
EQUILIBRIUM CONFIGURATION OF A RECTANGULAR

OBSTACLE IMMERSED IN A CHANNEL FLOW

DENIS BONHEURE, GIOVANNI P. GALDI, AND FILIPPO GAZZOLA

Abstract. Fluid flows around an obstacle generate vortices which, in turn, gener-
ate lift forces on the obstacle. Therefore, even in a perfectly symmetric framework
equilibrium positions may be asymmetric. We show that this is not the case for a
Poiseuille flow in an unbounded 2D channel, at least for small Reynolds number and
flow rate. We consider both the cases of vertically moving obstacles and obstacles
rotating around a fixed pin.
AMS Subject Classification: 35Q30, 35A02, 46E35, 31A15.
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1. Introduction and main result

We consider two different fluid-structure problems for a Poiseuille flow through an
unbounded 2D channel containing an obstacle. In the first problem, a rigid rectangular
body B is immersed in an unbounded channel R× (−L,L) and is free to move vertically
under the action of both a fluid flow and of transverse restoring forces, as in Figure 1.

Figure 1. The channel with the vertically moving obstacle B.

In the second problem, the body B is immersed in the same channel R× (−L,L) but
is only free to rotate around a pin located at its center of mass, see Figure 2.

Figure 2. The channel with the rotating obstacle B.
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These two problems are inspired to some bridge models considered in [2, 6]. The
obstacle B represents the cross-section of the deck of a suspension bridge, that may
display both vertical and torsional oscillations, see [5]. Here we have decoupled these
two motions and the action of the restoring forces that generate them.

Figure 3. Vertical (left) and torsional (right) displacements of a deck.

The vertical oscillations in Figure 1 (and on the left of Figure 3) are created by three
kinds of forces. There is an upwards restoring force due to the elastic action of both
the hangers and the sustaining cables which, somehow, behave as linear springs which
may slacken so that they have no downwards action. There is the weight of the deck
which acts constantly downwards: this explains why there is no odd requirement on f
in (2). Finally, there is a resistance to both bending and stretching of the whole deck
for which B merely represents a cross-section: this force is superlinear and explains the
infinite limit in (2), the deck is not allowed to go too far away from its equilibrium
(horizontal) position due to the elastic resistance to deformations of the whole deck.
The torsional oscillations are symmetric, they are due to the possible different behaviors
of the hangers and cables at the two endpoints of the cross-section, see Figure 2 and the
right picture in Figure 3. Their symmetric action translates into the odd assumption on
g in (6). Moreover, the restoring force of the hangers+cables system is not as violent
and strong as the action of the whole deck, resisting to bending and stretching: this
is why at the endpoints g has a weaker behavior than f . The decoupling of vertical
and torsional displacement, as well as the causes generating them, is a first step to
understand the behavior of the deck under the action of the wind (assumed here to be
governed by a Poiseuille flow). The full coupled vertical-torsional motion will be studied
in a forthcoming paper.

For the first problem, a rigid rectangular body B = [−d, d] × [−δ, δ] is immersed in
an unbounded channel R × (−L,L) and is free to move vertically under the action of
both a fluid flow and of transverse restoring forces. The union of the upper and lower
boundaries of the channel is denoted by Γ = R × {−L,L}. The position of the center
of mass of the body B is indicated by h and is counted from the middle line x2 = 0
of the strip. The body B may take different positions after translations in the vertical
direction e2, namely,

Bh = B + he2 ∀|h| < L− δ .
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The cases |h| = L − δ correspond to a collision of the body B with Γ. The domain
occupied by the fluid then depends on h and is denoted by

Ωh = R× (−L,L) \Bh,
see again Figure 1. The motion of the fluid is governed by the Navier-Stokes equations
driven by a Poiseuille flow of prescribed flow rate.

We are interested in determining the equilibrium position of the body, for a given flow
regime of the fluid. This leads us to determine the time-independent solutions to the
following fluid-structure-interaction evolution problem (in dimensionless form)

(1)

ut − divT (u, p) +Ru · ∇u = 0, divu = 0 in Ωh × (0, T )

u |∂Bh = ḣe2, u |Γ = 0, lim
|x1|→∞

u(x1, x2) = λ(L2 − x2
2)e1,

ḧ+ f(h) = −e2 ·
∫
∂Bh

T (u, p) · n in (0, T ) .

