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A B S T R A C T   

This paper presents the derivation of nondimensional buckling equations of sandwich cylindrical shells made of 
composite facesheets with a shear deformable core. The procedure yields an analytical solution in terms of a 
series of nondimensional parameters for the axial buckling load investigating the influence of the core transverse 
shear. The developed equations and the nondimensional parameters are used to study the buckling response of 
different shells, and the calculated buckling loads are compared to the buckling values obtained by neglecting the 
transverse shear. Graphs and tables are presented to show the effects of the nondimensional parameters on the 
nondimensional buckling load. The results are verified by finite element analyses using the commercial code 
Abaqus.   

1. Introduction 

Sandwich composite structures offer a large design space due to the 
diversity of materials available and the laminate constructions that are 
possible. Nondimensional parameters are particularly valuable to navi-
gate this large design space [1]. For instance, many different construc-
tions may correspond to the same set of nondimensional parameters, 
and the relative magnitudes of the parameters can be used to identify 
special cases in which one or more parameters are negligible. Nondi-
mensional parameters also provide insight into the development of 
scaling technology used to reduce the cost of experimental validation 
and certification of large scale structures [2,3]. 

The earliest most well-known structural nondimensional parameter 
is the Batdorf parameter, introduced in 1940. It characterizes the impact 
of length, thickness and radius of curvature on the linear bifurcation 
buckling of isotropic cylinders [4]. In the 1990s, Nemeth developed 
nondimensional parameters and equations for linear bifurcation buck-
ling of symmetrically laminated shallow shells with double curvature 
[5]. From 2002 to 2008, Weaver et al. [6] made extensive use of non-
dimensionalisation procedures and parameters to gain insight into the 
behavior of laminated composite structures. In their study, to account 
for the effects of flexural-twist and extension-twist anisotropies on the 
buckling of compression loaded cylindrical shells, correction factors 
derived from the nondimensionalisation procedures were calculated. In 
the field of the buckling of sandwich composite structures with shear 

deformable core, nondimensional parameters have been used to study 
and characterize plates [7]. 

Understanding the structural behavior of sandwich composite cy-
lindrical shells is important in modern, high-performance applications, 
where they are a fundamental component of many lightweight struc-
tures, such as aircraft and spacecraft. One particular area of interest is 
the shell buckling strength under compression loads. Due to the 
nonlinearity of the phenomenon and the high dependence on imper-
fections, robust design criteria must be developed [8]. Therefore, axially 
loaded cylindrical shells have been investigated through testing, simu-
lation and analysis. 

Testing is an invaluable resource in the study of buckling of sandwich 
composite cylindrical shells, since it provides validation of numerical 
and analytical methods [9] used by designers. Knock-down factors 
(KDF), which are still widely used to account for imperfections in the 
axial buckling of shells, were obtained via extensive testing [10]. 
However, testing is expensive, due not only to the high number of test 
required but also due to the large scale of the structures considered [11]. 
Moreover, the test data are highly dependent on the manufacturing 
characteristics and imperfection signature of the shell [12]. 

Simulation tools used to predict the buckling of sandwich composite 
cylindrical shells have also been thoroughly investigated [13]. One of 
the advantages is that they allow for greater detail in the design features 
such as the inclusion of cut-outs [14]. Continuum shell elements [15] as 
well as conventional shell formulation [16] have proven valuable to 
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study the influence of transverse shear in the buckling of shells. Simu-
lations are able to produce accurate results as long as the precise di-
mensions and imperfection signature are available [17]. 

Despite tests and numerical simulations importance, analytical 
models are the first tool designers use in order to predict the buckling 
behavior of the structure. Analytical calculations are faster and more 
flexible to dimension and/or material changes [18]. However, making 
the right assumptions and choosing the appropriate analytical model is a 
prerequisite to getting accurate results. One challenge of modeling 
sandwich composite shells is the inclusion of the shear deformable core. 
Several models for laminate plates and shells that include the transverse 
shear are available in the literature [19]. These modeling approaches 
can be divided in categories depending upon the variation of the 
displacement components through the thickness. 

Most analytical modeling approaches are based on a first order shear 
deformation theory [20,21], where a cross section, normal to the 
mid-surface of the undeformed state, remains flat but not normal in the 
deformed state. A correction factor has to be used to adjust the trans-
verse shear stiffness. Other models are based on a higher order theory 
[22]. Higher order, in this case, does not refer to the order of the final 
system of differential equations but to the number of terms in the power 
series expansion of the displacements. Higher order theories account for 
shear rotations and parabolic variation of the shear stresses, which have 
the advantage of eliminating the need for shear correction factors [23]. 
Finally, other authors have proposed more complex formulations such as 
incorporating the first-order shear deformation theory kinematics with 
zig-zag layer functions [24] or a sublaminate formulation [25]. 

This study aims to extend existing nondimensionalisation work to 
sandwich composite cylindrical shells with shear deformable core under 
axial compression. The facesheets are modeled using the two- 
dimensional classical laminate theory based on the Kirchhoff-Love as-
sumptions. This approach was used in the Nemeth formulation [26] and 
it is considered sufficiently accurate. The shear-deformable core is 
modeled including in the equations a transverse shear deformation 
theory. 

To obtain the axial nondimensional buckling load, first the problem 
and its assumptions are described. This includes the geometry and 
properties of the shell, as well as the nondimensional reference system 
and nondimensional displacements. Then, the fundamental relations are 
explained and derived both in the dimensional and nondimensional 
form: strain-displacement relations, constitutive equations, equilibrium 
equations and compatibility equations. The equilibrium and compati-
bility equations are linearized, possible solutions according to the 
boundary conditions are proposed and the eigenvalue problem resultant 
is solved for the buckling load. Finally, some applications of the meth-
odology are shown in order to illustrate the advantages of using the 
nondimensional parameters, and to explore the full design space that 
sandwich composite shells can offer. 

2. Nondimensional formulation 

Sandwich composite structures provide bending and in-plane 
extensional rigidity with composite facesheets separated by a low den-
sity core, which provides as well transverse shear rigidity to the con-
struction. The laminated sandwich shells under consideration are 
composed of identical inner and outer facesheets and a core made of a 
shear deformable material. The facesheets are made of several laminae 
whose fibers can be oriented in any direction and any stacking sequence 
of the laminae is permissible. 

The geometry of the shell is characterized by its length L, radius of 
the middle surface R, facesheet thickness tf , and core thickness tc as 
depicted in Fig. 1 and Fig. Geo. Consistent with the shells formulation, 
the assumption that the shell thickness is small compared to the radius is 
made. The mid-surface of the sandwich construction is the reference 
surface. The distance between the mid-surfaces of the inner and outer 
facesheets, h, is also defined. 

In this study, both facesheets are assumed to have an equal thickness 
and they are placed symmetric with respect to the mid-surface of the 
sandwich construction. Therefore, the entire sandwich is symmetric 
even if the layup of the facesheets is not. Each ply in both facesheets is 
orthotropic, linear elastic, and of constant thickness, whereupon the 
entire shell is of constant thickness. Facesheets are sufficiently thin (as 
compared to the core) so that their transverse shear properties won’t be 
taken into account. The core is orthotropic, with one axis of orthotropy 
parallel to the axis of the shell, linear elastic and of constant thickness. 

