
 

1  INTRODUCTION 

Modern bridges, constructed primarily in the past century, are aging worldwide and require 
maintenance. It is a challenge to extend their lifetime due to population growth, and increased 
natural risks from climate change. 
Transportation is a necessity for the economy, the appropriate operation of modern society, and 
its continuous welfare (Schroten et al., 2019). However, due to the scarcity of resources required 
for adequate maintenance, preserving the required functionality level of aging critical infrastruc-
tures such as bridges is problematic. The average annual loss on transport infrastructure due to 
floods during the years 2010 to 2015 (European Environment Agency, 2019) represents an aver-
age annual loss of 13.3 billion euros, with a constant upward trend in the coming years. Therefore, 
one main objective of the European Union (EU) is to preserve transport infrastructures appropri-
ately functional. This led the EU, for example, to invest solely €38 billion in maintenance 
(Schroten et al., 2019). These figures call for the development of a strategy to optimize bridge 
integrity management accounting for our scarce capacity to precisely predict the occurrence, long-
term evolution, and spatial distribution of disruptive events.  
In the last 30 years, research efforts have been devoted to a change of perspective from a condi-
tion-based to a risk-based approach in pursuit of efficient bridge integrity management subject to 
limited budgets. This is demonstrated by the extensive literature on this theme resumed in 
(Makhoul & Argyroudis, 2018) and by the several research projects funded by the EU, such as 
COST TU1406 (Casas & Matos, 2021). However, risk-based approaches to bridge integrity man-
agement do not account for the need to improve the recovery phase after the disruption thereby 
reducing the indirect consequences related to its loss of functionality ((Bruneau et al., 2003), 
(Faber, 2007), (Cimellaro et al., 2009), (Linkov et al., 2014), (Sharma et al., 2018), (Faber, 2018)). 
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Furthermore, interconnections between networks and domains are neglected most of the time. 
This does not replicate the real world which is shaped by increasingly interconnected technolog-
ical, economical, sociological, and ecological networks ((Havlin et al., 2012), (Linkov et al., 
2014)). Thus, a systemic approach is needed to account for these interconnections allowing us to 
describe the resilience across and within these domains.  
In (Faber, 2018) a systemic approach was suggested for sustainable and resilient engineered sys-
tems. It allows for building decision support and management tools using an indicator-based ap-
proach, which was suggested for interconnected subsystems (i.e., physical, social, and economi-
cal). In (Turksezer et al., 2020) the concept of resilience indicators was used to define the 
characteristics of the managed system in terms of physical, information, and organizational sub-
systems. In this framework, the management of the system operated by the organizational sub-
system is supported by the information flow managed by the information subsystem. However, 
in this, as in many other approaches, information quality is not considered, implicitly assuming 
that the available information possesses the required quality to support decisions. Studies address-
ing information quality and discussing the role of information quality in resilience management 
are still absent (Makhoul & Argyroudis, 2018), (Makhoul & Argyroudis, 2019), (Faber, 2018), 
(Disaster Resilience: A National Imperative, 2012)). The scope of this article is to propose a step 
toward this direction through the integration of information quality into a framework for manag-
ing the resilience of bridge infrastructure. 
This article recalls in Section 2 indicators for data quality (DQ) assessment previously published 
((Makhoul, 2022), (Makhoul & Limongelli, 2022)) and in Section 3 their deterministic and prob-
abilistic metrics (Makhoul, 2022). In Section 4, which constitutes the core of the paper, a possible 
framework based on Value of Information (VoI) analysis is proposed to account for SHM infor-
mation quality in the management of bridge condition assessment. Finally, the integration of SHM 
information quality assessment into VoI analysis and the impact of SHM information quality on 
bridge performance indicators are briefly discussed. 

2 SELECTION OF INDICATORS FOR QUALITY ASSESSMENT OF SHM DATA 
 
Data quality indicators for structural health monitoring were suggested in (Makhoul, 2022) and 
(Makhoul & Limongelli, 2022). Those indicators were clustered and assigned sub-indicators to 
describe their different aspects. Overall, six indicators, and five sub-indicators were designated 
as presented in Table 1 with their allocated definitions. The indicators were grouped into three 
phases of data management (i.e., acquisition, processing and sharing, and Supporting decisions). 
The classification aims to highlight proper data quality aspects for each one of the SHM data 
management phases. 
 
Table 1. Data quality indicators and sub-indicators. 
 

Data management 

phase 

Indicator Definition 

Acquisition Correctness data is accurate, precise, and consistent 

Accuracy the measured value of data is close to the real-world  

Precision the measured data values are close to each other 

Consistency the measured data is free of internal contradictions 

with respect to a rule. 

Redundancy the measured data is not unique (multiple sets of 

data exist). 