Here u and p denote (non-dimensional) velocity and pressure fields of the fluid, whereas
n is the outward normal to ∂Ωh so that, on ∂Bh, it is directed in the interior of Bh.
Moreover, we use δ (the “thickness” of the body) as length scale, i.e. δ = 1 and set
R = V/ν, λ = |Φ|/ν, where V is a reference speed and |Φ| denotes the magnitude of the
flow rate associated to the Poiseuille motion. For simplicity, for the rescaled L and d we
maintain the same notation. We emphasize that Ωh and ∂Bh depend on h through the
position of Bh so that the solution u of (1) depends on h as well; clearly, u also depends
on R. The ODE (1)3 states that the motion of the obstacle B is driven by a nonlinear
oscillator equation with elastic restoring force f = f(h) (having the same sign as h), and
forced by the fluid lift exerted on B. We assume that f ∈ C1(−L+ 1, L− 1) satisfies

(2) f ′(h) > 0 ∀h ∈ (−L+ 1, L− 1), lim
|h|→L−1

|f(h)|(|L− 1| − |h|)
3
2 = +∞ .

The last condition in (2) has the meaning of a strong force aiming to prevent collisions
of B with Γ: this means that the elastic spring is superlinear and has a limit extension
before becoming plastic. This condition is necessary due to the boundary layer that
forms when B is close to Γ, with related appearance of large pressures.

Thus, by eliminating all time derivatives in (1), our objective reduces to find a solution
(u, p, h) to the following boundary-value problem

(3)
divT (u, p) = Ru · ∇u, divu = 0 in Ωh

u |∂Bh = u |Γ = 0, lim
|x1|→∞

u(x1, x2) = λ(L2 − x2
2)e1,

subject to the compatibility condition

(4) f(h) = −e2 ·
∫
∂Bh

T (u, p) · n.

We emphasize that the lift is well defined in a generalized sense for weak solutions,
see [6, Section 3.3].

In the second problem, we assume that the body B is free to rotate around a pin
located at its center of mass: this means that there is no obstruction for B to reach a
vertical position, which translates into the constraint that L2 > 1+d2 (the half diagonal
of B is less than the distance from the pin to Γ); see again Figure 2. The different
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positions of B are now indexed with a parameter θ representing the angle of rotation
with respect to the horizontal

Bθ =

(
cos θ − sin θ
sin θ cos θ

)
B ∀|θ| < π

2
.

The domain occupied by the fluid then depends on θ and is denoted by

Ωθ = R× (−L,L) \Bθ.
We suppose that the body is subject to an angular restoring force g = g(θ) (a torque)
and we are again interested in equilibrium positions which, in this case, are obtained by
finding time-independent solutions to the following fluid-structure-interaction evolution
problem

(5)

ut − divT (u, p) +Ru · ∇u = 0, divu = 0 in Ωθ × (0, T )

u |∂Bθ = θ̇e3 × x, u |Γ = 0, lim
|x1|→∞

u(x1, x2) = λ(L2 − x2
2)e1,

θ̈ + g(θ) = e3 ·
∫
∂Bθ

x× T (u, p) · n in (0, T ) .

Besides the dissimilar geometry of the spatial domains, the other (formal) difference
between (5) and (1) relies in the boundary condition over ∂B. We shall assume that
g ∈ C1(−π

2 ,
π
2 ) satisfies

(6) g odd, g′(θ) > 0 ∀θ ∈
(
− π

2 ,
π
2

)
, lim

θ→π/2
g(θ) = +∞ .

Compared to (2), we notice in (6) the additional oddness assumption and the weaker
requirement at the extremal positions. We emphasize that the restriction to the interval
(−π

2 ,
π
2 ) is due to physical reasons, since we have in mind the cross-section of the deck

of a bridge which cannot reach a vertical position. From a purely mathematical point of
view, the interval could be extended to (−π, π) (allowing an upside down rotation) and
even larger intervals giving the freedom of multiple rotations.

Also in this case, we look for time-independent (weak) solutions to (5), that is, solu-
tions (u(θ,R), θ) ∈ H1(Ωθ)× (−π

2 ,
π
2 ) satisfying the steady-state problem (3) (with Ωh

replaced by Ωθ and boundary values given in (5)) along with the compatibility condition

(7) g(θ) = e3 ·
∫
∂Bθ

x× T (u, p) · n

Again, we emphasize that we can give a meaning to the torque for weak solutions, arguing
as in [6, Section 3.3] for the lift.