The coordinate system x, y, z is measured with respect to the refer-
ence surface in the axial, circumferential and radial directions respec-
tively as depicted in Fig. 2. The nondimensional or normalized 
coordinates, z1, z2 and z3 are: 

z1 =
x
L

(1)  

z2 =
y
R

(2)  

z3 =
z

̅̅̅̅̅
12

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a11a22D11D22

4
√ (3)  

where the aii are membrane compliance’s and the Dii are bending stiff-
ness’s of the entire sandwich and are calculated using the classical 
laminate theory. 

The denominator 
̅̅̅̅̅̅
12

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a11a22D11D22

4
√

of Eq. (3) represents the 

Fig. 1. Shell section.  

Fig. 2. Cylindrical shell geometry and coordinate system.  
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equivalent thickness of the sandwich structure. In the particular case 
where the structure is made of an isotropic material instead of a sand-
wich composite, the value of the equivalent thickness is the value of the 
exact thickness. 

The components of displacement u, v and w of a point on the shell are 
the components in the x, y and z directions. The nondimensional dis-
placements U, V, W are defined as: 

U=
L

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a11a22D11D22

√ u (4)  

V =
R

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a11a22D11D22

√ v (5)  

W =
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a11a22D11D22

4
√ w (6) 

The transverse shear rigidity is provided mainly by the core, so only 
the transverse shear properties of the core will be included in the 
formulation. The transverse shear stresses are also assumed constant 
through the thickness of the core. With this assumption, a modeling 
approach based on the first order shear deformation theory of Cheung 
and Tennyson [27] is proposed. The transverse shear stress distribution 
across the sandwich wall is assumed to satisfy the continuity require-
ment at the interfaces between the facesheet and the core, and vanishes 
on the free surfaces. As a result, a linear distribution of the in-plane 
displacement components of the core is obtained through the thick-
ness. In the shear deformation theory of Cheung and Tennyson, no shear 
correction factor is explicitly included. The model considers that a 
correction factor is included by establishing the distance h described in 
Fig. 1, instead of exclusively the core thickness. 

The shell is considered to have simply supported boundary condi-
tions. Some assumptions are made in order to proceed with the analysis. 
First, no failure between the facesheet and the core is assumed. In the 
laminate there is no slippage between plies, as well as no intercell 
buckling in the core. Finally, the normal stiffness of the core is consid-
ered very large, therefore instability associated with wrinkling of face-
sheets is not included. 

The process to obtain the buckling load and mode of the shell follows 
the classical procedure [28]. First, the strains-displacement relations are 
established according to the proposed assumptions. Secondly, the 
equilibrium and compatibility equations are developed step by step and 
transformed into the nondimensional formulation. In order to obtain 
these equations, the strains-displacement relations are adapted to 
nondimensional form. The nondimensional linear buckling equations 
are obtained applying the adjacent equilibrium criterion [29] and a 
nondimensional axial buckling load solution is presented for the 
formulation with and without core transverse shear. 

3. Equilibrium and compatibility equations 

The equations used in the present study are relatively well known in 
their dimensional form [28]. The current nondimensionalisation keeps a 
similar format as the dimensional equations and it is here applied to 
axial compression. The formulation also can be used for other load cases. 

First, the displacement field distribution and the strain displacement 
relations are presented. Then, the stress resultants and constitute 
equations are considered and the nonlinear equilibrium equations and 
the strain compatibility equation are obtained. 

3.1. Strain-displacement relations 

Using the nonlinear strain-displacement relations, where strains are 
small, strains components εx, εy, γxy, γxz and γyz can be expressed as: 

εx = ε0
x − z

∂βx
∂x =

∂u
∂x +

1
2

(
∂w
∂x

)2

− z
∂βx
∂x (7)  

εy= ε0
y − z

∂βy
∂y =

∂v
∂y+

w
R
+

1
2

(
∂w
∂y

)2

− z
∂βy
∂y (8)  

γxy = γ0
xy − z

(∂βy
∂y +

∂βx
∂y

)

=
∂v
∂x+

∂u
∂y+

∂w
∂x

∂w
∂y − z

(∂βy
∂x +

∂βx
∂y

)

(9)  

γxz =
(

∂w
∂y − βy

)

(10)  

γyz =
(

∂w
∂x − βx

)

(11)  

where ε0
y , ε0

y and γ0
xy are the components of the strains at the reference 

surface and βx and βy are the components of the change of slope of the 
normal to the undeformed mid-surface. 

These components, βx and βy, are already nondimensional and could 
be kept as is, in their classical form. However, the equations simplify 
considerably if two new normalized parameters, B1 and B2, are estab-
lished: 

B1 =
L

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a11a22D11D22

4
√ βx (12)  

B2 =
R

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a11a22D11D22

4
√ βy (13) 

The strain equations ((Eqs. (7)–(11)) can be also defined in terms of 
the nondimensional coordinates and displacements (Eqs. (1)–(6), (12) 
and (13)), where the nondimensional strains, E11, E22, Γ12, Γ13 and Γ23 

are expressed as: 

E11 =
L2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a11a22D11D22

√ εx =
∂U
∂z1

+
1
2

(
∂W
∂z1

)2

− z3
∂B1

∂z1
(14)  

E22 =
R2 εy

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a11a22D11D22

√ =
∂V
∂z2

+
R

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a11a22D11D22

4
√ W +

1
2

(
∂W
∂z2

)2

− z3
∂B1

∂z2
(15)  

Γ12 =
LR

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a11a22D11D22

√ γxy =
∂V
∂z1

+
∂U
∂z2

+
∂W
∂z1

∂W
∂z2

− z3

(
∂B2

∂z1
+

∂B1

∂z2

)

(16)  

Γ13 =
R2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a11a22D11D22

√ γxz =
∂W
∂z2

− B2 (17)  

Γ23 =
L2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a11a22D11D22

√ γyz =
∂W
∂z1

− B1 (18) 

Due to the chosen nondimensionalisation procedure, most the 
equations in their nondimensional format (Eqs. (10), (14), (16) and 
(18)) only include the derivations of nondimensional displacements U,V, 
W and the components of the change of slope of the normal B1, B2 with 
respect to the introduced nondimensional coordinates z1, z2. 

However, in Eq. (15), there is also the term: R/
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a11a22D11D22

4
√

. With 
few modifications this term can be expressed as Z, a nondimensional 
parameter known as the Batdorf-Stein parameter. 

