stokes (RANS) numerical simulation with the k−ω SST turbulent model [15]
in a much larger computational domain to obtain the velocity distribution at the inflow, upper
and lower boundaries of the LES domain, which is imposed in the LES as a Dirichlet boundary
condition. The outlet boundary condition is the stabilized outflow proposed by Dong et al. [16],
and the boundary conditions in the span-wise direction are periodic. We considered a region of
the domain that extends above the suction side of the airfoil up to a distance of 0.12c in the
wall-normal direction, performing the identification of turbulent structures only in the turbulent
portion of the flow, as discussed later on. The structure identification is also limited in the
streamwise direction between x/c = 0.2 and x/c = 0.9 to avoid both transitional (low-Re)
and extreme pressure-gradient effects, as illustrated in Fig. 1. The wing data-set consists of
approximately 160 independent velocity fields.

Figure 1. Contour plot of the horizontal component of the velocity in an arbitrary field of the
wing data-set, limited to the area where the structure identification is performed. The red line
indicates the airfoil surface and the red diamonds the tripping locations.

The ZPG TBL simulation is part of the DNS data-set described by Jiménez et al. [11] and
it was performed using compact finite differences in the wall-normal and streamwise directions
and Fourier decomposition in the spanwise (periodic) direction. The code is described in detail
in Ref. [17]. The computational domain is 535θ×29θ×88θ, where θ is the momentum thickness
at midway into the simulation box, and the resolutions in the three directions are ∆x+ = 6.1,
∆y+ = 0.3 and ∆z+ = 4.1. The ZPG data-set consists of 38 independent velocity fields. We refer
to Ref. [18] and Refs. [11, 17] for a more detailed description of the wing and TBL simulations,
respectively.

2.2. Coherent structure identification
We focus on coherent structures in turbulent boundary layers defined as connected regions in
the domain where the following condition is fulfilled:

|uv| > Hurmsvrms , (1)

with u and v being the fluctuations of the wall-tangential and wall-normal components of
the velocity with respect to the mean, urms and vrms are their root-mean-squared values
and H is a non-dimensional threshold value. In the following, we use the superscript ˜ to
indicate instantaneous values, capital letters for the time average and lowercase letters for
the fluctuations, so that the Reynolds decomposition for the tangential velocity is written as:
ũ(t) = U + u(t). Expression (1) is equivalent to that proposed by Wallace [7] to perform the
quadrant analysis, and employed by Lozano-Durán et al. [8] in turbulent channel flow. Although
Maciel et al. [9] reported that they applied the same technique in APG TBL directly as done
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in Ref. [8], we note that condition (1) may give unexpected results in TBL when used together
with the classical Reynolds decomposition to define the velocity fluctuations. This is because
velocity fluctuations are not only present in the turbulent region of the boundary layer, but
they may extend even further out beyond the TNTI. In fact, Kwon et al. [19] pointed out the
necessity of considering the TNTI in computing the mean velocity and Hwang and Sung [20],
who studied structures of velocity fluctuations, took this aspect into account.

To assess the possible impact of not considering the TNTI in the identification of the
structures, we applied condition (1), making use of the standard Reynolds decomposition,
coupled with an additional condition to discriminate between turbulent and non-turbulent
regions. Different definitions of the TNTI interface have been formulated, which can be
equivalent in a mean sense, but it is not obvious what effect these may have on the properties of
the coherent structures in the proximity of the interface. Therefore, we compare three different
criteria: the first criterion is that proposed by Bisset et al. [21], and it is based on the enstrophy
(i.e. the module of the instantaneous vorticity), defined as:

|ω̃| =
√
ω̃2
x + ω̃2

y + ω̃2
z . (2)

Note that x and y are coordinates tangential and normal to the wall, respectively. Turbulent
regions are defined as the volumes where |ω̃|, normalised by the mean velocity at the boundary-
layer edge (Ue) and the 99% boundary-layer thickness (δD99), is higher than a threshold Cω, i.e.
if |ω̃| > CωUeδ

