
A Hybrid Machine Learning
Approach for Performance Modeling

of Cloud-based Big Data Applications
Ehsan Ataie1, Athanasia Evangelinou2, Eugenio Gianniti2 and

Danilo Ardagna ∗2

1Department of Engineering and Technology, University of Mazandaran, Babolsar, Iran
2Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan,

Italy
Email: ataie@umz.ac.ir, athanasia.evangelinou@polimi.it, eugenio.gianniti@polimi.it,

danilo.ardagna@polimi.it

Nowadays, Apache Hadoop and Apache Spark are two of the most prominent
distributed solutions for processing big data applications on the market. Since in
many cases these frameworks are adopted to support business critical activities, it
is often important to predict with fair confidence the execution time of submitted
applications, for instance when Service Level Agreements (SLAs) are established
with end-users. In this work, we propose and validate a hybrid approach for the
performance prediction of big data applications running on clouds, which exploits
both Analytical Modeling (AM) and Machine Learning (ML) techniques and it
is able to achieve a good accuracy without too many time consuming and costly
experiments on a real setup. The experimental results show how the proposed
approach attains improvement in accuracy, number of experiments to be run
on the operational system, and cost over applying machine learning techniques

without any support from analytical models.
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1. INTRODUCTION

The implementation of big data applications is steadily
growing today. According to a recent analysis, the big
data market is expected to reach $189.1 billion in 2019
with a Compound Annual Growth Rate (CAGR) of
12.0%, about three times the one of the overall ICT
market [1]. In 2020, the global data volume is predicted
to be around 40,000 Exabytes which represents a 300
times growth factor compared to the global data volume
in 2005 [2]. Most of big data applications implemented
today are based on the MapReduce (MR) programming
model, which is the most common adopted solution.
MapReduce-based systems have risen as a scalable
and cost effective solution for massively parallel data
processing [3] The majority of large-scale data intensive
applications designed by MR model are deployed and
executed on a large-scale distributed Hadoop system [4].

Clouds are cost-effective platforms to support such
systems, as resources (e.g., nodes) can be allocated and
deallocated on demand, in response to the applications
requirements and Quality of Service (QoS) needs [5].
As a matter of fact, Forrester research predicts that by
2020 nearly 40% of big data analytics will be supported

by public clouds [6].
From the technological perspective, the rigid division

between map and reduce requires to subdivide a
complex application into a Directed Acyclic Graph
(DAG) of MR jobs, comprising tasks that perform a
specific computation on partitions/splits of the input
data. In this case, the MR paradigm forces the
storage of each intermediate phase results on disk, thus
being unsuitable for applications requiring a low latency
between different phases, along with general application
QoS guarantees. Other frameworks, such as Tez and
Spark, have been introduced [7] to address this problem.
Although Tez can handle general DAGs of map, reduce
and reduce/reduce phases, it still requires to write each
stage results on disk. On the other hand, Spark can
exploit a set of primitives to request the caching of
partial results in memory, thus allowing lower latency
and better performance [8]. In practice, Spark can
easily obtain a 10x to 100x speedup over Hadoop on
specific scenarios [9, 10] and it will stay prominent in
the field for years to come [11].

In this context, one of the main challenges [12,
13, 14] is that the execution time of big data
applications is generally unknown in advance. Because
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of this, performance analysis is usually done empirically
through experimentation, requiring a costly setup [15].

In addition, big data systems are becoming a central
force in society, thus requiring the development of
intelligent systems, which provide QoS guarantees
to their users. Performance prediction models are
extremely useful to aid development and deployment of
big data applications either for design time decisions or
run time system reconfiguration. Design time models
can help, e.g., to determine the appropriate size of a
cluster or to predict the budget required to run big
data analyses in public clouds. Such models can be
used also at run time, allowing a dynamic adjustment
of the system configuration [16, 17], e.g., to cope with
workload fluctuations or to reduce energy costs.

One approach for performance prediction is to
develop white box Analytical Models (AMs) based on
Queueing Networks (QNs), Petri Nets (PNs), Stochastic
Activity Networks (SANs), and so on for predicting
performance metrics. However, analytically modeling
big data applications is very challenging since it requires
a deep knowledge of the system behavior. Moreover,
performance prediction in a cloud context is even
more complex, since applications execution time may
also vary as a consequence of resource contention and
performance degradation introduced by the underlying
virtualization layer [18]. To ensure AM tractability in
such complex systems, AM-based performance models
typically rely on simplifying assumptions that reduce
their accuracy.

On the other hand, black box Machine Learning (ML)
deals with the study and construction of algorithms
that can learn from data and make predictions on
it without a priori knowledge about the internals of
the target system. To be able to predict accurately,
ML models should be built during a training phase
with a sufficient amount of experimental data from
different workloads, using different parameters and
configurations. However, running several experiments
in cloud environments would be costly and time
consuming. Though ML often provides good accuracy
in regions for which it is well trained, it shows poor
precision in regions for which none or very few samples
are known.

Hybrid Machine Learning (HML), which can be
considered as a gray box modeling technique [19, 20, 21],
[22] is a relatively new approach for performance
prediction that tries to achieve the best of the AM
and ML worlds by mixing the two. Such models can
be used to support design-time decision-making during
the development and deployment phases of big data
applications.

In this paper, a combined AM/ML model is presented
to estimate big data applications execution time built
on the most popular frameworks, i.e., MR, Tez, and
Spark, running in cloud clusters. At first, AMs are
proposed to initially model the response time of a big
data application and initiate some synthetic samples.