Z=
R

̅̅̅̅̅
12

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a11a22D11D22

4
√ (19) 

The Batdorf-Stein parameter, Z, formally introduced by Nemeth [5], 
relates the radius with the membrane compliances and bending stiff-
nesses. The Batdorf-Stein parameter is similar in character to a radius to 
thickness ratio (R/t) because it relates the shell radius (R) to an equiv-
alent thickness (

̅̅̅̅̅̅
12

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a11a22D11D22

4
√

). 
Eq. (15) results then as: 

E22 =
∂V
∂z2

+
̅̅̅̅̅
12

√
Z W +

1
2

(
∂W
∂z2

)2

− z3
∂B1

∂z2
(20) 
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From Eqs. (14), (16) and (20), the nondimensional expressions of the 
reference surface strains can be obtained: 

E0
11 =

∂U
∂z1

+
1
2

(
∂W
∂z1

)2

(21)  

E0
22 =

∂V
∂z2

+
̅̅̅̅̅
12

√
Z W +

1
2

(
∂W
∂z2

)2

(22)  

Γ0
12 =

∂V
∂z1

+
∂U
∂z2

+
∂W
∂z1

∂W
∂z2

(23) 

In a similar way as the strains at any point of the shell are described 
in Eqs. (14), (16) and (20), the nondimensional values of the mid-surface 
strains E11, E22 and Γ12 are thus expressed as: 

E0
11 =

L2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a11a22D11D22

√ ε0
x (24)  

E0
22 =

R2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a11a22D11D22

√ ε0
y (25)  

Γ0
12 =

LR
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a11a22D11D22

√ γ0
xy (26)  

3.2. Constitutive equations 

In deriving a set of nondimensional constitutive equations, it is 
desirable to keep the number of parameters that characterize the ma-
terial behavior to a minimum. Here, the semi-inverted constitutive 
equations are used, considering that the sandwich structure is sym-
metric, even if the laminates that conform the facesheets are not. 

ε0
x = a11Nx + a12Ny (27)  

ε0
y = a12Nx + a22Ny (28)  

γ0
xy = a66Nxy (29)  

where Nx, Ny and Nxy are the force components per unit length. The 
nondimensional components of these forces: N 11, N 22 and N 12, can be 
defined as: 

N 11 =
R2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
D11D22

√ Nx (30)  

N 22 =
L2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
D11D22

√ Ny (31)  

N 12 =
R2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
D11D3

22
4
√ Nxy (32) 

Combining the in-plane equations (Eqs. (27) and (28)) with the 
definitions of the nondimensional strains (Eqs. (24) and (25)) and 
nondimensional stresses (Eqs. (30) and (31)) and operating, the 
following nondimensional in-plane relations are obtained: 

E0
11 =

L2

R2

̅̅̅̅̅̅
a11

a22

2

√

N 11 +
a12
̅̅̅̅̅̅̅̅̅̅̅̅a11a22

√ N 22 (33)  

E0
22 =

a12
̅̅̅̅̅̅̅̅̅̅̅̅a11a22

√ N 11 +
R2

L2

̅̅̅̅̅̅
a22

a11

2

√

N 22 (34) 

In these two equations, three new terms appear. Upon inspection, 
these three terms can be expressed with the help of two nondimensional 
parameters αm and νm, as defined by Nemeth [5]: 

αm =
R
L

̅̅̅̅̅̅
a22

a11

4

√

(35)  

νm = −
a12
̅̅̅̅̅̅̅̅̅̅̅̅a11a22

√ (36) 

Combining the in-plane shear equation (Eq. (29)) with the definition 
of the nondimensional strain (Eq. (26)) and nondimensional in-plane 
shear stress (Eq. (32)) and operating, the following relation is obtained: 

Γ0
12 =

L
R

a66
̅̅̅̅̅̅̅̅̅̅̅̅a11a22

√

̅̅̅̅̅̅̅
D22

D11

2

√

N 12 (37) 

Operating it can become: 

Γ0
12 =

L
R

̅̅̅̅̅̅̅
D22

D11

2

√

2
(

2a12 + a66

2 ̅̅̅̅̅̅̅̅̅̅̅̅a11a22
√ −

a12
̅̅̅̅̅̅̅̅̅̅̅̅a11a22

√

)

N 12 (38) 

This equation can be expressed with the help of three nondimen-
sional parameters as defined by Nemeth [5]: νm (already been defined in 
Eq. (36)), αb, and μ: 

αb =
R
L

̅̅̅̅̅̅̅
D11

D22

4

√

(39)  

μ= 2a12 + a66

2 ̅̅̅̅̅̅̅̅̅̅̅̅a11a22
√ (40) 

The parameters αm (Eq. (35)) and αb (Eq. (39)) are called the stiffness 
weighted geometry parameters, because they relate the geometry of the 
shell: radius and length, with the stiffness of the composite laminate. 
The membrane orthotropy parameter, μ (Eq. (40)) and membrane 
Poisson ratio, νm (Eq. (36)) relate to the membrane compliance and are 
mostly dependent on the material properties and facesheet layup. 

If the nondimensional parameters (Eqs. (35), (36), (39) and (40)) are 
included in the in-plane relations (Eqs. (33), (34) and (38)) a more 
compact formulation can be expressed: 

⎡

⎢
⎢
⎣

E0
11

E0
22

Γ0
12

⎤

⎥
⎥
⎦=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
α2
m

− νm 0

− νm α2
m 0

0 0
2(μ+ νm)

αb

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎣
N 11
N 22
N 12

⎤

⎦ (41) 

Under the current assumptions, the bend-twist anisotropy is treated 
as negligible. This means that even if the value is not zero the influence 
of the bend-twist terms compared to other bending terms is considered 
small. This assumption might not be valid for all laminates especially for 
cases where the facesheets have a low ply number. Under this assump-
tion, the moment per unit length resultants are defined as: 

Mx = −

(

D11
∂βx
∂x +D12

∂βy
∂y

)

(42)  

My = −

(

D12
∂βx
∂x +D22

∂βy
∂y

)

(43)  

Mxy = − D66

(∂βy
∂x +

∂βx
∂y

)

(44) 

In a similar way to the nondimensional force resultants described in 
Eqs. (30)–(32), the nondimensional moment resultants are introduced as 
follows: 

M 11 =
R2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a11a22D3

11D3
22

4
√ Mx (45)  

M 22 =
L2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a11a22D3

11D3
22

4
√ My (46)  

M 12 =
RL

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a11a22D3

11D3
22

4
√ Mxy (47) 
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Combining the moment equations (Eqs. (42) and (43)) with the 
definitions of the nondimensional change of slope to the normal of the 
undeformed mid-surface (Eqs. (12) and (13)) and nondimensional mo-
ments (Eqs. (45)–47)) the following relations are obtained: 

M 11 = −
R2

L2

̅̅̅̅̅̅̅
D11

D22

2

√
∂B1

∂z1
−

D12
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
D11D22

√
∂B2

∂z2
(48)  

M 22 = −
R2

L2

̅̅̅̅̅̅̅
D11

D22

2

√
∂B2

∂z2
−

D12
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
D11D22

√
∂B1

∂z1
(49) 

In these relations, two terms appear that can be expressed through 
the nondimensional parameters αb and νb as introduced by Nemeth [5]. 
The parameter αb, used in the in-plane relations, is already defined (Eq. 
(39)) and the parameter νb is expressed as: 

νb=
D12
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
D11D22

√ (50) 

The nondimensional parameter, νb, similarly to νm from Eq. (36), is 
called the flexural Poisson ratio and relates the bending stiffness terms of 
the sandwich composite. 

