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SUMMARY

Red blood cells (RBCs) are able to deform and flow through the microcirculation thanks to the vis-
coelastic properties of their membrane. In this study, we present a FSI framework featuring a finite
element RBC viscoelastic model coupled with a lattice-Boltzmann method to assess the impact of de-
formability, internal viscosity, and membrane viscosity on the RBC dynamics in bounded shear flow.
We observed that (i) including a viscoelastic membrane influences more the migration timescale than
the final equilibrium position along the channel centerline; (ii) the migration timescale is underesti-
mated when the physiological viscosity contrast and the membrane viscosity are neglected.
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1 INTRODUCTION

In the microcirculation, red blood cells (RBCs) flow through capillaries smaller than their size to
deliver oxygen to the surrounding tissues. To meet this physiological need, the RBCs must be able
to undergo significant shape changes. The RBC membrane, a soft shell containing the cytoplasm and
composed by a lipid bilayer and an inner cytoskeleton, is what ensures that the RBCs can withstand
large deformations without being subjected to permanent structural damages. In particular, the lipid
bilayer is responsible for the membrane bending rigidity and resistance to area changes, whereas the
viscoelastic properties of the cytoskeleton determine the response to shear deformation.

While the membrane elasticity is always taken into consideration in analytical and numerical models,
a non-physiological viscosity contrast is often assumed as a simplifying hypothesis despite recent
investigations showed that the RBC shape in shear flow is controlled by the cytoplasm viscosity [1].
Additionally, early-on studies revealed a connection between the RBC membrane viscosity and the
transient dynamics of deformation [2], but still nowadays the membrane viscosity is typically over-
looked in numerical models. Nonetheless, recent numerical studies demonstrated that an accurate
RBC model has to account for both the membrane viscosity and viscosity contrast to quantitatively
reproduce the membrane relaxation after axial/shear loading of physiological RBCs [3].

In the experimental practice, it is challenging to isolate the contribution of each membrane viscoelas-
tic property to the RBC dynamics. In this context, cell-resolved simulations represent an interesting
numerical tool to fully describe the effects of cell viscoelasticity. To this end, we present a fluid-
structure interaction (FSI) framework composed of an incompressible lattice-Boltzmann (LB) method
[5] to resolve the fluid dynamics inside and outside the RBCs coupled with a finite-element (FE)
model to describe the RBC structural dynamics via an immersed-boundary (IB) technique based on
the Moving-Least-Square (MLS) approximation [5]. The LBM is supplemented with a tagging pro-
cedure to assign a viscosity contrast between the cytoplasm and the plasma, whereas the FE model is
complemented with the Standard-Linear-Solid (SLS) model [4] to describe the viscoelastic behavior
of the RBC membrane. The aim of this study is to investigate the role of in-plane shear elasticity,
viscosity contrast, and membrane viscosity on the RBC transport in bounded shear flow.
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2 METHODOLOGY
2.1 FSI strategy: coupling of lattice-Boltzmann method and Finite-Element method

For a generic FSI simulation setup, a 3D Cartesian lattice with fixed nodes is first defined. The com-
putational Eulerian domain (2 is the union of the fluid and interface nodes according to the graphical
definition reported in Fig. 1. The fluid continuity and momentum equations are solved in {2 by means
of a LB method [5] with a D3Q19 scheme. On the boundary 052, no-slip, /inlet/outlet boundary con-
ditions are imposed. If an immersed fixed boundary is present, the procedure of Bouzidi is used to
impose no-slip conditions at the interface nodes. The evaluation of the forcing term to account for the
presence of the viscoelastic RBCs (i.e. the Lagrangian domain {2;) is performed using a FE model.
An IB technique based on the MLS approximation is adopted to enforce boundary conditions at the
fluid-solid interface, thus ensuring the continuity of conserved quantity fields [5].
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Figure 1: Graphical representation of the computational domain and simulation setup. The computational
domain is composed by inactive nodes (grey), outer fluid nodes (dark blue), inner fluid nodes (light blue), and
interface nodes (green). The union of fluid and interface nodes is the Eulerian domain 2. The Lagrangian
domain €2, represents the red blood cell (red). The simulation setup features two infinite parallel plates moving
in opposite direction with velocity (u, v, w) = (0, £U,q4,0) which generates a linear shear rate gradient in
the z direction. On the right, the reference configuration of a undeformed red blood cell is shown.

An explicit procedure is used for the time advancement of the FSI solution, as described in the work-
flow illustrated in Fig. 2. Given the flow field u(xg,t) on the Eulerian grid, the fluid velocity
at the position of a generic Lagrangian node [ is interpolated using the MLS technique (U (X, 1),
step I). Next, kinematic boundary conditions are imposed to compute the Lagrangian node velocity
(X (X,t)) and the node position is updated with a 2"%-order scheme (step II-IIT). Based on the cur-
rent deformed configuration, the FE model is applied to compute the internal viscoelastic forces due
to in-plane membrane elasticity and membrane viscosity using a Skalak strain density energy function
and the SLS model, respectively (step IVa-IVb). After adding the force contribution due to out-of-
plane bending, volume constraint and repulsion forces (step IVc), a net nodal force F(X 1,t) acting
on the Lagrangian node is computed (step V). The net nodal force, evaluated on all Lagrangian nodes,
is transferred back to the fluid using the MLS technique ( f (z,t), step VI) to compute the forcing
term JF;(x,t) of the Boltzmann equation (step VII). This forcing term, accounting for the presence
of the structure immersed in the fluid, is used to update the probability distribution functions f;(x,t)
representing the fluid particles at position x, time ¢ (step VIII). Lastly, the flow field is updated by
computing fluid pressure and velocity as first and second moments of f;(x,t) (step IX).