D
99. The second criterion was proposed by Chauhan et al. [22] and was originally

applied to experimental data. It defines the turbulent boundary layer as the region where a
modified instantaneous turbulent kinetic energy, k̃∗, is higher than a certain value characterising

the turbulence intensity in the free stream. The condition is expressed as: k̃∗ > CfkU
2
∞/2, where

Cfk is a numerical threshold and U∞ is the free-stream velocity. In the original formulation

of this criterion, the variable k̃∗ is the instantaneous kinetic energy computed in a frame of
reference moving with the incoming fluid velocity and averaged over a box of volume V∗:

k̃∗ =
1

V∗

∫ (
1

2
(ũ− U∞)2 + ṽ2 + w̃2

)
dV∗ , (3)

We modified the definition of k̃∗ to take into account the relatively strong wall-normal convection
induced by the adverse pressure gradient in the proximity of the trailing edge of the airfoil, using:

k̃∗ =
1

V∗

∫ (
(ũ− Ue)2 + (ṽ − Ve)2 + w̃2

)
dV∗ , (4)

where Ve is the wall-normal velocity at the boundary-layer edge. With such a modification,
the mean wall-normal distance of the TNTI, δI , matches the boundary-layer thickness δD99 for a

given Cfk , while the original definition led to progressively higher difference between the mean
δD99 and δI farther downstream, when Ve is higher. Note that the volume average included in
condition (4), motivated by the measurement noise in the original formulation, improves the
method, in particular for the APG data-set (i.e. the resulting average δI has a better agreement
with δ99). Lastly, we introduce a third criterion, defining the turbulent region of the domain as
the volume where the instantaneous turbulent kinetic energy, computed as:

k̃ =
1

2
(u2 + v2 + w2) , (5)

is higher than a certain fraction of the turbulent kinetic energy at the boundary-layer edge,
computed as

ke =
1

2
(u2e + v2e + w2

e) , (6)
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where the overbar denotes the time and spanwise average and the subscript e that the quantities
are evaluated at y = δD99. The corresponding condition is expressed as k̃ > Cekke, where Cek is a
constant scalar value. The third criterion is motivated by practical considerations, as it can be
employed without computing the vorticity or the volume average required, respectively, by the
first and the second criteria. Although these operations are simple from a conceptual point of
view, their cost in terms of memory requirement or computational time can become significant
when processing a large data-set. A possible drawback of condition (6) is a higher sensitivity to
δ99, due to the fact that k exhibits a stronger variation than the mean velocity in the interface
region.

All the considered criteria require the selection of a value for the numerical parameters Cω,
C∗k and Ck, and the identification of the boundary-layer edge to compute the corresponding
scaling factors Ue/δ

D
99, U

2
e and ke. We estimate the location of the boundary-layer edge using

the concept of the diagnostic plot [23], as proposed by Vinuesa et al. [24]. This procedure
takes advantage of the collapse of the curve urms/(U

√
H12) as a function of U/Ue, defining the

boundary-layer edge in terms of the value of the local turbulence intensity that corresponds to
U/Ue = 0.99. Note that H12 is the shape factor, defined as δ∗/θ. Vinuesa et al. [24] showed
that this technique gives results in good agreement with both the composite profiles methods
proposed by Chauhan et al. [25] and Nickels [26]. Given the estimate of δD99, we set the parameters

Cω = 0.1, Cfk = 0.0075 and Cek = 0.6 so that the mean wall-normal distance of the TNTI is
equivalent to the boundary-layer thickness δD99. Fig. 2 illustrates the wall-normal location of the

Figure 2. Comparison between the mean wall-normal location of the TNTI for different criteria,
averaged over the spanwise direction of a single flow field of the APG data-set. Solid blue, green

and red lines for |ω̃| > CωUe/δ
D
99, k̃

∗ > CfkU
2
∞/2, and k̃ > Cekke, respectively, with Cω = 0.1,

Cfk = 0.0075 and Cek = 0.6. The black circles are δD99 estimated with the diagnostic scaling.