If the moment equation Eq. (44) and the expression of nondimen-
sional moment Eq. (47) is taken in combination with the definitions of 
the nondimensional change of slope to the normal of the undeformed 
mid-surface (Eqs. (12) and (13)), the following relation is obtained: 

M 12 = −
D66
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
D11D22

4
√

(
∂B2

∂z1
+

∂B1

∂z2

)

(51) 

Manipulating this equation, it can be obtained that it is equivalent to: 

M 12 = −
1
2

(
D12 + 2D66

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
D11D22

√ +
D12
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
D11D22

√

)(
∂B2

∂z1
+

∂B1

∂z2

)

(52) 

In this expression, two parameters can be extracted. On the one 
hand, the flexural Poisson ratio, νb described in Eq. (50). On the other 
hand, the flexural orthotropy parameter, β, defined as: 

β=
D12 + 2D66

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
D11D22

√ (53) 

The flexural orthotropy parameter β is analogous to the membrane 
orthotropy parameter μ (Eq. (40). It describes the interaction between 
the terms of the bending stiffness matrix and as such is highly dependent 
on the facesheet layup and material properties. The dependence on the 
core thickness is low because it affects similarly the terms on the 
numerator and denominator. This is particularly valuable to study 
separately the influence of the thickness and the influence of the ma-
terial properties. 

If the nondimensional parameters are included in the moment ex-
pressions (Eqs. (48), (49) and (52)) the result is: 

⎡

⎣
M 11
M 22
M 12

⎤

⎦= −

⎡

⎢
⎢
⎢
⎢
⎢
⎣

α2
b νb 0

νb
1
α2
b

0

0 0
(β − νb)

2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂B1

∂z1

∂B2

∂z2

∂B2

∂z1
+

∂B1

∂z2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(54) 

Finally, the transverse shear stress resultants Qx and Qy can be 
expressed under the current model assumptions as: 

Qx =Gxh
(

∂w
∂x − βx

)

(55)  

Qy =Gyh
(

∂w
∂y − βy

)

(56) 

In the nondimensional form, following a similar procedure as with 
the force and moment resultants, the transverse shear force resultants 
Q 11 and Q 22 are defined as: 

Q 11 =
LR2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a11a22D3

11D3
22

4
√ Qx (57)  

Q 22 =
L2R

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a11a22D3

11D3
22

4
√ Qy (58) 

Combining the transverse shear force resultant definition (Eqs. (55) 
to (58)) and the slope components (Eqs. (12) and (13)), the corre-
sponding constitutive equations for the transverse shear force resultants 
in nondimensional form are obtained: 

Q 11 =
GxhR2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
D11D22

√

(
∂W
∂z1

− B1

)

(59)  

Q 22 =
GyhL2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
D11D22

√

(
∂W
∂z2

− B2

)

(60) 

From these expressions, two clear terms emerge and thus two new 
nondimensional parameters can be defined as: 

χ1 =
GxhR2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
D11D22

√ (61)  

χ2 =
GyhL2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
D11D22

√ (62) 

The nondimensional parameters χ1 and χ2 were not part of the 
nondimensionalisation proposed by Nemeth [5]. The objective of the 
two new nondimensional parameters is to represent the influence of the 
core shear properties with respect to the sandwich bending stiffness and 
the geometry properties of the shell. The influence of these parameters 
will give an indication of the importance of the transverse shear in the 
buckling loads of the shell. 

Instead of considering χ1 and χ2 separately, a transverse ratio (φ) is 
defined: 

φ=
χ2

χ1
=
Gy

Gx

(
L
R

)2

(63) 

This is a more convenient way of studying the problem since the 
properties of the core Gx and Gy are not independent from each other 
and must be considered together. The parameter φ also presents an 
advantage for cases with isotropic core materials, where the transverse 
ratio (φ) depends only on the geometry of the shell, as Gx = Gy. 

With the inclusion of χ1 and χ2 the transverse shear force resultants 
are: 

[
Q 11
Q 22

]

=

[
χ1 0
0 φ χ1

]

⎡

⎢
⎢
⎢
⎣

∂W
∂z1

− B1

∂W
∂z2

− B2

⎤

⎥
⎥
⎥
⎦

(64)  

3.3. Equilibrium equations 

Assuming the transverse normal stiffness of the sandwich shell as 
infinite, and considering the nondimensional formulation presented, the 
nondimensional equilibrium equations of forces and moments for a thin 
cylindrical shell are: 

∂N 11

∂z1
+

1
αb

∂N 12

∂z2
= 0 (65)  

1
αb

∂N 12

∂z1
+

∂N 22

∂z2
= 0 (66)  

∂Q 1

∂z1
+

∂Q 2

∂z2
+N 11

∂2W
∂z2

1
+

2
αb

N 12
∂2W

∂z1∂z2
+N 22

(
∂2W
∂z2

2
−

̅̅̅̅̅
12

√
Z
)

= 0 (67)  
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Q 11 =
∂M 11

∂z1
+

∂M 12

∂z2
(68)  

Q 22 =
∂M 22

∂z2
+

∂M 12

∂z1
(69) 

The first two equations of equilibrium (Eqs. (65) and (66)) are 
satisfied introducing the stress function F(z1z2) defined as: 

N 11 =
∂2F
∂z2

2
(70)  

N 22 =
∂2F
∂z2

1
(71)  

N 12

αb
= −

∂2F
∂z1∂z2

(72) 

If equilibrium equations as expressed via the stress function F in Eqs. 
(70)–(72) are substituted in the third equilibrium equation Eq. (67), it 
yields: 

∂2
M 11

∂z2
1

+ 2
∂2

M 12

∂z1∂z1
+

∂2
M 22

∂z2
2

+
∂2F
∂z2

2

∂2W
∂z2

1
− 2

∂2F
∂z1∂z2

∂2W
∂z1∂z2

+
∂2F
∂z2

1

(
∂2W
∂z2

2
−

̅̅̅̅̅
12

√
Z
)

= 0
(73) 

If the moment expressions as defined in Eqs. (45)–(47) are intro-
duced in Eq. (73), it yields: 

− α2
b
∂3B1

∂z3
1
− β

∂3B1

∂z1∂z2
2
−

1
α2
b

∂3B2

∂z3
2
− β

∂3B1

∂z2
1∂z2

= −
∂2F
∂z2

2

∂2W
∂z2

1
+ 2

∂2F
∂z1∂z2

∂2W
∂z1∂z2

−
∂2F
∂z2

1

(
∂2W
∂z2

2
−

̅̅̅̅̅
12

√
Z
) (74) 

Finally, if the moment expressions Eq. (54) and the transverse force 
expressions Eq. (64) are used in the moment equilibrium equations (Eqs. 
(68) and (69)), the following relations are obtained: 

χ1B1 − α2
b
∂2B1

∂z2
1
+

1
2
(β − νb)

∂2B1

∂z2
2
−

1
2
(β+ νb)

∂2B2

∂z1∂z2
= χ1

∂W
∂z1

(75)  

χ2B2 −
1
α2
b

∂2B2

∂z2
2
+

1
2
(β − νb)

∂2B2

∂z2
1
−

1
2
(β+ νb)

∂2B1

∂z1∂z2
= χ2

∂W
∂z2

(76)  

3.4. Compatibility equations 

The compatibility equation places restrictions on how the strains can 
vary over the shell so that a continuous displacement field could be 
found for the assumed strain field. The out of plane displacement, w in 
terms of the mid-surface strains: ε0

x , ε0
y and γ0

xy is: 

∂2ε0
x

∂y2 +
∂2ε0

y

∂x2 −
∂2γ0

xy

∂xy =
1
R

∂2w
∂x2 +

(
∂2w
∂y2

)2

−
∂2w
∂x2

∂2w
∂y2 (77) 

Introducing the nondimensional mid-surface strains as described in 
(Eqs. (21)–(23), the derivatives of the nondimensional out-of-plane 
displacement as defined in Eq. (6), and the Batdorf-Stein parameter 
from Eq. (19), Eq. (77) is converted into the following nondimensional 
compatibility equation. 