Our main result, for both problems, states the uniqueness of the equilibrium position
for small Reynolds numbers.

Theorem 1. Assume that f ∈ C1(−L + 1, L − 1) and g ∈ C1(−π
2 ,

π
2 ) satisfy (2) and

(6). There exists R0 > 0 and λ0 > 0 such that if R < R0 and λ < λ0 then:
• the problem (3)-(4) admits a unique solution (u(h,R), h) ∈ H1(Ωh)×(−L+d, L−d)

given by (u(0,R), 0);
• the problem (3)-(7) admits a unique solution (u(θ,R), θ) ∈ H1(Ωθ)× (−π

2 ,
π
2 ) given

by (u(0,R), 0).
For both problems, the solutions are smooth (C∞(Ωh) or C∞(Ωθ)) in the interior.
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The proofs for the two problems (3)-(4) and (3)-(7) follow the same strategy, with
some slight modifications. We give a sketch of the two proofs in Section 2.

2. Sketch of the proof of Theorem 1

We begin by showing well-posedness for (3) without imposing any fluid-structure con-
straint, neither (4), nor (7). As the condition at infinity is not homogeneous, we look
for a solution written as

u = v + λa,

where v ∈ H1
0 (Ωh) and a is a solenoidal vector field which is equal to (L2−x2

2)e1 outside
a compact set and vanishes on ∂B. We refer to [3, VI.1 and XIII] for more details on
the functional setting. Since we seek an energy bound independent of the position of
B, we introduce two specific extensions a and b of the Poiseuille flow which vanish on
either Bh or Bθ. By the symmetry of the problem (3)-(4), one can assume that Bh lies
entirely above the horizontal line x2 = −L+ 1 + τ where τ > 0 and −L+ 1 + τ < 0. We
then define a as follows. Consider the domain

Σ = (−4d,−2d)× (−L,L) ∪ [−2d, 2d]× (−L,−L+ 1 + τ) ∪ (2d, 4d)× (−L,L).

We also introduce

Ω∞ = {(x1, x2); |x1| ≥ 4d, |x2| ≤ L}, Ωd = {(x1, x2); |x1| ≤ 4d, (x1, x2) ∈ Ωh}.

Let ζ be a cutoff function separating the obstacle and the Poiseuille flow at infinity, e.g.

ζ(x1, x2) = ζ(x1) =

{
0 if |x1| < 3d
1 if |x1| > 4d

ζ ∈ C∞
(
R× [−L,L]

)
.

Consider the problem

divz = ζ ′(x1)(L2 − x2
2) in Σ, z = 0 on ∂Σ ;

by [3, Theorem III.3.3] this problem admits a solution z ∈ H2
0 (Σ) because ζ ′(x1)(L2 −

x2
2) ∈ H1

0 (Σ). Moreover, we have the estimate

‖∇z‖H1(Σ) ≤ c‖ζ ′(x1)(L2 − x2
2)‖H1(Σ),

where c > 0 depends only on Σ. Hence, if we extend z by zero outside Σ we obtain that
z ∈ H1

0 (R× (−L,L)). Then we define

a(x) := ζ(x1)(L2 − x2
2)e1 − z(x)

in such a way that diva = 0. It is clear that a ∈ H2
loc(Ωh) and that a = (L2 − x2

2)e1 for
|x1| ≥ 4d. It follows that a · ∇a = 0 for |x1| ≥ 4d and −∆a = ∇Π for |x1| ≥ 4d, where
Π(x1, x2) = 2x1. We take as weak formulation of (3)∫

Ωh

∇v : ∇ϕ = R
∫

Ωh

[
v · ∇ϕ + λa · ∇ϕ

]
v − λ

∫
Ωh

[
v · ∇a + a · ∇a

]
ϕ + λ

∫
Ωh

∆a ·ϕ,

for any solenoidal test function ϕ ∈ D(Ωh). It is crucial to control the terms∫
Ωh

(a · ∇a)ϕ =

∫
Ωd

(a · ∇a)ϕ +

∫
Ω∞

(a · ∇a)ϕ
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and ∫
Ωh

∆a ·ϕ =

∫
Ωd

∆a ·ϕ +

∫
Ω∞

∆a ·ϕ.