TNTI estimated using the three criteria and averaged over the spanwise direction of a single
field of the wing data-set, compared with δD99 calculated using the diagnostic scaling based on U
and urms averaged over the same field. The good agreement between the four curves shows that
all the considered criteria, although not exactly equivalent, follow the streamwise development
of the turbulent boundary layer both quantitatively and qualitatively.

3. Results
In this section, we assess the impact of considering the TNTI in the identification of turbulent
structures, and the results of average and fractional contribution of the wall-normal velocity
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component conditioned on intense uv events.

3.1. Impact of the TNTI on the percolation analysis
To qualitatively assess the effect of taking into account the wall-normal location of the TNTI
interface in the identification of structures, we compare the turbulent region of the domain
according to the three criteria discussed above and the connected components fulfilling condition
(1). Fig. 3 shows the wall-tangential instantaneous velocity component on the frontal section
at x/c = 0.8 of an arbitrary field of the wing data-set, and the location of the TNTI according
to the three criteria in the same section. In this figure we also show the regions of the domain
where |uv| > Hurmsvrms for H = 0.5 and H = 2.0, which are values lower and higher than that
of the percolation crisis, respectively. For each criterion, we define the TNTI at each spanwise
location as the point farthest from the wall where the condition is fulfilled. The three TNTIs
are qualitatively similar, although they differ in specific locations. In addition, the criteria
differ in the region below the TNTI. The first criterion, based on the enstrophy, excludes the
sparse irrotational spots in the turbulent boundary layer, which are occasionally part of intense
Reynolds-stress structures. On the other hand, the second criterion includes in the turbulent
region almost the entire portion of the domain below the TNTI. The third criterion, based
on the instantaneous turbulent kinetic energy, excludes the spots where the turbulent flow is
similar to the mean flow. However, in the example considered here, all the regions identified as
intense Reynolds-stress events and below the TNTI, are also included in the turbulent region, as
determined by the third criterion. The third criterion also excludes a thin layer close to the wall,
approximately corresponding to the viscous sublayer. This fact is not considered a drawback, as
the viscous sublayer is usually excluded a priori during the identification of turbulent structures
in internal flows, such as duct and channel [27].

Remarkably, it is apparent that using condition (1) alone is not enough to distinguish
turbulent structures from fluctuations in the non-turbulent region of the domain, because the
identified connected components can extend across the TNTI and well above yn = δD99. This
fact needs to be taken into account because the fluctuations in the non-turbulent region occupy
a relatively large volume if compared with intense Reynolds-stress events, and it has an impact
on the percolation analysis, as discussed below.

Moisy and Jiménez [28] observed that a percolation crisis occurs in isotropic turbulence for
dissipative structures as well as for vortex clusters. Lozano-Durán et al. [8] performed the
percolation analysis for intense Reynolds-stress events in channel flow, to describe the effects of
changing the values of the numerical threshold H. This analysis consists of examining the ratio of
the volume of the largest structure and the total volume occupied by all the structures, Vmax/Vall,
as a function of H, and it is used in the present context to asses whether the identification of
the structures is affected by the inhomogeneity of the flow in the wall-normal and streamwise
direction. If the probability of belonging to coherent structures is homogeneous in the domain
a percolation crisis occurs at an intermediate value of the threshold H. For low values of H,
Vmax/Vall ≈ 1, when few and large connected components occupy most of the volume, and for
high values of H, Vmax/Vall ≈ 0, when the structures are relatively numerous and small. The
percolation crisis consists of a relatively sharp transition between the two limits of low and high
H, when small structures substitute the larger ones. For an infinitely extended domain, the
connectivity of the system determines the slope of the percolation curve in the proximity of the
crisis [29], whereas, in the case of finite size, the percolation curve will also depend on the specific
realisation of the considered variables. In the present context, see for instance Refs. [28, 8], the
averaged percolation curve over multiple fields is often considered. This operation is appropriate
if the domain size is large enough to have no direct impact on the results, i.e. if the typical
correlation length of the data-set is short enough.