∂2E0
11

∂z2
2

+
∂2E0

22

∂z2
1

−
∂2Γ0

12

∂z1z2
=

̅̅̅̅̅
12

√
Z

∂2W
∂z2

1
+
L2

R2

(
∂2W
∂z2

2

)2

−
∂2W
∂z2

1

∂2W
∂z2

2
(78) 

Introducing the constitutive equations Eq. (41) and the described 
stress function F (Eqs. (70)–(72)) the nondimensional compatibility 
equation becomes: 

α2
m

∂4F
∂z4

1
+

1
α2
m

∂4F
∂z4

2
+ 2μ ∂4F

∂z2
1∂z2

2
=

̅̅̅̅̅
12

√
Z

∂2W
∂z2

1
+
L2

R2

(
∂2W
∂z2

2

)2

−
∂2W
∂z2

1

∂2W
∂z2

2
(79)  

4. Linearized buckling equations taking into account transverse 
shear 

The linearized equations for the determination of the critical buck-
ling load at the bifurcation point can be derived by the application of the 
adjacent equilibrium criterion [29]. To investigate the existence of 
adjacent equilibrium configurations, it is assumed that the following 
variables W, F, B1 and B2 are given by: 

W =W + Ŵ (80)  

F=F + F̂ (81)  

B1 =B1 + B̂1 (82)  

B2 =B2 + B̂2 (83)  

where W, F, B1 and B2 represent the prebuckling solutions along the 
fundamental path and Ŵ, F̂ represent small perturbations at buckling. 
Assuming the shell is sufficiently long, the prebuckling displacement W 
and the prebuckling slope B1 and B2 are considered constant. This means 
that previous to the buckling event, both the out-of-plane displacement 
and the slopes are independent of the spatial coordinates z1 and z2. 

The scope of this study is limited to shells under only axial 
compression to investigate the influence of the transverse shear in the 
axial buckling load, P. However, the nondimensionalisation until here 
can be utilized for other load cases. The equations are to be solved for a 
value of the nondimensional buckling force. In the case of axial 
compression, the nondimensional buckling force, F , expresses the 
buckling load (P) related to the bending stiffness of the shell and the 
cylindrical shell radius: 

F = − P
R

2π
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
D11D22

√ (84) 

The prebuckling force component in the axial direction, N 11, as 
defined in Eq. (70), represents the nondimensional axial buckling force, 
F , as shown in Eq. (84). If only an axial load is considered, and deeming 
the expression of the stress function as defined in Eqs. (71) and (72) the 
prebuckling force components N 22 and N 12 are equal to zero. 

N 11 =
∂2F
∂z2

2
=F (85)  

N 22 =
∂2F
∂z2

1
=

N 12

αb
= −

∂2F
∂z1∂z2

= 0 (86) 

Compounding all the exposed derivations (Eqs. (74)–(76), (79)–(83), 
(85) and (86)) the following linearized buckling equations are obtained: 

α2
b
∂3 B̂1

∂z3
1
+ β

∂3 B̂1

∂z1∂z2
2
+

1
α2
b

∂3 B̂2

∂z3
2
+ β

∂3 B̂2

∂z2
1∂z2

= F
∂2Ŵ
∂z2

1
−

̅̅̅̅̅
12

√
Z

∂2 F̂
∂z2

1
(87)  

α2
m

∂4 F̂
∂z4

1
+

1
α2
m

∂4 F̂
∂z4

2
+ 2μ ∂4 F̂

∂z2
1∂z2

2
=

̅̅̅̅̅
12

√
Z

∂2Ŵ
∂z2

1
(88)  

χ1 B̂1 − α2
b
∂2 B̂1

∂z2
1
+

1
2
(β − νb)

∂2 B̂1

∂z2
2
−

1
2
(β+ νb)

∂2 B̂2

∂z1∂z2
= χ1

∂Ŵ
∂z1

(89)  

χ2 B̂2 −
1
α2
b

∂2 B̂2

∂z2
2
+

1
2
(β − νb)

∂2 B̂2

∂z2
1
−

1
2
(β+ νb)

∂2 B̂1

∂z1∂z2
= χ2

∂Ŵ
∂z2

(90) 

For simplicity, Eqs. (89) and (90) can be also expressed as follows: 
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B̂1 −
α2
b

χ1

∂2 B̂1

∂z2
1
+

1
2χ1

(β − νb)
∂2 B̂1

∂z2
2
−

1
2χ1

(β+ νb)
∂2 B̂2

∂z1∂z2
=

∂Ŵ
∂z1

(91)  

B̂2 −
1

χ2α2
b

∂2 B̂2

∂z2
2
+

1
2χ2

(β − νb)
∂2 B̂2

∂z2
1
−

1
2χ2

(β+ νb)
∂2 B̂1

∂z1∂z2
=

∂Ŵ
∂z2

(92) 

Recalling that for simply supported boundary conditions: Ŵ =

Ŵz1z1 = 0 at z1 = 0,1; then these equations admit separable solutions of 
the form: 

Ŵ =A sin(mπz1)sin(nz2) (93)  

F̂ =B sin(mπz1)sin(nz2) (94)  

B̂1 =C cos(mπz1)sin(nz2) (95)  

B̂2 =D sin(mπz1)cos(nz2) (96) 

The nondimensional buckling load (F ), which is the desired solution 
of the derived equations, is obtained solving the eigenvalue problem. 
The value is found for the combination of m and n coefficients that gives 
the lowest nondimensional buckling load value. These values represent 
the buckling mode of the shell. The value of m is associated with the 
number of halfwaves in the longitudinal direction, whereas the value of 
n is the value associated with the number of waves in the circumferential 
direction. In the case of an axisymmetric solution the value of n is equal 
to 1. 

5. Linearized buckling equations neglecting transverse shear 

Eqs. (87), (88), (91) and (92) are the linearized governing equations 
of the buckling of a sandwich shell that includes the transverse shear 
effects. To analyze the effect of the transverse shear, the equations 
without taking it into account are also considered. In this case, the 
transverse shear strains (εxz, εyz from Eqs. (10) and (11)), or as defined in 
their nondimensional form (Γ13, Γ23 in Eqs. (17) and (18)), are negligible 
compared to other strain components, and therefore: 

B1 =
∂W
∂z1

(97)  

B2 =
∂W
∂z2

(98) 

This consideration simplifies some of the equations and reduces the 
number of variables to only the nondimensional out-of-plane displace-
ment, W and the nondimensional stress function, F. The constitutive 
equation (Eq. (54) becomes: 

⎡

⎣
M 11
M 22
M 12

⎤

⎦=

⎡

⎢
⎢
⎢
⎢
⎣

α2
b − νb 0

− νb
1
α2
b

0

0 0 β − νb

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂2W
∂z2

1

∂2W
∂z2

2

∂2W
∂z1∂z2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(99) 

Therefore the equilibrium equation described in Eq. (73) becomes: 

α2
b
∂4W
∂z4

1
+ 2β

∂4W
∂z2

1∂z2
2
+

1
α2
b

∂4W
∂z4

2

+
∂2F
∂z2

2

∂2W
∂z2

1
− 2

∂2F
∂z1∂z2

∂2W
∂z1∂z2

+
∂2F
∂z2

1

(
∂2W
∂z2

2
−

̅̅̅̅̅
12

√
Z
)

= 0
(100) 

The axial buckling load in this particular case is notated as P0. The 
nondimensional buckling force without transverse shear, F 0, is thus 
defined in analogous way as the buckling load with transverse shear, F 

(Eqs. (84) and (85)). 