Then, this analytical data is used to train an initial ML
model. During an iterative and incremental process,
new data from the operational system is fed into the ML
model to build a more accurate performance predictor.
In addition, some intuitions are exploited to provide
more accurate predictions while consuming less data
from the operational systems, which, due to resource
contention, might be affected by noise. After proposing
the hybrid model, the accuracy of the proposed model
is evaluated on real systems by performing experiments
based on the TPC-DS industry benchmark for business
intelligence data warehouse applications. PICO3,
the big data infrastructure of CINECA, the Italian
supercomputing center, is considered as the target
deployment environment. Results and experiments
performed on real systems have shown that the achieved
percentage error is around 15 − 18% for MR and
Tez, and about 10% for Spark with respect to the
actual measurements on average. Moreover, our hybrid
approach is compared against two state of the art ML-
based techniques in terms of different metrics defined to
indicate the prediction accuracy, as well as the time and
cost of constructing final models. The results show that
our hybrid approach outperforms both baseline models.
With respect to previous literature, to the best of our
knowledge, this paper is one of the first contributions
able to study the performance of big data frameworks
in cloud environments using HML approaches.

The paper extends our previous work [19] in several
directions, in terms of implementation and testing of
various analytical models. In particular, a formula-
based approximation is proposed as AM technique
to generate synthetic data samples; interpolation and
extrapolation capabilities of the proposed algorithm are
examined, and finally, the proposed algorithm is applied
not only to a simple MR application, but also to Tez
and Spark queries.

The rest of this paper is organized as follows.
In Section 2, the background and modeling problem
settings are presented. Section 3 introduces our
approach for hybrid AM/ML performance prediction.
Section 4 reports an extensive experimental campaign,
which has been performed to explore and validate the
behavior of our modeling approach. In Section 5 we
compare our work with other researches proposed in the
literature. Finally, the paper is concluded in Section 6
with some notes for future work.

2. BACKGROUND AND MOTIVATIONS

Often big data applications users need to know a priori
how long their job execution will take using different
configurations for the cloud infrastructure they want to
rent. In other words, they want to determine how jobs
execution time changes when the available resources
(in terms of, e.g., Virtual Machines (VMs) type and

3http://www.cineca.it/en/news/pico-cineca-new-platform-
data-analytics-applications
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their number) changes. However, running experiments
in real cloud environments is generally expensive and
time consuming. So, exploiting a reasonably accurate
model for performance evaluation and prediction of
cloud applications is of great importance.

Our work starts from the bootstrapped hybrid
performance modeling proposed by Didona and
Romano in [23], which is a combined AM/ML modeling
approach that brings the strengths of AM methods
to compensate the weaknesses of ML techniques, and
vice versa. On the one hand, hybrid approaches use
analytical modeling, which relies on a priori knowledge
of the internals of the target system, known as white box
approach. On the other hand, machine learning infers
the input/output relationships that map application
and system characteristics onto the target performance
indicators through statistical models, without requiring
the knowledge of internal system details, known as black
box approach. While white box techniques pose good
extrapolation capabilities, i.e., they are able to predict
values in regions of the parameters space not sufficiently
explored, black box ones provide good interpolation
capabilities, i.e., they are able to predict values in
areas of the features space that have been sufficiently
observed during the training phase. So, utilizing
bootstrapped hybrid techniques allows for achieving the
best of both worlds. In particular, hybrid methods
provide: (i) more robust performance predictors that
require a small training phase in order to instantiate
a performance model, (ii) good predictive performance
because of extrapolation capabilities (both borrowed
from AM), (iii) the ability to progressively enhance
the accuracy of the performance predictor as new data
samples from the operational system are gathered,
and (iv) good interpolation capabilities (both borrowed
from ML).

Didona and Romano’s approach exploits an early
analytical model to generate an initial set of synthetic
data points, which are then fed into a ML model
to predict the application performance. Then, the
Knowledge Base (KB) of synthetic data is updated
by real samples over time following either the merge
or replacement strategies to achieve a good accuracy.
According to the merge strategy, real samples are
collected from the real operational system and added
to the synthetic set, while in the replacement case, the
nearest neighbor is removed and a new real sample is
incorporated to the KB. Consequently, the ML model
is also updated and trained according to the new KB.
A critical consideration during the aggregation of real
data for the training process, is that a limited number of
configurations can be analyzed at design time for cloud
big data applications. Moreover, in some cases real
data samples might be noisy, specially when big data
applications run on shared cloud infrastructure [24], and
should be consumed conservatively.

Regarding our work, an iterative procedure was
adopted for merging real data from the operational

system into the KB. Since in our case, both synthetic
and real data come from a limited-size configuration
set, if the replacement strategy is selected, in the first
iteration of our incremental and iterative process of
model selection and training, new real data points evict
the synthetic ones of the same configuration. Then, in
each subsequent iteration, new real data points evict
the old real ones. Therefore, the output model of each
iteration will be trained on the latest available set of
added (possibly noisy) data points, and the accuracy
will not necessarily improve over time. Hence, a model
obtained through the replacement strategy cannot be
used in action, since relying on few possibly noisy data
samples often generates very inaccurate performance
predictions.

On the other hand, if the merge strategy is imple-
mented, the results are more accurate and dependable
than the ones obtained from the replacement strat-
egy, as soon as the number of iterations becomes large
enough. However, since both the size of the configura-
tion set and the number of iterations are rather small in
our scenarios, naively applying Didona and Romano’s
approach, the prediction curve oscillates occasionally
during successive iterations and the error may become
large even in the last iteration, which can produce un-
acceptable prediction outputs.

Figures 1a and 1b show some representative results
from our initial experiments, which demonstrate the
limitations of Didona and Romano’s work. The x-axis
reports the number of cores supporting the execution of
MR jobs on CINECA PICO while the y-axis represents
the jobs response time. The response times obtained
from the ML model, represented by red curve, are
compared with the mean expected values from real
experiments, which are represented by the blue curve.
Moreover, the green curve refers to the simulation
values deriving from the AM and used to form an
initial synthetic KB. While Figure 1a is obtained by
adding two real operational data points to the initial
synthetic data set, Figure 1b is obtained by adding five
operational data points.4 Importing a larger number
of operational data points, one would expect that the
prediction curve gets closer to the expected values curve.
However, comparing the two graphs, it is evident that
adding new points, instead of enhancing the ML model
prediction, actually makes the ML output worse.