In Fig. 4, we compare the results of the percolation analysis on the APG TBL over the
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Figure 3. (Top) Contour plot of the instantaneous streamwise velocity for an arbitrary field of
the wing data-set, at the streamwise location x/c = 0.8, and (centre and bottom) comparison
between the turbulent region of the domain according to the three considered definitions of the
TNTI and intense Reynolds-stress structures at the same location. The grey contours indicate
the region of the domain where |uv| > Hurmsvrms, for (centre) H = 0.5 and (bottom) H = 2.0.
The colour code for blue, green, red and the black circles is the same as in Fig. 2.
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suction side of the NACA4412 airfoil and on the ZPG TBL data-set with that of channel flow
at a friction Reynolds number of 180 [27]). Note that Reτ = huτ/ν, where h is the half height
of the channel and uτ is the friction velocity. We performed the percolation analysis both

Figure 4. Comparison between the percolation analysis for (top) ZPG and (bottom)
APG, considering three different conditions for structure identification: (left column) |uv| >
Hurmsvrms, (centre column) |uv| > Hurmsvrms and k̃∗ > CfkU

2
∞, and (right column) |uv| >

Hurmsvrms and k̃ > Cekke, for Cfk = 0.0025 and Cek = 0.6. The solid grey lines are the ratio
between the volume of the largest structure, Vmax, and the total volume occupied by structures,
Vall, for every field in the data-set. The dark and light blue lines are two arbitrarly selected flow
fields. The solid black lines are the average Vmax/Vall over the entire data-set. The red symbols
are the results of the percolation for channel flow at Reτ = 180 [27].

without taking into account the TNTI and using the three criteria previously introduced, and
we show the percolation curves for every single field as well as the average to provide additional
information. The results for the enstrophy criterion are not shown here, as they are very similar
to those of the other two criteria. We first observed that ignoring the TNTI has a significant
impact on the results. In the ZPG, the averaged percolation curve has a lower slope, indicating a
less evident percolation crisis. For instance, at the threshold value of H = 2.0, Vmax ≈ 30%Vall,
compared to Vmax ≈ 2%Vall in the channel at the same H. However, if the coherent structure
identification considers only the turbulent region of the domain, the percolation crisis is clearly
evident, and the averaged curves for both ZPG and channel are in very good agreement.

The effects of not taking into account the TNTI are even more pronounced in the APG
data-set. For certain instantaneous fields, Vmax/Vall decreases for increasing H, and it exhibits
a trend similar to that of the ZPG with the same detection procedure. In other cases, few very
large structures can retain a remarkable portion of Vall up to high values of H. The dark blue
and light blue lines in Fig. 4 are examples of the former and latter scenario, respectively. As a
consequence of the appearance of these two different behaviours, the averaged percolation curve
exhibits a peculiar shape. In fact, although an incipient percolation crisis appears at H ' 1,
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Vmax/Vall shows signs of an asymptote towards 0.35 for increasing H. Such a behaviour is not
representative of the typical percolation curve for the individual snapshots, and it is instead the
consequence of the relative occurrence of the two different trends described above. However,
as for the ZPG, taking into account the existence of the TNTI leads to good agreement with
channel flow. The differences between the percolation curves of the ZPG and the APG data-sets
when the TNTI is ignored are probably related to the difference in the flow and the domain
size. We studied this effect progressively reducing the domain size in the ZPG data-set, and we
observed that it can have an impact on the percolation curve (results not shown here). This
phenomenon is due to the size of regions of fluctuations above the TNTI, which are much larger
than the turbulent structures for high values of the threshold H. We did not further investigate
this phenomenon, since we will always consider the TNTI definition in the following.