This can be clearly done since a · ∇a = 0 in Ω∞ and∫
Ω∞

∆a ·ϕ = −
∫

Ω∞

∇Π ·ϕ = 0.

When dealing with problem (3)-(7), we consider an open ball B in the channel R ×
(−L,L) that contains Bθ for every θ ∈ [0, 2π]. Then we argue as in the previous case to
construct b ∈ H2

loc(Ωh) such that b = (L2 − x2
2)e1 for |x1| ≥ 4d and b = 0 in B.

Lemma 2. There exists a constant γ0 > 0 independent of h ∈ (−L + 1, L − 1) and of
θ ∈ (−π

2 ,
π
2 ) such that if R · λ < γ0, the problem (3) admits a weak solution u = u(h)

(resp. u = u(θ) when Ωh is replaced by Ωθ). Moreover, there exists C = C(R, λ, L) > 0
(independent of h and θ), with C → 0 as (R, λ)→ 0, such that

(8) ‖∇ (u− λa) ‖2,Ωh ≤ C ∀h ∈ (−L+ 1, L− 1),

(9) resp. ‖∇ (u− λb) ‖2,Ωθ ≤ C ∀ θ ∈
(
−π

2
,
π

2

)
.

This solution is also unique in the class of weak solutions, provided R·λ and λ are below
a certain constant depending only on L. Moreover, u(h) (resp. u(θ) when Ωh is replaced
by Ωθ) is C∞(Ωh) and there exits a pressure field p ∈ C∞(Ωh) such that (3) holds in a
classical sense.

Proof. We deal only with the problem (3), with u defined in Ωh. The case u = u(θ) in
Ωθ is similar. It is enough to show the validity of the a priori estimate in (8) and (9).
In fact, this will allow us to prove the stated properties by using the same (classical)
arguments given in [3, Section XIII.3].

Assume 0 ≤ h ≤ L − 1. The complementing case follows by symmetry. Write
v = u− λa so that also v is solenoidal and satisfies (in the weak sense as above)

∆v −∇p = R
[
v · ∇v + λ

(
a · ∇v + v · ∇a + λa · ∇a

)]
− λ∆a in Ωh

with v = 0 on Γ ∪ ∂B and v → 0 as |x1| → ∞.
Taking v as test function in the weak formulation, which, according to the Galerkin

method, can be assumed to have compact support, we formally derive the following
identity

‖∇v‖22 = −R
∫

Ωh

[
v · ∇v + λ

(
a · ∇v + v · ∇a + λa · ∇a

)]
v − λ

∫
Ωh

∇a : ∇v

= −Rλ
∫

Ωh

(
v · ∇a

)
v −Rλ2

∫
Ωd

(
a · ∇a

)
v − λ

∫
Ωd

∇a : ∇v

We have used the fact that∫
Ωh

[
v · ∇v

]
v =

∫
Ωh

[
a · ∇v

]
v = 0

when using a Galerkin scheme.
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Now we estimate
∫

Ωh

(
v · ∇a

)
v and

∫
Ωd

(
a · ∇a

)
v. For the first, we have∣∣∣∣∫

Ωh

(
v · ∇a

)
v

∣∣∣∣ ≤ ‖∇a‖L∞(Ω∞)‖v‖22 + ‖∇a‖L2(Ωd)‖v‖24 ≤ C1‖∇v‖22

using Ladyzhenskaya and Poincaré inequalities. For the second, we have∫
Ωd

(
a · ∇a

)
v ≤ ‖a‖L2(Ωd)‖∇a‖L2(Ωd)‖v‖4 ≤ C2‖∇v‖2.

Summing up, we have derived the estimate

‖∇v‖22 ≤ C1Rλ‖∇v‖22 + C2Rλ2‖∇v‖2 + λ‖∇a‖L2(Ωd)‖∇v‖2
Hence, simplifying by ‖∇v‖2 and taking R · λ small, we obtain

‖∇v‖2 ≤
1

1− C1Rλ
(
C2Rλ2 + λ‖∇a‖L2(Ωd)

)
.

�

Since the two problems considered have slightly different proof, we now analyze them
separately. Let us first deal with the fluid-structure problem (3)-(4) for which we
consider the following auxiliary Stokes problem, first introduced in [8, (2.15)]:

(10)

divT (w, P ) = 0, divw = 0 in Ωh

w |∂Bh = e2, w |Γ = lim
|x1|→∞

w(x1, x2) = 0.