Processing and 

sharing 

Accessibility the measured data is available and can be shared 

reliably 

Interoperability the measured data is concise and interpretable by 

machines 

Security the access to data can be restricted to other parties 

and kept secure.  

Traceability the sources of data are known  

Supporting decisions Timeliness  the data is up-to-date when needed 



Completeness all required data are available in the dataset 

Relevance the data is useful for the task at hand 

3 METRIC FOR THE GLOBAL QUALITY INDICATOR INDICATORS 

The data quality metrics were reviewed (Makhoul, 2022), and two methods were suggested for 
assessing DQ metrics in SHM Context. Those methods are 1) A deterministic method, and a 
probabilistic method accounting for uncertainties.  

3.1 Deterministic metrics 

The deterministic method assigns data quality metrics using scales. Those scales range from 0 
(i.e., the lowest quality) to 1 (i.e., the highest quality). Metrics are defined as discrete or continu-
ous scales as follows. 
The discrete scale, where the metric has at least two or more discrete values: 

metric = {
1          𝑦𝑒𝑠
0          𝑛𝑜

 (1) 

metric = {
1 𝑦𝑒𝑠

0.5 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑙𝑦
0 𝑛𝑜

 (2) 

where ‘yes’ and ‘no’ means that the data is accurate (for accuracy), or not, etc., and ‘partially’ 
means that the data partially possess the quality under consideration (e.g., 0.5).  
The continuous scale, where the metric is defined as a percentage of the data having this quality 
(i.e., 50% of the data is accurate, etc.). 
Then, (Makhoul, 2022) introduced a global metric accounting for all quality attributes. This DQ 
is computed using the equation:  

DQ =  ∑ 𝜔𝑢 ∗ 𝐷𝑄𝑢𝑢  (3) 

Where DQu is the metric for the uth quality attribute and ωu the relative normalized weight. 
The normalized weights are calculated by:  

𝜔𝑢  =  
𝑆𝑢

∑ 𝑆𝑢𝑢
 (4) 

Where Su are the weights of the quality attributes which, for example, might be based on expert 
opinion. They enable us to distinguish between the importance levels of selected attributes. The 
decision-maker is required to allocate scales (Su) to each quality indicator based on its assigned 
importance for the decision-making case at hand. The definition of the weights in equation (4) 
guarantees that the sum of all the weights equals 1:  

∑ 𝜔𝑢𝑢 = 1 (5) 

This global metric is used to assess the level of data quality by suggesting adequate thresholds. 

3.2 Probabilistic metrics 

Probabilistic metrics were proposed in (Makhoul, 2022) in the form of probability distribution 
functions. They were offered for the cases of permanent and occasional monitoring to account for 
different data flows (Table 2). The probabilistic approach assigns an adequate probability distri-
bution function to the indicator metrics. As discussed in (Makhoul, 2022) probabilistic metrics 
varies based on the type of data and associated uncertainties. In SHM, the probability distribution 
function assigned is highly dependent on the flow of the SHM data. The flow is scarce in the case 
of occasional SHM measurements, thus the data is discrete and the binomial distribution can be 
used (Faber, 2012). The flow is abundant in the case of permanent SHM measurements, thus the 
data is continuous and the normal distribution can be used (Faber, 2012). 
 
Table 2. The probabilistic metrics for DQ for permanent and occasional SHM.  

 



Indicators 

Measurement Accuracy Precision Consistency Completeness 

Permanent A = R – M ~ N (μ, σ)  σd Co ~ N(μco, σco) C ~ N (μc, σc) 

Occasional A = R – M ~ B (n, p)  σd Co ~ B(nco, pco) C ~ B (nc, pc) 

Indicators 

Measurement Timeliness Accessibility Redundancy Relevancy 

Permanent QTime = 1  Ac ~ N (μc, σc) R ~ N (μr, σr) Re ~N (μre, σre) 

Occasional  Ac ~ B (nc, pc) R ~ B (nr, pr) Re ~B (nre, pre) 

4 ACCOUNTING FOR DATA QUALITY OF SHM IN THE LIFE CYCLE ASSESSMENT 
MANAGEMENT   

In this section, the integration of SHM information quality assessment into bridge condition as-
sessment is proposed. In Section 4.1, a general bridge management assessment procedure consid-
ering the SHM information quality is presented. Then in Section 4.2, the integration of SHM 
information assessment into the Value of Information analysis is presented. Finally, in Section 
4.3, the impact of SHM information quality assessment on the estimation of bridge performance 
indicators is briefly discussed.  