We note that Maciel et al. [9], who also considered intense uv events in a similar data-set, did
not apply any additional condition related to the location of the TNTI. However, the percolation
diagram reported in their work was computed for the quadrants separately, instead of for the
entire domain. Since the four quadrants are defined based on the signs of the vertical and
horizontal velocity fluctuations, considering them separately means preventing the appearance
of large structures at low H. In fact, at such low values of H, Vmax/Vall is around 0.1, and
the maximum value of Vmax/Vall is reached at the highest values of H, after the percolation
crisis. These authors also considered the number of objects as a function of H, normalized
with the highest number of objects detected at any H, a quantity denoted by N/Nmax. As
the number of coherent structures identified in the non-turbulent region of the domain is much
lower than that in the turbulent region, N/Nmax is not affected by the larger structures in the
non-turbulent region. Based on the behaviour of this quantity as a function of H, they selected
a threshold similar to that employed by Lozano-Durán in channel flow, i.e. H = 1.75, which is
also reasonable in the light of our findings.

The results presented so far suggest that it is adequate to include the definition of the TNTI in
the condition employed for turbulent structure identification. However, the percolation analysis
does not provide decisive arguments in favour of or against any of the three criteria considered
here, which provide very similar percolation curves. In the present study, we will employ the
third criterion, which is easiest to implement. Therefore, we consider as coherent structures the
regions of the domain that fulfill the conditions:{

|uv| > Hurmsvrms , H = 2.0

k̃ > Cekke , C
e
k = 0.6

, (7)

where the instantaneous turbulent kinetic energy k̃ and the turbulent kinetic energy at the edge
of the turbulent boundary layer ke are defined in expressions (5) and (6), respectively.

3.2. Conditional average and fractional contribution
One of the characteristics of APG TBLs is the intense mean wall-normal convection, which is
stronger than in the ZPG case. This phenomenon is linked with the other effects of APG, such as
the higher inner-scaled mean wall-tangential velocity in the wake region, and the emergence of an
outer peak in the turbulent fluctuations. To describe the contribution of the intense Reynolds-
stress structures to the wall-normal convection, we consider two different perspectives: firstly,
we classify the structures according to the quadrant analysis, and we examine the conditional
average of the wall-normal velocity component. The conditional average is computed as:

V =
1

VQ

N∑
i=1

Vi ṽiΦi , where VQ =
N∑
i=1

ViΦi , (8)
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where the index i represents grid points of the domain, Vi is a characteristic volume assigned
to each grid point (Vi = ∆xi∆yi∆zi), ṽ is the instantaneous wall-normal velocity component,
and Φi is 1 or 0 if the ith-grid point fulfils both conditions in (7) and belongs to the considered
quadrant. We defined the quadrants as in Ref. [7], based on the sign of the fluctuations of the
velocity components, so that Q1 events correspond to regions of the domain where v > 0 and
u > 0 (outward interactions), in Q2, v > 0 and u < 0 (ejections), in Q3, v < 0 and u < 0
(inward interactions), and in Q4, v < 0 and u > 0 (sweeps). We choose to perform the analysis
for H = 2.0, which is just above the percolation crisis, ensuring that the intense events are
isolated. Fig. 5 (left) shows the inner-scaled V and the conditional average for the different
quadrants for both APG and ZPG. For the APG data-set, we examine the vertical profile at

Figure 5. (Left) Inner-scaled conditional average of the wall-normal velocity component over
intense uv and (right) absolute value of the same quantity minus the mean V +, for (solid
lines) APG and (dotted lines) ZPG. The average computed over different quadrants is indicated
in different colours: light green, dark green, light red and dark red for Q1, Q2, Q3, and Q4,
respectively. The black lines are the time average and spanwise. The magenta diamonds indicate
the locations of δD99.

the streamwise location x/c = 0.8, where the friction Reynolds number is Reτ = 226, and the
Reynolds number based on the momentum thickness is Reθ = 1124. For the ZPG we consider
a location where Reτ = 499 and Reθ = 1200. Here, the friction Reynolds number is defined
as Reτ = uτδ