N 11 =
∂2F
∂z2

2
=F 0 = − P0

R
2π

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
D11D22

√ (101) 

The criterion is applied as described in Eqs. (80) and (81), where W 
and F represent the prebuckling solutions along the fundamental path 
and ̂W, F̂ represent small perturbations at buckling. Considering that the 
initial prebuckling displacement, W, is constant, the linearized buckling 
equations in this case become: 

α2
b
∂4Ŵ
∂z4

1
+ 2β

∂4Ŵ
∂z2

1∂z2
2
+

1
α2
b

∂4Ŵ
∂z4

2
= F 0

∂2Ŵ
∂z2

1
−

̅̅̅̅̅
12

√
Z

∂2 F̂
∂z2

1
(102)  

α2
m

∂4 F̂
∂z4

1
+

1
α2
m

∂4 F̂
∂z4

2
+ 2μ ∂4 F̂

∂z2
1∂z2

2
=

̅̅̅̅̅
12

√
Z

∂2Ŵ
∂z2

1
(103) 

These linearized equations were also described by Nemeth and 
Schultz [5] as the linearized governing equations for laminate configu-
rations, where F 0 is the nondimensional buckling force as defined in 
Eq. (101). Assuming again simply supported boundary conditions 
(Ŵ = Ŵz1z1 = 0 at z1 = 0,1), and separable solutions defined in Eqs. 
(93) and (94), an eigenvalue problem can be solved to determine the 
nondimensional buckling load. The value is found for the combination of 
m and n coefficients that gives the lowest nondimensional buckling load 
value (F 0). The values of m and n describe the buckling mode of the 
shell, since they represent the halfwaves in the longitudinal direction 
and the waves in the circumferential direction respectively. 

Upon inspection of linearized equations with and without transverse 
shear, the influence of χ1 and χ2 is revealed as the main difference be-
tween them. In the case where these nondimensional parameters have 
large values, Eqs. (89) and (90) would become: 

B̂1 =
∂Ŵ
∂z1

(104)  

B̂2 =
∂Ŵ
∂z2

(105) 

The remaining governing equations Eqs. (87) and (88) would be as 
represented in Eqs. (102) and (103). 

The values of χ1 and χ2, as defined in Eqs. (61) and (62), represent 
the influence of the transverse shear effects of the core. In the cases 
where the values of χ1 and χ2 are large, it indicates that the core material 
is very stiff and thus the influence of the transverse shear effects is 
negligible. In this case, the value of the nondimensional buckling load, 
with (F ) and without (F 0) transverse shear effects will be the same. 

6. Applications 

In this section, applications are discussed to illustrate the results 
derived from the presented nondimensional formulation and how the 
nondimensional parameters can be used to better understand sandwich 
composite buckling behavior. The goal of the nondimensional formu-
lation and the applications shown in this section is threefold. First, it 
shows how cylindrical shells with different materials and dimensions 
share the same buckling behavior. Second, it demonstrates how to 
navigate the design space of sandwich composite shells and detect which 
parameters have a greater influence on the buckling response. Finally, it 
illustrates the cases with shell properties that require the inclusion of the 
transverse shear, and therefore the more complete formulation. 

6.1. Influence of nondimensional parameters in the design space 

In order to lay-out these goals, different shells are compared. The 
dimensions of the shells, as well as the facesheet laminate, core thickness 
and modulus are reported in Table 1. The facesheets are made of the 
same carbon fiber material, with the properties: E11 = 150GPa, E22 =
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10GPa, G12 = 6GPa, ν12 = 0.3 and t = 0.131mm. 
The nondimensional parameters (αm, αb, μ, β, νb, Z, χ1 and φ) of the 

analyzed shells are reported in Table 2 together with the obtained 
nondimensional force with transverse shear (F ), without transverse 
shear (F 0) and the ratio between them (F /F 0). 

To demonstrate how nondimensional results are applicable to 
different shells of different scales, Shell 1 and Shell 2 are compared and 
their differences and similarities highlighted. Shell 2 is much larger than 
Shell 1, although in both cases the length is double the radius. The 
laminate of the facesheet of Shell 1 is (±45)s (4 plies), whereas the 
laminate of the facesheet in Shell 2 is (±45)s2 (8 plies). The core ma-
terial, isotropic in both shells, is Rohacell 200 for Shell 1 and Rohacell 
110 for Shell 2. The relevant difference between these materials is the 
shear moduli, G, as shown in Table 1. The thickness of the core of the 
two shells is also different. 

In spite of these shells being of different scales, the set of nondi-
mensional parameters that rule the nondimensional linearized equations 
is the same, as shown in Table 2. As a result, both the nondimensional 
force with transverse shear (F ) and without transverse shear (F 0) are 
the same in both shells. Therefore, the ratio between both nondimen-
sional buckling forces F /F 0 = 0.81 is the same as well. 

In order to examine how the change in the different parameters af-
fects the relation F /F 0 and explain how to navigate the design space of 
sandwich composite shells with the help of nondimensional parameters, 
another shell is considered, named Shell 3 and described in Table 1. This 
shell has the same geometry (radius and length) as Shell 1. Shell 3 
facesheets are made of the same carbon fiber material as Shell 1, layup is 
also (±45)s and the core thickness is also 2.5mm. The only difference 
between Shell 3 and Shell 1 is the type of core material, which in this 
case is Rohacell 300, an isotropic foam (G = 370MPa) that is stiffer than 
the foam used in Shell 1. 

The set of nondimensional parameters for Shell 1 and Shell 3 is the 
same except for the value of χ1. In order to analyze the differences and 
study the trends, it is plotted in Fig. 3 how the transverse shear buckling 
load ratio, F /F 0 is influenced by the nondimensional transverse shear 
χ1 for the sandwich shell with the Batdorf-Stein parameter Z = 50. 
Fig. 3 and Table 2 show that higher values of nondimensional transverse 

shear χ1 lead to higher agreement between a buckling load accounting 
for the transverse shear versus a buckling load that does not. 

The curve in Fig. 3 is nonlinear and shows a steep increase for the 
values of χ1 under 500. For the values over 500, the curve increase is 
more gradual. In the range depicted in Fig. 3, the curve also does not 
reach the value 1. This indicates that for this range of sandwich cylin-
drical shells, the transverse shear effects are not entirely negligible, 
inducing an error of at least 5% in the buckling load. 

For the shells considered, as can be seen in Fig. 3, Shell 1 has a higher 
influence of the transverse shear in the solution (F /F 0 = 0.81) than 
Shell 3 (F /F 0 = 0.93). This is due to the fact that a stiffer core leads to 
a decrease in the influence of the transverse shear strains with respect to 
the rest of the strain components. 