Note that (10) admits a unique solution that we denote by w which, in fact, depends on
h: w = w(h). We prove an a priori bound for this solution.

Lemma 3. For any h ∈ (−L + 1, L − 1) let ε := (|L − 1| − |h|)/2 (≤ 1). Moreover,
denote by w = w(h) the unique weak solution to (10). Then, there is a positive constant
c, independent of ε, such that

(11) ‖∇w‖2,Ωh ≤ c ε
− 3

2 .

Proof. Fix h ∈ (−L+ 1, L− 1) and, for any 0 < a < 2ε we set

ωa := {(x1, x2) ∈ (−d− a, d+ a)× (h− 1− a, h+ 1 + a)} .
Let φ be a (smooth) cut-off function such that

φ(x) =

{
1 in ωε/2
0 in Ωh \ ωε .

.

and set

(12) Φ(x) = −curl
(
x1φ(x) e3

)
.

Clearly, divΦ = 0 and since (∂i ≡ ∂/∂xi)
Φ(x) = e3 ×∇

(
x1φ(x)

)
= x1(−∂2φ(x) e1 + ∂1φ(x) e2) + φ(x) e2 ,

by the property of φ we deduce Φ(x) = e2 for all x ∈ ∂B. Therefore, Φ is a solenoidal
extension of e2 with support contained in Ωε. Also, by a straightforward argument it
follows that

(13) ‖Φ‖2,ωε ≤ c0 ε
− 1

2 , ‖∇Φ‖2,ωε ≤ c0 ε
− 1

2
(
1 + ε−1

)
,
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with c0 > 0 independent of ε. We now multiply both sides of (10) by w−Φ and integrate
over Ωh to obtain

0 =

∫
Ωh

divT (w, P ) ·
(
w −Φ

)
= −

∫
Ωh

|∇w|2 +

∫
ωε

T (w, P ) : ∇Φ

which yields∫
Ωh

|∇w|2 =

∫
ωε

T (w, P ) : ∇Φ =

∫
ωε

∇w : ∇Φ−
∫
ωε

P divΦ =

∫
ωε

∇w : ∇Φ.

In turn, the latter, with the help of (13), gives (ε ≤ 1)

‖∇w‖22,Ωh ≤ c0 ‖∇w‖2,ωε
(
ε−

1
2 + ε−

3
2

)
≤ 2c0 ε

− 3
2 ‖∇w‖2,ωε ≤ 2c0 ε

− 3
2 ‖∇w‖2,Ωh

which proves (11). �

Let us now show that the lift can be computed through an alternative formula con-
taining an integral over Ωh that involves w.

Lemma 4. Let u be the solution of (3) and w be defined by (10). The lift on Bh (free
to move vertically) exerted by the fluid governed by (3) can be also computed as

(14) e2 ·
∫
∂Bh

T (u, p) · n = R
∫

Ωh

u · ∇u ·w.

Proof. Multiplying (10) by u and integrating by parts over Ωh yields

(15) 0 =

∫
Ωh

u · divT (w, P ) =

∫
∂Ωh

u · T (w, P ) · n−
∫

Ωh

∇w : ∇u.

Indeed, we have ∫
Ωh

u · ∇P =

∫
Ωh

(v + λa) · ∇P = 0

because diva = 0 and P tends to a constant when x1 → ±∞, see [3, Section VI.2 and
Theorem VI.4.4]. As the boundary integral vanishes in (15), we obtain

(16)

∫
Ωh

∇w : ∇u = 0.

On the other hand, if we multiply (3) by w and we integrate by parts over Ωh we get

R
∫

Ωh

u · ∇u ·w =

∫
Ωh

w divT (u, p) =

∫
∂Ωh

w · T (u, p) · n−
∫

Ωh

∇w : ∇u.

By (16) and since w |Γ = 0 and w |∂Bh = e2, we then get (14). �

Lemma 2 enables us to construct a map R2 → R as follows. For (h,R) ∈ (−L+1, L−
1)× [0, γ0) let

(17) u = u(h,R)

be the unique solution of (3). Then we define

ψ(h,R) := f(h) + e2 ·
∫
∂Bh

T
(
u(h,R), p

)
· n
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in which also ∂B depends on h through the position of B. Obviously,

(u(h,R), h) solves (3)-(4) if and only if ψ(h,R) = 0.