D
99/ν, where uτ is the friction velocity. Note that the relatively higher Reθ for

the APG data-set is a consequence of the larger boundary-layer thickness, which is a pressure-
gradient effect. Interestingly, the conditional average of V is in very good agreement for Q1
and Q2, and for Q3 and Q4, although ejections and sweeps are more common than inner and
outward interactions, for both APG and ZPG. Nevertheless, the two cases exhibit qualitative
and quantitatively differences. Despite the fact that the same H was employed in both, the
module of V is higher for intense events in APG than in ZPG. Such a difference, however, is
not as dramatic as the difference between the mean V over the entire flow. Also, while Q1
and Q2 have the same intensity as Q3 and Q4 in ZPG, it appears that the former ones are
stronger than the latter in APG. To better characterise the asymmetry between intense events
with positive and negative V in APG, we compare the modules of the average of the fluctuations
of V conditioned to these events V (Fig. 5, right). Interestingly, the mean of the fluctuations of
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Q1 and Q2, and Q3 and Q4 are in good agreement, similar to what observed in ZPG. This fact
implies that the APG affects the intensity of both ejections and sweeps in the same way.

We also investigated the scaling properties of the conditional average of V as a function of
the wall-normal distance (Fig. 6). Due to the continuity equation and the fact that U and W

Figure 6. Inner-scaled conditional average of the wall-normal velocity component over intense
uv, in log-log scale, for (solid lines) APG and (dotted lines) ZPG. Color code as in Fig. 5.
The blue dashed and dotted lines are guides for the eye, for V + ∝ (y+)2, and V + ∝ (y+)1.17,
respectively. The magenta diamonds indicate the locations of δD99.

at the wall are constant (and equal to zero) in the streamwise and spanwise directions, the first
derivative of V in the wall-normal direction vanishes, and therefore V ∝ (y+)2 close to the wall
[30]. In the buffer region, the scaling of V is not trivial to establish. In the present work, we
limit ourselves to observe empirically that V ∝ (y+)1.17. The same scaling seems to apply for
both APG and ZPG, despite the difference of approximately one order of magnitude in value,
but not to the conditional value of V over Reynolds-stress events.

The conditional average allows the comparison of intense events in the two cases, but does not
give information about their relevance to determine the mean properties. Thus, we examine the
probability of belonging to intense events and to each quadrant, and the fractional contribution
to the mean V (Fig. 7). Note that the fractional contribution is defined as the conditional
average weighted with the probability of occurrence. Remarkably, the probability of occurrence
of intense events as a function of the wall-normal distance is similar in APG and ZPG, and, in
both cases, it varies between 6% and 9% through the turbulent region for H = 2. The most
significant difference is observed in the relative proportion of ejections and sweeps in the buffer
layer. Below y+ ' 10, they are in good agreement in both cases, and sweeps are more common
than ejections, which is a consequence of the short distance from the wall. In the ZPG TBL, at
y+ ' 10, ejections become more common than sweeps. On the other hand, in the APG TBL,
sweeps remain more common than ejections up to a distance from the wall of y+ ' 80. The fact
that the probability of occurrence and the intensity of the events are both relatively similar in
APG and ZPG, despite the significant difference in the values of the mean V , implies that the
fractional contributions of intense events are less significant in APG than in ZPG, in particular
where the wall-normal convection is stronger. In fact, the fractional contributions to V in the
APG are well below the mean, even if only intense ejections are considered. This phenomenon is
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Figure 7. (Left) Probability of belonging to (blue lines) any intense uv event and (red and
green lines) specific quadrants. (Middle and right) Fractional contribution to the wall-normal
component of the velocity for (coloured lines) different quadrants compared with the mean (black
lines) and the overall contribution of all intense events (blue lines). The colour code for different
quadrant is the same as in Fig. 5. Solid and dotted lines are for APG and ZPG, respectively.
The magenta diamonds indicate the locations of δD99.