Thus, though the bootstrapped hybrid approach is a
good candidate for performance prediction of cloud big
data applications, the work performed by Didona and
Romano required a significant extension to provide the
generation of sufficiently accurate results while being
less dependent to the data samples from the operational

4With adding a data point, we mean adding an application
execution time measure on the operational system for all the
considered configurations. Since 10 different configurations have
been analyzed, 20 and 50 runs on the target systems were
considered in Figure 1 ((a)) and ((b)) when two and five data
points are added.
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FIGURE 1. Didona’s algorithm output when two operational data points (a) and five operational data points (b) are
included in the KB

system with respect to the configurations and usage
scenarios.

3. DESCRIPTION OF THE PROPOSED
APPROACH

The goal of this paper is to identify hybrid ML models
to predict the performance of Hadoop MR, Tez, and
Spark applications running on clusters managed by
the YARN capacity scheduler. In this section, two
analytical models for producing artificial data samples
for our hybrid approach are introduced at first. Then,
the ML techniques that were examined in this study
and the features that were investigated for training and
selecting models are discussed. The detailed steps of our
proposed hybrid algorithm are introduced afterwards.

3.1. Analytical Models

The first AM we considered is a QN, which is shown
in Figure 2. For the sake of simplicity, the model
is used for modeling a MapReduce job execution in
a cluster of computing servers. Since in general,
big data applications have a DAG structure (see e.g.,
Figure 3), QN fork-joins can describe in the most
effective way the parallel execution of DAG nodes tasks
[25]. This model can be easily generalized to model
also Spark applications and other DAGs in memory
frameworks [15, 25].

This analytical model is a closed QN model where
the number of concurrent users is assumed to be one,
and the user starts submitting jobs at the delay center
characterized by the average think time Z. When the
user submits her/his job, it is forked into many map
task requests, which then enter the Finite Capacity
Region (FCR). FCRs model situations where several
service centers access resources belonging to a single
limited pool, competing to use them [26]. Hence, the

FIGURE 2. Queueing model for MapReduce job execution

FCR enforces an upper bound on the total number of
requests served at the same time within itself, allowing
tasks to enter according to a First In First Out (FIFO)
policy. The FCR includes two multi-service queues
that model the map and reduce execution stages. The
FCR and multi-service queues capacities are equal to
the total number of cores available in the cluster. In
this way, we can model the dynamic assignment of
YARN containers to map and reduce tasks whenever
they are ready. Map tasks are executed by the first
multi-service queue and synchronized after completion
by joining back to a single job request; the reduce
phase is modeled analogously. Note that, the map
join is external to the FCR to model that when map
tasks complete, they release container cores, which can
be assigned to tasks ready in the FCR FIFO queue.
Moreover, the reduce fork is also external to the FCR to
correctly model applications characterized by a number
of reducers larger than the total cluster capacity.

Regarding the second model, we consider a first prin-
ciple formula which approximates DAGs execution as
a sequence of stages respecting precedence constraints
(see Figure 3). Such approximation has been proven to
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FIGURE 3. DAG and order preserving sequential
execution

be accurate in scheduling theory for systems in which
the number of tasks is greater than the available re-
sources. This happens very frequently in practice, es-
pecially for Spark jobs characterized by thousands of
tasks [27] which take few milliseconds. A DAG execu-
tion time is estimated as:

RTime =
k∑

i=1
dni

nc
e ti (1)

where ni is the number of tasks, and ti is the average
execution time of each task associated with stage i.
Moreover, nc is the number of available cores during the
jobs5 execution, and k is the total number of stages.

The term d ni

nc
e equals to the number of waves

requested to execute tasks sequentially at stage i.
During the first d ni

nc
e − 1 waves, tasks statistically keep

the nc cores busy, while during the last wave, the final
tasks which in number are lower than or equal to nc,
complete stage i execution.

3.2. Machine Learning Model

In this work, machine learning is used to regress
execution time of Hadoop and Spark applications
in a cloud cluster. Different techniques have been
investigated (for additional details see [28]) including
linear regression, Gaussian Support Vector Regression
(SVR), polynomial SVR with degree ranging between 2
and 6, and linear SVR. As feature set, we started
from a diverse collection of features including the
number of tasks in a map/reduce phase (Spark stage),
average and maximum values of tasks execution time,
average and maximum values of shuffling time, dataset
size, and the number of available cores. The set of

5Spark applications are considered as a single DAG obtained
by adding precedence constraints from the very last stage of each
job and the initial stages of the following one.

relevant features have been obtained by considering the
analytical bounds for MR clusters proposed in [29, 13].

Our initial experiments showed that Gaussian SVR
and polynomial SVR do not predict accurately and the
errors they produce are usually large (up to 175% for the
R1 query introduced in Section 4). On the other hand,
we found that the best results were most often achieved
by linear regression and the linear SVR. However, the
linear regression model was unstable in frequent cases
when linearly dependent features existed. Filtering
linear dependent features required ad hoc analysis and
resulted to be query specific. For this reason, we
preferred to adopt SVR, which is also more robust
to noisy data. Instead of considering the number of
cores feature nc, we considered 1/nc according to the
approximate formula (1).

In our work, we perform a model selection process.
A four-way data splitting method has been applied
for identifying the best ML candidate model. The
available operational data samples in the KB are
partitioned into four disjoint sets, called training set,
cross validation set CV1, cross validation set CV2, and
test set. Moreover, since our goal is to identify models
able to achieve generalization, the operational data
obtained with the largest configurations are included
only in CV2 (this has been demonstrated a relevant
choice for the thresholds optimization step, see the next
section and Section 4). While the training set is used
for training different alternative models, the CV1 set
is exploited for SVR model selection, whereas CV2 is
used as stopping criterion and to determine the best
values for the thresholds of our iterative algorithm.
The test set is used for evaluating the accuracy of the
selected model [30], and it is restricted to include some
specific configurations in order to test interpolation or
generalization capabilities.