Hence, we may rephrase Theorem 1 as follows:

(18) ∃R0 > 0 s.t. ψ(h,R) = 0 ⇐⇒ h = 0 ∀R < R0.

Our purpose then becomes to prove (18). In order to apply the Implicit Function The-
orem we need some regularity of the function ψ.

Lemma 5. We have that ψ ∈ C1(−L+ 1, L− 1)× [0, γ0).

Proof. It can be obtained by following classical arguments from shape variation [7],
adapted to our particular context where the domain variation has only one degree of
freedom, the vertical displacement of B. See [4] for a slightly different problem and [1]
for a similar statement (under mere Lipschitz regularity of the boundary) in the case of
the drag force. �

Then, by the symmetry of the problem (3) in Ω0, we infer that

(19) ψ(0,R) = 0 ∀R < R0.

Incidentally, we observe also that the components of w enjoy the symmetries

w1(x1, x2) = −w1(−x1, x2) and w2(x1, x2) = w2(−x1, x2) .

Lemma 4 enables us to rewrite ψ as

(20) ψ(h,R) := f(h) +R
∫

Ωh

u(h,R) · ∇u(h,R) ·w(h)

that will enable us to replace bounds on the pressure in possible boundary layers with
bounds on the auxiliary function w(h). The next step is to prove the following statement.

Lemma 6. Let ψ be as in (20). There exists R > 0 such that ψ(h,R) > 0 for all
(h,R) ∈ (0, L− 1)× (0,R) and ψ(h,R) < 0 for all (h,R) ∈ (−L+ 1, 0)× (0,R).

Proof. The proof is divided in three parts: first we analyze the case where |h| is close to
0, then the case where |h| is close to L − 1, finally the case where |h| is bounded away
from both 0 and L− 1.

For the case when |h| is small, we remark that Lemma 4 has an important consequence
for a creeping flow, i.e. when R = 0, as u(h, 0), see (17), does not produce any lift
whatever h is. In terms of the function f , defined in (2), this means that

(21) ψ(h, 0) = f(h) ∀|h| < L− 1.

In particular, Lemma 5 and (21) show that ∂hψ(0, 0) = f ′(0) > 0 which, combined
with the Implicit Function Theorem and with (19), proves that there exists γ1 > 0 such
that

(22) 0 < h,R < γ1 ⇒
(
ψ(h,R) = 0 ⇔ h = 0

)
.
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When |h| is close to L− 1, the uniform bound for u(h,R) in Lemma 2 and (11) show
that there exists C > 0 (independent of h and R, provided that R satisfies the smallness
condition in Lemma 2) such that∣∣∣∣R ∫

Ωh

u(h,R) · ∇u(h,R) ·w(h)

∣∣∣∣ =

∣∣∣∣R∫
Ωh

(v + λa) · ∇(v + λa) ·w(h)

∣∣∣∣
=

∣∣∣∣R∫
Ωh

(v + λa) · ∇(v + λa) ·w(h)

∣∣∣∣
=

∣∣∣∣R∫
Ωh

(v · ∇v + λv · ∇a + λa · ∇v + λ2a · ∇a) ·w(h)

∣∣∣∣
≤ C‖∇w‖2,Ωh ≤

C

(|L− 1| − |h|)
3
2

for some C > 0 which depends on the embedding constant for H1(Ωh) ⊂ L4(Ωh): since
Ωh is contained in a strip, the Poincaré inequality enables us to bound L2 norms in terms
of Dirichlet norms and, then, the Gagliardo-Nirenberg inequality enables us to bound
also L4 norms in terms of the Dirichlet norms. On the other hand, by (2) we know that
there exists η > 0 such that

|f(h)| > 2C

(|L− 1| − |h|)
3
2

∀|h| > L− 1− η .

By inserting these two facts into (20) we see that

(23) |ψ(h,R)| ≥ C

(|L− 1| − |h|)
3
2

∀|h| > L− 1− η .

Concerning the “intermediate” |h|, we notice that (21) and (2) also imply that

ψ(h, 0) ≥ f(γ1) > 0 if γ1 ≤ h < L− 1, ψ(h, 0) ≤ f(−γ1) < 0 if − L+ 1 < h ≤ −γ1.