4.1 GENERAL BRIDGE MANAGEMENT ASSESSMENT PROCEDURE CONSIDERING THE 
SHM DATA QUALITY 

A General Assessment Procedure (GAP) for the existing structure was presented in (ISO 13822, 
2010). Herein an Updated General Assessment Procedure (UGAP) that includes the assessment 
of SHM information quality in the process is introduced (Makhoul, 2023). It is presented in Fig. 
1. This step was included after the inspection tests such as surveillance, visual, etc. The outcome 
of the VoI analysis may lead – or not – to perform an Information Quality Assessment (IQA).  
Two outcomes are possible i.e., whether the value of information equals zero, then the IQA is 
skipped, and GAP is followed straightforwardly. If the IQA leads to a value of information greater 
than zero, then IQA is performed on the collected information. The word ‘inspections’ is generi-
cally used herein to address the process of collecting information about the bridge condition. This 
process can be carried out through visual surveys, destructive and nondestructive testing, SHM, 
etc. The selection of the specific type of inspection can be carried out through a Value of Infor-
mation analysis. However, herein the focus is on the integration of information quality assessment 
(IQA) into condition assessment thereby the selection of the inspection type will not be addressed. 
Without loss of generality, it will be assumed that the inspection process is carried out through 
SHM. The management actions considered in the flowchart in (figure 1) can be operation actions 
(i.e., monitoring, and change in use) or construction actions (i.e., rehabilitation such as repair or 
upgrading, and demolition). In the following, they will be generically addressed as ‘interven-
tions’.   

4.2 VALUE OF INFORMATION ANALYSIS ACCOUNTING FOR THE SHM INFORMATION 
QUALITY ASSESSMENT 

The suggested decision-making framework to assess the benefit of performing SHM IQA is based on VoI 

analysis. The approach is based on pre-posterior Bayesian analysis and expected value theory 
(Schlaifer & Howard, 1961), (Benjamin & Cornell, 1970), and (von Neumann & Morgenstern, 
2007). 



 
Figure 1. Flowchart for the updated general assessment procedure of existing structure considering the
 SHM IQA. 

In figure 2 the process to quantify the VoI of IQA for information collected through inspections 
is represented through a decision tree. In reference (Giordano et al., 2023) the complete frame-
work is described and applied using a machine-learning-based tool for the assessment of the 



information quality. Herein the decision tree that describes the VoI quantification is illustrated. 
Decision nodes are depicted by a square, and chance nodes by a circle. Branches stemming from 
squares represent decision alternatives, and branches stemming from circles represent states of 
nature. Herein the decisions are about the implementation of the information quality assessment 
(IQA), and of the intervention action (a). The upper branch of the tree represents the prior decision 
analysis where the selection of the optimal intervention is carried out without performing IQA. 
The bottom branch is the pre-posterior decision analysis where the decision about the intervention 
is performed with the support of IQA. The difference between the expected consequences of the 
optimal actions (schematically reported in equation 6) selected with the two types of decision 
analyses (prior and pre-posterior) quantifies the values of IQA. The process is detailed further in 
(Makhoul, 2023). 

𝑉𝑜𝐼 = 𝐶𝑝𝑟𝑒𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 − 𝐶𝑝𝑟𝑖𝑜𝑟 (6) 

 
 
Figure 2. Decision tree for the quantification of the Value of Information Quality assessment (IQA) 

4.3 SYSTEM PERFORMANCE INDICATORS ACCOUNTING FOR SHM INFORMATION 
QUALITY 

Bridge performance can be analyzed using several available performance indicators, such as for 
instance risk and resilience. Herein reference is made to a generic performance indicator. 

The structural performance – and thereby its indicators – will generally decrease in time due, 
for instance, to deterioration associated with insufficient maintenance.  

 
Figure 3. Performance indicator profile with and without SHM IQA: a) case of Service life longer with 
SHM and with SHM IQA, b) case of Service life greater with SHM but shorter without SHM IQA.  



 
Figure 4. Resilience indicator profile with and without SHM IQA: a) case of Service life longer without 
SHM and longer with IQA than without IQA, b) case of Service life longer without SHM but shorter with-
out IQA than with IQA. 

The estimation of performance indicators can benefit from SHM information that provides an 
improved knowledge of the bridge condition (Bocchini et al., 2012) and (Capacci & Biondini, 
2020). If also SHM IQA is carried out, a further update of the performance indicator can be carried 
out, leading to a different estimation of the service life as shown in (Figures 3 and 4).  

5 CONCLUSIONS  

Bridge conditions assessment is increasingly relying on Structural Health Monitoring (SHM). 
However, the quality of SHM information is rarely considered although it plays a vital role in 
management strategy optimization and relevant decision-making. To address this issue, this arti-
cle suggests the integration of SHM information quality assessment on a Value of Information 
analysis base. The integration of SHM information quality assessment into VoI analysis and the 
quantification of resilience indicators and bridge service life are briefly discussed. 
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