3 RESULTS AND CONCLUSIONS
3.1 RBC transport in bounded shear flow: computational setup

To investigate the effect of cell viscoelastic properties on the RBC dynamics, we simulated the mi-
gration of RBCs subjected to a linear shear flow bounded in the z direction by two parallel walls
placed at a distance H (Fig. 1). To generate a linear shear flow, a velocity v = £Upq, 1S pre-
scribed to the top and bottom wall, respectively. A RBC of radius 7, (confinement ratio H/r, = 4)
is placed close to the top wall at (xo/W, yo/L, z0/H) = (0.5, 0.05, 0.8). Using Upqe and 7,
as characteristic velocity and length, a particle Reynolds number e, = 1 is set. No-slip bound-
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Figure 2: FSI strategy. The diagram illustrates the chronological steps of our FSI strategy to couple the fluid
dynamics resolved with the LB method and the RBC structural dynamics computed with a FE method.

ary conditions are imposed on the internal surfaces of the walls, cyclic boundary condition are im-
posed on the inlet/outlet, and periodicity elsewhere. The RBC deformability is controlled by set-
ting the capillary number Ca = fiou1§7p/ks, Where kg is the in-plane shear elastic modulus. The
physiological mechanical properties of the RBC are reproduced assigning an elastic shear modu-
lus ks = 5 x 1075 N - m™!, an elastic dilatational modulus k, = 50k, and a bending modulus
ky = 2 x 1071 N - m. Regarding the SLS model [4], we assume the 2D membrane viscosity to be
in the range 1, = 0 + 3.18 x 10~7 m - Pa - 5. Simulations are carried out keeping the membrane
viscosity constant fi,,, = 1.59 x 10~7 m - Pa - s while investigating the sensitivity to RBC deforma-
bility and viscosity contrast (i = ftin/lout) in the range Ca = [0.05, 0.1, 0.2], & = [1, 5, 20],
respectively. The effect of the viscoelastic properties of the membrane is investigated by performing
simulations at j,,, = [0, 0.64 x 1077, 1.59 x 1077, 3.18 x 10~7] m.- Pa-s for Ca = 0.1 and i = 5.

3.2 RBC transport in bounded shear flow: effect of RBC viscoelastic properties

In the parameter space that we explored, the RBCs exhibit a periodic solid-like motion until they
align in the flow with the major axes lying perpendicularly to the shear plane (Fig. 3a, top contour
plot). At steady state, the RBCs keep rolling due to a non-zero velocity field around their membrane
(cf. the contour plot of the velocity magnitude at the bottom of Fig. 3a). During the transient flipping
motion, the RBCs undergo cyclic phases of compression and stretching. As it could be expected, we
observed that the state of deformation is directly proportional to the membrane deformability. Instead,
increasing the viscosity contrast or the membrane viscosity had the twofold effect of: (i) introducing
a phase lag in the deformation periodicity and reducing the state of deformation; (ii) anticipating the
transition from the flipping to the rolling motion.

In terms of RBC migration, we observed that the membrane viscoelasticity and the viscosity contrast
affect the migration timescale rather then the final equilibrium position, which was always in the
center of the channel (Fig. 3(b)-(d)). Results showed that an impaired deformability, which is often
the case for pathological RBCs, leads to a faster migration. Importantly, this finding was visible
only if a physiological viscosity contrast is considered (7 = 5, Fig. 3b). We also found that the
RBC migration is faster when an idealized viscosity contrast is used (z = 1, Fig. 3c). Similarly,
the migration of a purely elastic RBC is accelerated compared to the case of a RBC featuring a
viscoelastic membrane (Fig. 3d). In conclusion, the findings of this study point out that the RBC
membrane viscoelasticity has to be considered to accurately model the physiological time-dependent
behavior of flowing RBCs.
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(a) Hitp = 4, fi=5, Ca = 0.1, = 1.59-107 m-Pa-s (b) Hirp = 4, fi =5, jt, = 1.59-107 m-Pa.s
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Figure 3: RBC migration in bounded shear flow. (a) At the top, RBC snapshots taken at progressive time
instants are superimposed to the contour plot of the longitudinal velocity v to show the RBC dynamics during
the migration. At the bottom, the contour plot of the velocity magnitude (|@]) at t/Tpq, = 40% is shown to
highlight the non-zero velocity around the RBC after that it has reached the final equilibrium position, which
is a sign of rolling motion. The relative RBC longitudinal position (y/L) over time (t/T},4.) is reported as a
function of (b) membrane deformability (C'a), (c) viscosity contrast (1), and (d) membrane viscosity (tim,).
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