3.3. Main Algorithm

The pseudo-code of our proposed HML algorithm is
shown in 1. A synthetic data set, used to form an
initial KB, is generated at line 2 based on the AM
discussed in Section 3.1 (i.e., approximated formula or
simulation). The KB is then used to select and train
an initial ML model at line 3. An iterative procedure
is adopted for merging real data from the operational
system into the KB, which is implemented at lines 4–17.
The operational data for all available configurations is
gathered and then merged into KB at lines 5–8. Then
the updated KB is shuffled and partitioned at lines 11
and 12 as stated before. Using these sets, line 13 is
dedicated to the selection of an ML model between
alternatives and retraining it. Then, some error metrics
are evaluated at line 14.

At lines 16 and 17, two conditions are checked. Both
conditions consider the Mean Average Percentage Error
(MAPE) on the training set and on the cross validation
set CV2 (denoted with tr_Error and CV2_Error in 1)
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Algorithm 1 Hybrid algorithm
1: procedure Hybrid–Algorithm
2: create a KB using synthetic data generated from

AM
3: select and train an initial ML model
4: do
5: for all conf in AvailableConfigs do
6: gather new data from operational system
7: end for
8: merge new data into KB using specified weights

9: InnerIterations← 1
10: do
11: shuffle KB
12: partition KB into train, CV1, CV2, and test

sets
13: select and train new ML model
14: evaluate tr_Error and CV2_Error
15: InnerIterations← InnerIterations + 1
16: while ¬(tr_Error < itrT hr ∧ CV2_Error <

itrT hr) ∧ InnerIterations < MaxInnerIt
17: while ¬(tr_Error < stopT hr ∧ CV2_Error <

stopT hr) ∧ (additional data is available)
18: end procedure

to check whether they are less than specific thresholds
(itrThr and stopThr, respectively) or not. The error
on the training set determines if the model fits well on
its training set itself. So, if this error is small enough,
the model will avoid underfitting or high bias. On the
other hand, the error on the CV2 set determines if the
model has generalization capability. So, if this error
is sufficiently small, the model will avoid overfitting or
high variance.

If the values of errors for the first condition are
not small enough and the maximum number of inner
iterations is not reached, the algorithm jumps to line 10
to reshuffle and split the KB into train, CV1, CV2,
and test sets and choose a different model. On the
other side, the second condition prohibits the emission
of a weak model. As it will be demonstrated in
the following, if a good value is chosen for the two
thresholds, the first condition prevents the oscillation
problem discussed in Section 2, and the second one
stops the procedure as soon as a good model is obtained.

As an example, Figure 4a shows a prediction model
which is generated after adding some new noisy data
into the KB. The x-axis represents the number of
cores for different configurations and the y-axis shows
the response time of MR jobs, in milliseconds. In
this snapshot, the KB contains one synthetic and
five operational samples for each configuration except
for 120, for which only one synthetic sample is available
and is included in CV2. The MAPE of this model
on point 120 is 72%. Then, this model is rejected
by the condition at line 16 since the values of both
error metrics tr_Error and CV2_Error are too high.
Therefore, the model of Figure 4a is replaced with the

model of Figure 4b by our algorithm. The MAPE of
the model of Figure 4b on point 120 is now 19.5%.

On the other hand, if the value of errors for the
second condition is not small enough, the algorithm
jumps to line 4 to start another iteration. Otherwise,
i.e., if both error values are smaller than the stopThr or
no new data from operational system is available, the
algorithm stops. If the errors are sufficiently small, the
current model seems to be good enough for performance
prediction, and the iterative process will be stopped to
avoid consuming more operational data for the matter
of time and cost of real experiments. On the other hand,
if no new data is available, the algorithm stops and
outputs the last ML model.

4. EXPERIMENTAL ANALYSIS

In this section, we explore in depth the behavior of
our modeling technique when it is applied to MR,
Tez, and Spark applications and draw conclusions
for the extrapolation and interpolation capability in
each case. Initially, a complete description of the
experimental setting is provided. Afterwards, we
introduce two baseline techniques used to compare the
effectiveness of our approach in terms of the adopted
performance measures. Finally, four sets of experiments
are described extensively.

4.1. Experiments Setting

The datasets used for running the experiments has
been generated using the TPC-DS benchmark data
generator. We chose TPC-DS 6 as it is the
industry standard benchmark for data warehouse
systems. Three sets of experiments were conducted and
different queries were tested for each technology. In
particular, for MapReduce validation the experiments
were performed on a Hive ad hoc query called R1
(Figure 5) while for Tez jobs a different query, called
Q1 (Figure 6), was considered. Finally, for Spark,
query Q40 from the official TPC-DS benchmark was
analyzed. The data set size has been set to 250 GB.
The experiments were executed on CINECA, the Italian
supercomputing center. PICO, the big data cluster
available at CINECA, is composed of 74 nodes, each of
them boasting two Intel Xeon 10-core 2670 v2@2.5 GHz,
with 128 GB of RAM. Out of the 74 nodes, 66
nodes are available for computation. The storage is
constituted of 4 PB of high throughput disks based on
the GSS technology. For MR experiments we deployed
Hadoop 2.5.1 and Apache Tez 0.6.2, while for Spark
applications version 1.6.0 was considered. The cluster
is shared among different users; resources are managed
by the Portable Batch System (PBS), which allows
submitting jobs and checking their progress, configuring
at a fine-grained level the computational requirements.
For all submissions, it is possible to request a number of

6http://www.tpc.org/tpcds
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FIGURE 4. An oscillated prediction model after adding noisy data to the KB (a) and the new model obtained by hybrid
algorithm (b)

nodes and to define how many CPUs and what amount
of memory are needed. The YARN Capacity Scheduler
is set up to provide one container per core.

Since the cluster is shared among different users,
the performance of single jobs depends on the overall
system load, even though PBS tries to split the
resources. Due to this, it is possible to have large
variations in performance according to the total usage
of the cluster and network contention. In particular,
storage is not handled directly by PBS, thus leading
to an even greater impact on performance. Overall,
queries execution required about 20,000 CPU hours on
the PICO cluster.