Shell 4 is now considered, where the geometry and facesheet lami-
nate properties are the same as Shell 1 (See Table 1). Regarding the core, 
Shell 4 has the same material as Shell 1 (G = 120MPa), but the thickness 
of the core is reduced to only 1mm. This case is a limit case because it 
goes close to infringing one of the assumptions of the methodology 
described in Section 2, that is, the core must be much thicker than the 
facesheet. In this case, the core is still double the thickness of the face-
sheet, so it is assumed that the method is still valid. Most nondimen-
sional parameters remain the same as shown in Table 2, except the 
transverse shear parameter χ1 = 1220 and the Batdorf-Stein parameter 
Z = 100. 

Fig. 4 shows for a sandwich shell with Batdorf-Stein parameters Z =

Table 1 
Properties of the shells.  

Properties Shell 1 Shell 2 Shell 3 Shell 4 Shell 5 Shell 6 

Radius, R[mm] 400 1400 400 400 400 400 
Length, L[mm] 800 2800 800 800 800 1600 
Faceheet laminate (±45)s  (±45)s2  (±45)s  (±45)s  (±45)s  (±45)s  

Core thickness, 
tcore [mm]

2.5 10 2.5 1 1 2.5 

Core shear 
modulus, 
G[MPa]

120 70 364 120 70 120  

Table 2 
Nondimensional parameters of the shells.  

Parameter Shell 1 Shell 2 Shell 3 Shell 4 Shell 5 Shell 6 

αm  0.5 0.5 0.5 0.5 0.5 0.25 
αb  0.5 0.5 0.5 0.5 0.5 0.25 
μ − 0.5 − 0.5 − 0.5 − 0.5 − 0.5 − 0.5 
β 2.4 2.4 2.4 2.4 2.4 2.4 
νb  0.75 0.75 0.75 0.75 0.75 0.75 
Z 50 50 50 100 100 50 
χ1  500 500 1500 970 500 500 
φ 4 4 4 4 4 16 

F  294 294 341 567 478 293 
F 0  361 361 366 692 692 359 
F / F 0  0.81 0.81 0.93 0.82 0.69 0.81  

Fig. 3. Effect of core shear parameter (χ1) on the transverse shear buckling load 
ratio (F /F 0) for Z = 50. 

Fig. 4. Effect of core shear parameter (χ1) on the transverse shear buckling load 
ratio (F /F 0) for Z = 50 and Z = 100. 
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50 and Z = 100, how the transverse shear buckling load ratio, F / F 0 is 
influenced by the nondimensional transverse shear χ1. This is important 
because a variation in the shell that produces a change in the value of Z 
(i.e. core thickness) also produces a change in the value of χ1. A change 
in core thickness from 2.5mm for Shell 1 to 1mm in Shell 4, changes both 
parameters χ1 and Z so the influence is not easy to discern. In this 
particular scenario, the change in thickness does not produce a signifi-
cant change in the influence of the transverse shear, going from F /

F 0 = 0.81 for Shell 1 to F /F 0 = 0.82 for Shell 4. 
Although the difference in the influence of the transverse shear re-

mains similar, the buckling response of Shell 1 and Shell 4 is very 
different, as noted in the values of the nondimensional buckling load 
ranging from F = 294 in Shell 1 to F = 567 in Shell 4. Therefore the 
ratio F /F 0 is only an indication of the relevance of the transverse 
shear and not of the overall buckling response. 

In Fig. 4, the influence of the transverse shear is higher for higher 
values of Z, which is a representative ratio of the radius versus the 
thickness. To observe this effect, Shell 5 is defined. The geometry and 
facesheet laminate properties of Shell 5 are the same as Shell 1 (See 
Table 1). Shell 5 has a core of a less stiff material (G = 70MPa) than 
Shell 1, and the thickness is reduced to only 1mm. Most nondimensional 
parameters remain the same, as shown in Table 2, except the Batdorf- 
Stein parameter Z = 100 and the transverse shear parameter χ1 = 570. 

A higher value of Z with a similar value of χ1, will have a more 
pronounced influence on the transverse shear. For instance, Shell 5 ratio 
is F /F 0 = 0.69, considerably lower than Shell 1 ratio F / F 0 = 0.82. 
The difference can also be spotted when comparing Shell 4 and Shell 5. 
Both shells have the same core thickness, and therefore the value of the 
nondimensional buckling load without transverse shear is the same 
(F 0 = 692). However, when calculating the nondimensional buckling 
load including the transverse shear, for Shell 4 it is F = 567 (18% lower 
than F 0) and for Shell 5 it is F = 478 (31% lower than F 0). This is a 
remarkable disparity, considering that the shells core is made of similar 
material (isotropic foam) with only different shear moduli properties. 

Finally, in order to study the influence of the length, Shell 6 is 
considered. Shell 6 has the same radius, facesheet laminate, core ma-
terial and core thickness as Shell 1. However, the length of Shell 6 (L =

1600mm) is double the length of Shell 1 (L = 800mm). Therefore, Shell 
1 and Shell 6 have different weighted geometry parameters (αm, αb) and 
different transverse ratio (φ). In order to study the effect of these pa-
rameters, it is plotted the transverse shear buckling load ratio, F / F 0 
versus the weighted geometry parameters (αm, αb) for the sandwich 
shells with shear ratios φ = 0.5, φ = 2, φ = 4 and φ = 16 in Fig. 5. 

If the same facesheet properties are kept, since the facesheet layup is 
(±45)s, the variation of αm and αb is dependent only in the variation of 

geometry ratio (L/R). Fig. 5 shows that low values of αm and αb, in 
combination with low values of φ can produce a big change in the 
transverse shear buckling load ratio, F /F 0. However, the change be-
tween Shell 1 and Shell 6 is not significant enough to change either the 
buckling behavior or the influence of the transverse shear F /F 0 =

0.82. For shells with moderate length with respect to the radius, the 
influence of αm, αb and φ does not play a significant role. 

6.2. Finite element verification 

In order to verify the results and trends, for the shells described in 
Table 1 the buckling loads are compared with numerical results. The 
goal is to check the results obtained in Section 6.1, and analyze if the 
assumptions of the formulation hold even in the limit cases. 

These numerical results are determined using the commercial 
general-purpose finite element code Abaqus, where a linear buckling 
analysis is performed. Since the considered sandwich cylindrical shells 
are assumed to be thin shells with thin cores, S4R reduced-integration 
four-noded shell elements are used in the finite element analysis. The 
models use elements of approximately 10 mm × 10 mm for Shell 1, 3, 4, 
5 and 6 and 30 mm × 30 mm for Shell 2. Since the analytical equations 
are proposed considering simply supported conditions, simply sup-
ported conditions are used as well in the numerical analysis. 

The results are reported in Table 3. The analytical load, P0 is 
calculated using the formula in Eq. (101), and the analytical load, P is 
calculated using the formula in Eq. (84). The difference between the 
analytical load (P) and the numerical value (Pnum) is also included in the 
table. 