particularly evident at high wall-normal distances, where V is more than 10 times larger than in
ZPG, and the fractional contribution from ejections is several times smaller than V . Moreover,
since V conditioned at sweeps events has a similar order of magnitude but opposite sign, the
combined contribution of the intense Reynolds-stress events is even lower. In ZPG, the relation
between fractional contributions and mean velocity is virtually the opposite to that in APG.
Except for the wake region, where few intense turbulent structures are detected, the fractional
contributions from ejections is higher than V , as well as the modules of the contributions from
sweeps, despite the fact that both of them both never account for more than 5% of the volume.
Moreover, since sweeps are less common than ejections in the buffer region, but they have both
the same intensity, the total contribution from intense events in ZPG is higher than the mean.
Under this perspective, the results for ZPG are similar to what is observed in channel and
duct flows [27]. In these cases, the fractional contributions to the vertical velocity, which is
positive due to the predominance of ejections, is counterbalanced by the region of the domain
not included in coherent structures. Lastly, in both APG and ZPG, the fractional contribution of
inward and outward interactions is almost negligible, due to the low probability of occurrence of
these events. This result suggests that the more intense wall-normal convection characteristic of
APG TBLs is mainly a mean effect, which is not due to intense turbulent fluctuations. However,
the actual intensity of the vertical fluctuations is increased significantly for the APG.

4. Conclusions
In the present study, we examined coherent structures in wall turbulence, defined as three-
dimensional Reynolds-stress events, in the APG boundary layer developing over the suction side
of a NACA4412 wing section at a chord Reynolds number of Rec = 200, 000 (Reθ ' 1100),
and in a ZPG TBL at slightly higher Reynolds number (Reθ ' 1200). The structure-detection
process follows the three-dimensional extension of the quadrant analysis introduced by Lozano-
Durán et al. [8], and it is performed as a post-processing analysis on flow fields obtained as a
result of high-fidelity numerical simulations. We focused on two different aspects, i.e. whether
it is possible to apply the same structure-identification procedure as in internal turbulent flow,
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and the contribution of the coherent structures to the mean wall-normal convection.
We observed that applying the condition usually employed in the quadrant analysis, i.e.

|uv| > Hurmsvrms, yields the detection of very large structures in the non-turbulent region of
the computational domain. These structures correspond to the fluctuations induced by the
oscillation of the TNTI, and are not related to ejections or sweeps. They tend to be more
persistent than the latter for increasing values of the threshold H, and much larger relative to
the size of the domain. Consequently, the percolation analysis over the entire domain gives a
result which is not in agreement with that in internal flows, such as turbulent channel and duct.
However, we found that if the structure identification is performed in the turbulent region only,
the agreement with internal flows is significantly improved. To identify the turbulent region of
the domain, we employ three different criteria to define the TNTI, calibrated to give the same
boundary-layer thickness on average, and we found that they provide similar results. Overall,
our findings indicate that it is necessary to limit the structure identification to the turbulent
region, through the use of a method to identify the TNTI.

To investigate the relation between pressure-gradient effects and intense uv, we examine the
average of the vertical component of the velocity conditioned at the coherent structures belonging
to each quadrant and their fractional contribution to the same quantity. In channel and duct
flows, ejections are more frequent and more intense than sweeps, at least above the viscous
sub-layer. Therefore, the fractional contribution to the velocity in the wall-normal direction
from intense events is positive, and the contribution from less intense events counterbalances
it. We observed that a similar scenario occurs in ZPG turbulent boundary layer, while APG
are significantly different. In fact, in the latter, the fractional contribution of intense Reynolds-
stress events is much lower than the mean wall-normal convection. Furthermore, in APG intense
events are in general stronger than in ZPG and sweeps are relatively more common than ejections.
These results suggest that, although the adverse pressure gradient has an impact on the turbulent
fluctuations, the wall-normal convection is mainly a mean effect, rather than e.g. the results of
either more frequent or stronger ejections.

Due to the exploratory nature of the present study, several aspects are left for future research.
Concerning the region of the domain to perform the coherent-structure identification, the current
procedure requires to determine a priori the boundary-layer thickness, δD99, and to calibrate ad

hoc parameters such as Cω, Cfk , and Cek. The sensitivity of the percolation analysis to the
location of the TNTI suggests that it may be possible to define the turbulent region of the
domain in terms of the percolation crisis. Such a connection would enable the formulation of a
more general definition of the TNTI. The most promising direction for future research, however,
is to investigate in more detail the relation between the pressure-gradient effects on the mean
properties of the flow and those on coherent structures.
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