For each configuration, execution runs lying farther
from the mean more than three times the standard de-
viation have been considered outliers and discarded (we
verified these measurements were due to exceptionally
high resource contention experienced on PICO). In SVR
training, weighting is used as a means to suggest the
ML to give more relevance and trust to real than to
synthetic samples. Therefore, the weights of real data
are assumed to be five times the weight of analytical
data in all experiments regarding the hybrid approach:
even if some data points might be noisy, higher weights
assigned to real data allows for achieving higher accu-
racy than pure AMs, noisy data are managed within
the inner loop. The number of inner iterations of 1 was
set to 10. For numerical computation, GNU Octave is
used, while LibSVM [31] is exploited as ML library.

To validate the effectiveness of the proposed HML
approach in a comparative manner, two techniques that
lack AM are considered:
• Basic Machine Learning (BML): this approach

relies on SVR for the computation of the regression
function. In this case, the algorithm is fed with the
same operational data used by our hybrid ML at
the last iteration.

FIGURE 5. R1 query

FIGURE 6. Q1 query

• Iterative Machine Learning (IML): in this ap-
proach, operational data are added iteratively but
the initial KB is empty lacking the AM informa-
tion. In other words, we consider the general struc-
ture of 1 except lines 2 and 3 that corresponds to
AM involvement.

To compare quantitatively our hybrid approach with
BML and IML baseline methods, three performance
measures are defined:

• The MAPE of response time: this measure focuses
on the prediction accuracy. It is defined as the

The Computer Journal, Vol. ??, No. ??, ????
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percentage of relative error of the response time
predicted from the learned model with respect to
the expected value of response times measured on
the operational system. MAPE is used to evaluate
both extrapolation and interpolation capabilities.

• The number of iterations: this measure indicates
the number of iterations of the external loop of 1,
which equals the number of real data samples fed
into the ML model for each configuration.

• The cost: this measure focuses on the cloud
expenses for model construction and is defined as:

cost =
∑

i∈AC

Nci
· R̃T imei ·Nei

· P (2)

where AC is the set of configurations used for
model selection and training, Nci

and R̃T imei

are the number of cores and the execution time
associated with each configuration i, and Nei

is the
number of operational data points used for training
the model. Moreover, P is the price of using one
core per time unit.

In the following sections, the aforementioned four
sets of experiments are described. For the first and
second sets of experiments where the MR query is used
(Section 4.2 and Section 4.3), the accuracy of the AM
is evaluated by comparing the results obtained from
the proposed approximation formula and the proposed
QN simulation, respectively, with the real experiments
in terms of response time. To fairly compare our
hybrid approach with the IML, the results of finding the
optimal combination of the thresholds that minimizes
the error of response time is introduced afterwards.
Then, the extrapolation and interpolation capabilities
of the approaches are investigated when some points
lack from the configuration set (i.e., they are introduced
in the validation set only).

It is important to point out that, for the third
and fourth sets of experiments considering DAG-
based Tez jobs and Spark applications ((Section 4.4
and Section 4.5) our hybrid approach adopts the
same thresholds obtained from the two-phase MR job
in Section 3.1. Vice versa, the optimal threshold
combination for the IML is calculated. In other words,
the thresholds for the IML method are optimized
for each set of experiments while for our proposed
approach, the optimum combination is calculated only
in MR case and then, it is used for Tez and Spark queries
performance prediction.

4.2. MapReduce Job Analysis with Approxi-
mated Formula

In this section, we report the results we have achieved
on R1 Hive query considering the approximated
formula (1) as AM technique. Several configurations
ranging from 20 to 120 cores have been used for this
set of experiments. For each configuration, the profiling

phase has been conducted extracting the number of map
and reduce tasks and their average durations across 20
runs.

4.2.1. Data from Analytical Model
The configuration set for analytical data includes 11
points that represent the different number of cores used
for executing MR jobs. Figure 7a plots the average
response time of MR job executions versus the number
of cores. The average relative error of the values
obtained from Equation 1 is around 16% with respect to
the mean values of real samples, the maximum relative
error is about 31%.

4.2.2. Finding the Optimal Thresholds
To have a fair comparison between the approaches, we
found the optimal combination of the (itrThr, stopThr)
pair in both hybrid and IML cases. By optimal
combination of the two thresholds, we mean the values
that minimize the MAPE on the CV2 set.
We varied the value of itrThr in the range [25, 40] and

of stopThr in the range [10, 30] with step 1. For every
combination of the two thresholds, the algorithms are
run for 50 different seeds to generate different results.
Then, the generated results are averaged to compute
the mean value of MAPE for every combination of the
thresholds. The results of running these experiments
showed that the optimum combination of the two
thresholds are (34, 23) and (30, 19) for HML and IML
approaches, respectively.

4.2.3. Extrapolation Capability on Many Cores
To examine the extrapolation capability of the
approaches in the upper region of the configuration
set, analyses considered the optimal thresholds from
Section 4.2.2, and progressively removed from the
training set and cross validations sets CV1 and CV2
the configurations with the largest capacity, which are
moved to the test set. In other words, in the first
scenario the training and CV1 set included AM data
and the real system data only for configurations from 20
to 100 cores while the CV2 and test sets included
experimental data for 108 and 120 cores, respectively.
In the second case, we considered real data for the
training and CV1 set from 20 to 90 cores, the CV2 set
included operational data for 100 cores, while the test
set included experimental results in the range [108, 120]
cores and so on. Then, the error on response time
prediction, the number of iterations, and the associated
cost of the alternative techniques were compared.

If not differently stated in the remainder of the paper,
both the extrapolation and interpolation capabilities
analyses will be performed by training 50 different
models obtained by setting 50 different seeds. These
seeds are also different from the ones used to identify
the optimal threshold combination.

As can be seen from Figure 7b, the error on the test
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FIGURE 7. (a) Comparison of formula-based approximation, simulation and the mean values of real data, (b) right
extrapolation and (c) cost for R1 query
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FIGURE 8. Left extrapolation for R1 query

set of the hybrid and the IML across the 50 models are
close up to three missing points. By missing points, we
mean the number of configurations that are included in
the test set but not considered for training. However,
when the number of missing points grows, our hybrid
approach performs better than the IML. On the other
hand, the number of learning iterations of the hybrid
approach is between 2 and 6 and is thus rather smaller
than the one of IML, which varies between 12 and 16.5.
Translating the number of iterations to the cost, the
results are shown in Figure 7c, which indicates the cost
ratio of IML with respect to our hybrid solution. As the
figure shows, IML cost is from 2 up to 4 times larger
than our hybrid technique.