The numerical results show reasonable agreement(< 5%) with the 
analytical formulation for Shell 1, Shell 2, Shell 3 and Shell 6. For Shell 
4, which is considered a limit case, results show a higher difference ( −
7.17%) between the analytical and the numerical result. The case is a 
limit case because the thickness of the core is comparable to the thick-
ness of the facesheets. The assumption that the transverse shear is only 
carried by the core is no longer true. In this case, the transverse shear 
properties of the facesheets should also be taken into account and 
therefore the Cheung and Tennyson shear model used here [27] is no 
longer applicable. A large discrepancy can also be seen in Shell 5. For 
Shell 5, which has the same thickness (1mm) but a less stiff core material 
as Shell 4, results show that the analytical formulation overestimates the 
influence of the transverse shear by − 14.26%. This indicates that the 
reduction of the buckling load due to the transverse shear is significant 
(Pnum/P0 = 0.81) but not as high as predicted (P/P0 = 0.69). This result 
reinforces the need to limit the application of the methodology to cases 
where the core thickness is significantly larger than the facesheets as 
established in the definition of the methodology. 

Aside of the numerical buckling values, it is interesting to compare 
the buckling modes of the out-of-plane displacement w. The first com-
parison is between Shell 1 and Shell 2 which, as indicated, are shells of 
different scales, with different facesheet layup, core thickness and ma-
terial. However, the nondimensional parameters that rule the buckling 
phenomena are the same and thus they have the same nondimensional 
buckling load (F ). The dimensional loads are different, as seen in 
Table 3, but they share the same eigenmode shape as seen in Fig. 6. The 
figure shows the first eigenmode shape for the out-of-plane displace-
ment w. 

Fig. 5. Effect of weighted geometry parameters (αm,αb) on the transverse shear 
buckling load ratio (F /F 0) for φ = 0.5, φ = 1, φ = 2, φ = 4 and φ = 16. 

Table 3 
Buckling load of the shells.  

Results Shell 1 Shell 2 Shell 3 Shell 4 Shell 5 Shell 6 

Analytical load, P0 [kN] 657 4707 675 328 328 653 
Analytical load, P[kN] 534 3826 630 269 227 533 
Numerical load, Pnum[kN] 551 3881 631 290 265 551 
Analytical-numerical difference 

[%] 
− 3.02 − 1.40 − 0.18 − 7.17 − 14.26 − 3.16  

I. Uriol Balbin and C. Bisagni                                                                                                                                                                                                                



Thin-Walled Structures 161 (2021) 107393

10

Regarding the comparison between shells of the same geometry 
(radius and length) it can be observed that they all have axisymmetric 
shape in Fig. 7. This is consistent with the eigenvalue solution obtained 
analytically as indicated in Eq. (93). Fig. 7 also shows the out-of plane 
displacement (w) for the first eigenmode. Each solution has a different 
number of half-waves: 11 for Shell 1, 10 for Shell 3, 14 for Shell 4 and 16 
for Shell 5. 

Finally, the buckling shapes of Shell 1 and Shell 6, for which the 
buckling load (P) as well as the buckling nondimensional load (F ) are 
very similar, are compared in Fig. 8. The buckling shape is axisymmetric 
in both cases but the number of half-waves is 11 for Shell 1 and 21 for 
Shell 2. 

To finalize the verification process, it is worthy to mention that the 
model, as discussed in section 2, was not built to capture local buckling 
effects such as wrinkling. It was considered that the core normal stiffness 
was large enough so that the global modes occur at a much lower load. 
In order to assess the validity of this assumption, the wrinkling loads for 
described applications were calculated according the analytical formu-
lation described in Ref. [30]: 

PFW = 4πR tf

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2
3
tf
tc
Ec

̅̅̅̅̅̅̅̅̅̅
ExEy

√

1 − νxyνyx

√

(106)  

where R is the cylindrical shell midsurface radius, tf is the facesheet 
thickness, tc is the core thickness, Ec is the effective core extensional 
modulus, Ex and Ey are the effective facesheet extensional moduli in the 
axial and circumferential directions and νxy and νyx are the effective 
facesheet Poisson ratios. The results are reported in Table 4. 

The comparison shows that the wrinkling load is higher than the 
expected buckling load and therefore the global buckling will occur 
before the local effects take place. Nevertheless, this is a conservative 
estimation applied to only a few cases. The framework could be 
extended to study the local effects such as wrinkling in the future. 

7. Conclusions 

This study presents the development of nondimensional equations 
for axial buckling of sandwich composite cylindrical shells with and 
without shear deformable core. A systematic nondimensionalisation is 
applied in order to obtain the nondimensional linearized buckling 
equations. The equations offer the advantage to present a similar format 
as their dimensional counterparts making their use more intuitive. 

A solution for the nondimensional buckling load is derived from the 
linearized nondimensional equations. The nondimensional buckling 
load is an effective parameter to compare the buckling phenomena for 
different types of shells of different scale. The nondimensional buckling 
load (F ) obtained considering the core transverse shear is compared to 
the nondimensional buckling load (F 0) obtained neglecting the core 
transverse shear. 

Using the nondimensional parameters, it is possible to navigate the 
design space of different shells and to investigate the impact of changes 
in the properties of the shells towards the buckling response. More 
specifically, the focus is in the reduction of the buckling load due to the 
influence of the core transverse shear effects and the relation between 
the load and other factors of the shells. The transverse shear buckling 
load ratio (F /F 0) represents this influence. 

The study shows that the Batdorf-Stein parameter (Z) and the 
nondimensional transverse shear parameter (χ1) influence the most the 
transverse shear buckling load ratio (F /F 0). Shells with a stiffer core 
material, represented with a higher nondimensional transverse shear 
parameter (χ1), are less influenced by the core transverse shear. For the 
same value of χ1, thinner shells, as represented by a higher Batdorf-Stein 
parameter (Z), present a higher transverse shear influence. 

The study also investigates the influence of the shear modulus ratio 
(φ) and the weighted geometry nondimensional parameters (αm, αb) on 
the transverse shear buckling load ratio (F /F 0). In the applications 
considered (shells of moderate length with respect to the radius), the 
influence of these parameters is small. 

Numerical values for specific examples are given. These examples Fig. 6. Comparison of the first buckling mode of Shell 1 and Shell 2.  

Fig. 7. Comparison of the first buckling mode of Shell 1, Shell 3, Shell 4 and 
Shell 5. 

Fig. 8. Comparison of the first buckling mode of Shell 1 and Shell 6.  

Table 4 
Comparison of buckling and wrinkling loads.  

Results Shell 
1 

Shell 
2 

Shell 
3 

Shell 
4 

Shell 
5 

Shell 
6 

Global buckling load 
(analytical) P[kN]

534 3826 630 269 227 533 

Wrinkling load 
(analytical) PFW[kN]

14356 20727 7427 6467 5280 4102  
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provide reasonable estimates to boundaries of the nondimensional 
design space for a range of cylindrical shells. For instance, in cases where 
the core is very thin compared to the facesheets and the material pre-
sents low shear stiffness, the formulation is shown to overstate the in-
fluence of the transverse shear and give conservative buckling load 
values. 

Overall, the analysis and results can be used to design sandwich 
composite cylindrical shells. The nondimensionalisation is useful in 
order to compare shells of different sizes and analyze the influence of 
different parameters in the buckling response. 
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