By continuity of f and ψ, and by compactness, this shows that there exists γη > 0 such
that:

– ψ(h,R) > 0 whenever (h,R) ∈ [γ1, L− 1− η]× (0, γη);
– ψ(h,R) < 0 whenever (h,R) ∈ [−L+ 1 + η,−γ1]× (0, γη).

If we take R = min{γ1, γη}, and we recall (22) and (23), this completes the proof of
the statement. �

Lemma 6 proves (18) and, thereby, Theorem 1 for problem (3)-(4), provided that
R · λ < γ0 (as in Lemma 2) and R < R (as in Lemma 6).

Then we consider the fluid-structure problem (3)-(7). We intend here that Ωh in
(3) should be replaced by Ωθ. Instead of (10), we consider the following auxiliary Stokes
problem:

(24)
divT (w, P ) = 0, divw = 0 in Ωθ

w |∂Bθ = −x× e3, w |Γ = lim
|x1|→∞

w(x1, x2) = 0,

which admits a unique solution w, depending on θ: w = w(θ). The force exerted by the
fluid on the body can be computed through an alternative formula containing an integral
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over Ωθ that involves w. Moreover, since for the torque problem we never have limit
situations with “thin channels”, we obtain a stronger result than Lemma 3, ensuring a
uniform bound for w(θ).

Lemma 7. Assume that R · λ < γ0, let u = u(θ,R) be the unique solution of (3) (see
Lemma 2) and let w be defined by (24). The force on B (free to rotate) exerted by the
fluid governed by (3) can be also computed as

(25) e3 ·
∫
∂Bθ

x× T (u, p) · n = R
∫

Ωθ

u · ∇u ·w.

Moreover, w = w(θ) satisfies a uniform upper bound with respect to θ:

∃K > 0 , ‖∇w(θ)‖2,Ωθ ≤ K ∀θ ∈
(
−π

2
,
π

2

)
.

Proof. The proof of (25) may be obtained by following the same steps as for Lemma 4.
For the upper bound, may use the very same strategy as for the proof of Lemma 3,

in particular by using the cut-off functions introduced therein. We end up with a bound
such as (11) but since here we have no boundary layer (no limit singular situation) the
bound is uniform, independently of θ. �

We deduce from Lemma 7 that the compatibility condition (7) can be written as

χ(θ,R) := g(θ)−R
∫

Ωθ

u · ∇u ·w(θ) = 0.

As for (18), Theorem 1 will be proved for problem (3)-(7) if we show that

(26) ∃R0 > 0 s.t. χ(θ,R) = 0 ⇐⇒ θ = 0 ∀R < R0.

By symmetry of Ω0 we know that χ(0,R) = 0 for all R > 0. Moreover, Lemma 7 also
implies that

(27) χ(θ, 0) = g(θ) ∀θ ∈
(
−π

2
,
π

2

)
.

We refer again to [1, 4, 7] for the differentiability of χ. In particular, (27) shows that
∂θχ(θ, 0) = g′(θ) > 0 which, combined with the Implicit Function Theorem, implies that
there exists γ1 > 0 such that

(28) 0 < θ,R < γ1 =⇒
(
χ(θ,R) = 0 ⇔ θ = 0

)
.

When |θ| is close to π/2, the uniform bounds for u(θ,R) in Lemma 2 and for w(θ)
in Lemma 7 show that there exists C > 0 (independent of θ and R, provided that R
satisfies the smallness condition in Lemma 2) such that

R
∣∣∣∣∫

Ωθ

u(θ,R) · ∇u(θ,R) ·w(θ)

∣∣∣∣ ≤ C ∀θ ∈
(
−π

2
,
π

2

)
.

On the other hand, by (6) we know that there exists η > 0 such that

|g(θ)| > 2C ∀|θ| > π

2
− η .

By combining these two facts we see that

(29) |χ(θ,R)| ≥ C > 0 ∀|θ| > π

2
− η .
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Concerning the “intermediate” θ, we notice that (6) and (27) also imply that

|χ(θ, 0)| ≥ g(γ1) > 0 ∀γ1 ≤ |θ| ≤
π

2
− η.

By continuity of g and χ, and by compactness, this shows that there exists γη > 0 such
that |χ(θ,R)| > 0 whenever γ1 ≤ |θ| ≤ π

2 − η and R < γη. This fact, together with (28)
and (29), proves (26) and, hence, also Theorem 1 for problem (3)-(7).
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