4.2.4. Extrapolation Capability on a Few Cores
Next, we examined the extrapolation capability of the
approaches in the lower region of the configuration set
when only point 20 is included in the test set, and we
compared the error on response time prediction, the
number of iterations, and the associated costs. In the
next steps, moving from the left side of the configuration

axis towards the right, we gradually added other points
to the test set. As it can be seen from Figure 8,
our hybrid approach outperforms both the IML and
BML approaches in terms of the MAPE in almost
all scenarios. Specifically, as long as the number of
missing points is small, the error on the test set of the
hybrid and IML are relatively close, but the number of
iterations of the hybrid approach is much smaller than
the one of the IML. When the number of missing points
gradually grows, although the number of iterations of
the hybrid and IML models become close, the accuracy
of the hybrid approach improves in comparison with the
IML.

As shown in Figure 8 and Figure 7b, the values of
errors of all approaches in left extrapolation scenarios
are generally larger than the ones in right extrapolation
scenarios. We can enumerate a few reasons for this
behavior: first, the left side of the response time curve
is more informative than the right side as depicted in
Figure 7a. As a result, the prediction when some data
points on the left side of the configurations are missing
from the training set is more difficult. Second, the
optimization process for finding optimum combinations
of the thresholds was run including 120 in the CV2
set. Hence, it can be expected to get better results
for the right than the left extrapolation. Since the
accuracy for the left extrapolation on R1 Hive query
is low (percentage error greater than 30% is considered
too high in performance evaluation practice [32]), as
well in the remaining technologies, in the remainder of
the paper we omit left extrapolation results for space
limitation. Note that from a practical perspective, right
extrapolation is more significant than left extrapolation,
since end-users are more concerned to predict the
performance of a query on larger (and more expensive)
system configuration to evaluate the performance gain
against the additional cost to be incurred.

4.2.5. Interpolation Capability
To assess the interpolation capability of our proposed
HML approach, we considered three different scenarios:
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FIGURE 9. Interpolation for R1 query

a configuration where the training and CV1 set included
AM data and operational data for: (i) 20, 72, and 120
cores, (ii) 20, 48, 72, 100, and 120 cores, and (iii) 20,
40, 48, 72, 80, 100, and 120 cores. These scenarios
are respectively reported in the Figure 9 and Figure 10
on the x-axis with values 7, 5, and 3 as the number
of missing points from the full set of configurations
available.

As shown in Figure 9, though the error of response
time prediction of hybrid approach is slightly worse than
that of the IML, the hybrid approach still performs
much better than BML. Furthermore, the number
of iterations of hybrid ML and BML approaches are
between 2 and 3 in all three scenarios, which is smaller
than that of IML. Moreover, as shown in Figure 10 (the
blue curve), the cost of constructing HML and BML
models is much less than that of IML model; e.g., it
is almost one third of the cost of the IML approach
when three or five points are missing. Thus, our hybrid
approach performs better than the BML in terms of
accuracy and outperforms the IML in terms of the
number of experiments to run and the corresponding
cost.

4.3. MapReduce Job Analysis with QN
Simulation

The goal of this section is to evaluate our hybrid
approach when relying on a less accurate AM, i.e., QN
simulation, with respect to the previous section. The
lower accuracy was obtained by considering exponential
time distribution for map and reduce stages while the
best fitting for the reduce stage can be obtained through
Erlang (see [25] for further details). In this way, we
can verify if our hybrid approach is too sensitive to the
accuracy of the AM or if the interpolation and right
extrapolation capabilities can be obtained also in such
conditions.
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(simulation)

4.3.1. Simulation Results
At first, the QN model shown in Figure 2 is used to
generate the set of synthetic data samples that feed the
initial KB. The JMT [26] with 10% accuracy and 95%
confidence interval has been used as QN simulator. The
think time, Z, was set to 10 seconds and a single user
was considered.

In Figure 7a, the average response times obtained
from simulation (red line) are compared with those
obtained from real experiments. The average relative
error of the values observed from simulations is around
65% with respect to the mean values of real samples,
and in the worst case, the relative error reaches 96%
which shows that the QN analysis is very conservative.

4.3.2. Finding the Optimum of the Thresholds
To have a fair comparison between the two techniques,
the optimum combination of the (itrThr, stopThr)
thresholds was determined as in the previous section
both for our hybrid and the IML approach. The
optimum combination of the two thresholds are (38, 24)
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FIGURE 12. Interpolation for R1 query (simulation)

and (30, 19) for HML and IML approaches, respectively.

4.3.3. Extrapolation Capability for Many Cores
The results of the right extrapolation are reported
in Figure 11. Our hybrid approach outperforms the
IML approach in terms of the MAPE in all scenarios.
When the only missing point is 120, the error of our
hybrid approach is around 11% in contrast to around
14% of IML. On the other hand, when half of the
rightmost points of the configuration set are missing,
hybrid approach achieves 30% error on the test set while
IML obtains about 38%.

4.3.4. Interpolation Capability
For assessing the interpolation capability of our
proposed approach, we followed an identical procedure
and considered the same configurations analyzed in
Section 4.2.5. As shown in Figure 12, the error of
response time prediction of the hybrid approach is
slightly worse than the one of IML and BML, while its
number of iterations are significantly lower than IML.

The maximum relative error in the case of HML
reaches 20.5% while for IML and BML it is equal to
19.5% and 18.5%, respectively. Moreover, as shown in
Figure 10, the cost of hybrid and BML models is much
less (up to 3x) than the IML model one.

4.4. Tez DAG-based Job Analysis with Ap-
proximate Formula

To validate the effectiveness of the hybrid approach
and to investigate if the optimal thresholds determined
for R1 query in Section 4.2 can also be generally
applied to other big data technologies, we perform
another set of experiments on a Hive query, called
Q1 shown in Figure 6. The profiling phase has been
conducted by extracting the number of tasks and the
average task durations from around fifteen runs of
each configuration. The configuration set for analytical

data contains 12 points that are representatives of the
number of available cores when executing Apache Tez
jobs. These points include 2, 3, 4, 5, 6, 8, 9, 10, 12, 15,
16, and 20 cores. This set is equal to the set of system
configurations we used for gathering real data samples
from the operational system.

4.4.1. Data from Analytical Model
Equation 1 is used to approximate response time of MR
jobs executing Q1 query and to produce the initial set
of synthetic data samples.

In Figure 13a, the response times determined through
Equation 1 are compared with the expected values
of those obtained from real experiments. While the
average relative error of the values obtained from
approximation is around 15% with respect to the mean
values of real samples, the maximum relative error is
45%.

4.4.2. Finding the Optimal Thresholds
In order to examine the generalization capabilities of
our proposed method, the optimum combination of the
(itrThr, stopThr) determined in Section 4.2.2, (34, 23),
is used to run the hybrid approach. Vice versa, the
optimum finding process is run again for the IML
approach based on Q1 data to provide the best situation
for IML. The optimum values of (itrThr, stopThr)
thresholds obtained for IML are (26, 15).

4.4.3. Extrapolation Capability on Many Cores
To evaluate the extrapolation capability of the proposed
method from the right side, we started running the
three approaches when only 20 cores are missing (i.e.,
20 cores configuration is included in the test set) and
we gradually added other configurations to the set
of missing points. Next, the values of performance
measures are compared for the three approaches. The
results of the comparison are depicted in Figure 13b and
Figure 13c.

As can be seen from Figure 13b, the hybrid approach
outperforms the IML and BML ones in terms of
the MAPE in all scenarios, ranging from when the
rightmost point of the configuration set (i.e., 20) is the
only missing point, to when five rightmost points of
the configuration set (i.e., 10, 12, 15, 16, and 20) are
missing. When the only missing point is 20, the error
of our hybrid approach is around 19% in contrast to
around 34% and 40% of IML and BML approaches,
respectively. On the other hand, when five of the right-
most points of the configuration set are missing, hybrid
approach achieves around 19% of error on average on
the test set in contrast to about 38% and 56% of IML
and BML approaches, respectively.

The average number of IML iterations ranges
between 2.5 and 3.5 while it is always below 2 in all
extrapolation scenarios of HML and BML approaches.
The cost of model construction for hybrid, BML, and
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IML approaches are compared in Figure 13c. The cost
of the IML approach is much larger (up to 2.5x) than
the one of the hybrid and BML techniques.

4.4.4. Interpolation Capability
To evaluate the interpolation capability on Q1 query, we
considered three different scenarios, which correspond
to the following configurations (in terms of number of
cores) included in the train and CV1 sets: (i) 2, 5, 10,
and 20, (ii) 2, 3, 8, 9, 16, and 20, and (iii) 2, 3, 5,
6, 10, 12, 16, and 20. These scenarios are respectively
determined by 8, 6, and 4 as the number of missing
points (with respect to the full set of operational data)
on the horizontal axis of Figure 14.

As shown in Figure 14, the relative error increases
when the number of missing points rises. The hybrid
and the BML approaches have the best and the worst
prediction accuracy, respectively. The error of our
hybrid approach when the real data for just one third
of the configuration set is available remains under 14%.
On the other hand, the number of iterations of hybrid
approach is smaller than that in IML approach and
remains under 3 in all scenarios. Moreover, as shown
in Figure 13c, the cost of hybrid model construction
is much lower than the IML one. Thus, our hybrid
technique performs better than the BML in terms of
accuracy and performs better than the IML on all
metrics.

4.5. Spark Job Analysis with Approximate
Formula

In order to examine the predictions techniques on
Apache Spark, we performed the last set of experiments
on the official Q40 query of the benchmark TPC-
DS, whose DAG is shown in Figure 15, using the
approximated formula in Equation 1 as AM. In
particular, we followed a similar process as reported in
Section 4.2, using the same set of configurations for both
analytical and real data as in R1 case. The profiling
phase has been conducted extracting the number of
tasks and the average task durations from around ten
runs with the same configuration.

4.5.1. Data from Analytical Model
In Figure 16a we compare the average execution
times for every configuration obtained across the
experiments to the ones obtained from Equation 1. The
average relative error of the values obtained from the
approximation formula, is around 34%.

4.5.2. Finding the Optimal Thresholds
The optimal combination of the (itrThr, stopThr) was
determined only for the IML approach and was equal to
(25, 15). For every threshold combination the algorithm
run for 50 different seed values to generate different
results. Vice versa, in the case of hybrid approach, we

used the same thresholds (34, 23) obtained for R1 query
in Section 4.2.

4.5.3. Extrapolation Capabilities on Many Cores
Right extrapolation capability analysis results are
reported in Figure 16 (b) and (c). Figure 16b shows
that the use of the proposed approach defeats the IML,
providing always a lower MAPE on the test set. What is
remarkable is that while we are moving to the left side,
where more points are missing the MAPE error of IML
increases dramatically, demonstrating the dominance of
our proposed approach. In particular, when only 120
cores configuration is missing, the error of the hybrid
model is 7% approximately, contrary to 15% of the
IML. However, when 5 points are missing from the
configuration set, the error of IML shoots up to 30%
while in case of hybrid algorithm a small increase is
observed (11%).

4.5.4. Interpolation Capability
Concerning interpolation, we considered three different
scenarios when applying hybrid algorithm to Q40 query:
(i) three points 20, 72 and 120 cores are missing (ii) five
points 20, 48, 72, 100, 120 cores are missing, and finally
(iii) seven points 20, 40, 48, 72, 80, 100 and 120 cores are
missing. Concerning the relative error, we observe from
Figure 17 that the IML approach gives better accuracy
compared to our technique. Although the hybrid error
for three missing points is high (17%), in case of seven
missing points the hybrid algorithm gets closer to IML
performance. However, the number of iterations of the
hybrid approach is smaller than the one of IML and
lower costs can be obtained as reported in Figure 10.

5. RELATED WORK

In recent years, ML became popular to predict the
performance of complex computer systems. Yigitbasi et
al. [33] have compared several ML methods to predict
Hadoop clusters performance, ranging from ordinary
linear regression to advanced techniques like artificial
neural networks, regression trees, and SVR with diverse
MR applications and cluster configurations. The
authors in [34] have proposed AROMA, a system
based on SVR for automatic resource allocation and
configuration in cloud-based clusters. AROMA mines
historical execution data in order to profile past
submissions and to match incoming jobs to the available
performance signatures for prediction. In this way, the
proposed system can avoid deadline violations stated in
SLAs incurring minimum cost.

Venkataraman et al. [14] have built Ernest, a black
box performance prediction framework for large-scale
analytics based on ML. They used optimal experiment
design to collect the minimum number of training
points. The accuracy of the proposed approach was
evaluated on Amazon EC2 using different business
analytics workloads based on Spark MLlib. The
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FIGURE 13. (a) Comparison of formula-based approximation and the mean values of real data, (b) right extrapolation and
(c) cost for Q1 query

FIGURE 14. Interpolation for Q1 query

evaluation showed that the average prediction error is
under 20%.
Alipourfard et al. [35] have presented CherryPick, a

black box system that leverages Bayesian optimization
to unearth the optimal or near-optimal cloud configura-
tions that minimize cloud usage cost guaranteeing appli-
cation performance. Similar ideas were also exploited in
the design of Hemingway [36], which embeds the Ernest
model and it is specialized in the identification of the op-
timal cluster configuration for Spark MLlib based appli-
cations. Hemingway takes into account some machine
learning algorithm peculiarities and adopts experiment
design to collect as few training points as possible.

Delimitrou and Kozyrakis [37] have proposed Quasar,
a black box cluster management system that maximizes
resource utilization while meeting performance and
QoS constraints. The authors exploit classification
techniques to determine the impact of the type, amount
of resources, and workload interference on the system
performance.

Some of the related works, exploited the possibility
to use AM and ML in synergy to get the best of both
worlds. Tesauro et al. [39] have proposed an autonomic

FIGURE 15. Q40 query DAG

resource allocation in a multi-application prototype
data center with the goal of maximizing the total
applications expected business value. They show how to
combine the strengths of both Reinforcement Learning
(RL) and queuing models in a hybrid approach, in
which RL trains offline on data collected while a
queuing model policy controls the system. Thereska
and Ganger [40] have presented a hybrid performance
modeling framework which uses the redundancy of high-
level system specifications described through models
and low-level system implementation to localize system-
model inconsistencies. The final goal is to give hints to
the system and model designer regarding the root-cause
of the problem. Queuing-based mathematical models
were coupled with Decision Tree (DT) regressors in
[40]. Herodotou et al. [41] have proposed Elastisizer,
a system to which users can express cluster sizing
problems as queries in a declarative fashion. In this
system, the overall process of estimating execution time
and cost of MR jobs is broken down into four smaller
steps and, for each step, a suitable white-box or black-
box modeling approach is chosen.
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FIGURE 17. Interpolation for Q40 query

There are also hybrid works that target in-memory
transactional data stores: Rughetti et al. [42] have
used a mixed AM/ML approach to dynamically tune
the level of concurrency of applications based on
software transactional memory to optimize system
throughput. The AM and ML techniques used in
this research are parametric analytical modeling and
neural networks, respectively. Didona et al. [43] have
introduced Transactional Auto Scaler (TAS), a system
for automating the scaling of fully-replicated in-memory
transactional data grids in cloud platforms. In TAS,
analytical and ML models were incorporated to predict
throughput, commit probability, and average response
time. White box models, based on queuing theory,
are used to capture the dynamics of concurrency con-
trol/replication algorithms to forecast the effects of
data contention, as well as the effects of contention
due to CPU utilization. Didona et al. [44]
have considered the issue of automatically identifying
the optimal degree of parallelism of an application
using distributed software transactional memory by

introducing a hybrid approach. They exploit TAS [43]
as the analytical-based performance model, while DT
regression is utilized as the machine learning technique.

Dalibard et al. [45] have developed BOAT, a
gray box framework, which allows developers to build
efficient auto-tuners for complex computer system.
BOAT is based on structured Bayesian optimization.
The authors demonstrated how to optimally tune
the scheduling of a neural network training on a
heterogeneous cluster. Didona et al. [46], have
investigated a technique whose main idea consists of
relying on an AM to generate a KB of synthetic data
over which a complementary ML is initially trained.
The initial KB is then updated over time to incorporate
real samples from the operational system. For updating
the KB, the authors proposed different algorithms
based on merge and replacement. As case studies,
they considered Infinispan and Total Order Broadcast
(TOB) relying on DT regression and queuing models.
The effect of the proposed parametrized algorithms
on the mean average percentage error of the gray
box model was evaluated by means of ten-fold cross
validation.

6. CONCLUSIONS

In this paper, we proposed a novel hybrid machine
learning technique which is able to use AM and ML
in synergy to model and predict the execution time
of jobs running on the most widely used big data
frameworks. With respect to the state of the art
work, our approach is particularly effective to predict
the performance of big data applications when shared
physical environments characterized by high resource
contention are considered. Moreover, our method
outperforms baseline machine learning techniques,
providing always better extrapolation capabilities,
better interpolation capabilities in many cases and
reducing significantly the costs (up to 4.5x) and the
number of training samples to be gathered from
the operational system, even without optimizing the
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threshold parameters. Overall, the MAPE that can be
achieved on the test set ranges between 7% and 30%,
even when the AM is not accurate.

In our research agenda, we plan to investigate
the effectiveness of the approach when using more
accurate AMs (e.g., Stochastic Petri Nets) and to
adopt the models for run time management of big data
applications.
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